

Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 2 No. 3 (2013), pp. 13-19. c 2013 University of Isfahan

TWO-OUT DEGREE EQUITABLE DOMINATION IN GRAPHS

A. SAHAL[∗] AND V. MATHAD

Communicated by Behruz Tayfeh-Rezaie

Abstract. An equitable domination has interesting application in the context of social networks. In a network, nodes with nearly equal capacity may interact with each other in a better way. In the society persons with nearly equal status, tend to be friendly. In this paper, we introduce new variant of equitable domination of a graph. Basic properties and some interesting results have been obtained.

1. Introduction

By a graph $G = (V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m, respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik [2]. Let $G = (V, E)$ be a graph and let $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by $N(v) = \{u \in V : uv \in E\}$ and $N[v] = N(v) \cup \{v\},\$ respectively. If $S \subseteq V$ then $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. A subset S of V is called a dominating set if $N[S] = V$. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)$ (Γ(G)). An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [4]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [5]. Various types of domination have been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [4]. A double star is the tree obtained from two disjoint stars $K_{1,n}$ and $K_{1,m}$ by connecting their centers. *A.* SAHAL* AND V. MATHAD

Communicated by Behruz Tayfeh-Rezaie

Archive of social net

persons with nearly equal status, tend to

MSC(2010): Primary: 05C69; Secondary: 05C70.

Keywords: Equitable Domination Number, Two-Out Degree Equitable Domination Number, Minimal Two-Out Degree Equitable Dominating set, Two-Out Degree Equitable Domatic Partition.

Received: 2 February 2013, Accepted: 10 July 2013.

[∗]Corresponding author.

Definition 1.1. Let $G = (V, E)$ be a graph, $D \subseteq V(G)$ and v be any vertex in D. The out degree of v with respect to D denoted by $od_D(v)$, is defined as $od_D(v) = |N(v) \cap (V - D)|$.

Definition 1.2[1]. Let D be a dominating set of a graph $G = (V, E)$. For $v \in D$, let $od_n(v)$ $|N(v) \cap (V - D)|$. Then D is called an equitable dominating set of type 1 if $|od_p(v_1) - od_p(v_2)| \leq 1$ for all $v_1, v_2 \in D$. The minimum cardinality of such a dominating set is denoted by $\gamma_{eq1}(G)$ and is called the 1- equitable domination number of G.

In this paper we make the equitable dominating set of a graph.

2. Two-Out Degree Equitable Domination Number in Graphs

Definition 2.1. A dominating set D in a graph G is called a two-out degree equitable dominating set if for any two vertices $u, v \in D$, $|od_D(u) - od_D(v)| \leq 2$. The minimum cardinality of a two-out degree equitable dominating set is called the two-out degree equitable domination number of G, and is denoted by $\gamma_{2oe}(G)$. A subset D of V is a minimal two-out degree equitable dominating set if no proper subset of D is a two-out degree equitable dominating set. 2. **Two-Out Degree Equitable Domination Number in Graphs**
 A.1. A dominating set D in a graph G is called a two-out degree equidable

vertices $u, v \in D$, $|od_D(u) - od_D(v)| \le 2$. The minimum cardinality of the

inating set is c

It is obvious that any two-out degree dominating set in a graph G is also a dominating set, and thus we obtain the obvious bound $\gamma(G) \leq \gamma_{2oe}(G)$. Also, it is easy to see that, $\gamma_{2oe}(G) = 1$ if and only if $\gamma(G) = 1$.

The following results are straightforward.

Proposition 2.2.

(1) For the complete bipartite graph $K_{n,m}$, $1 < m \leq n$, the two-out degree equitable domination number is:

$$
\gamma_{2oe}(K_{n,m}) = \begin{cases} 2, & \text{if } n-m \le 2; \\ r, & \text{if } n-m = r, \ 3 \le r < m; \\ m, & \text{if } n-m = r, \ 3 \le m \le r. \end{cases}
$$

(2) For the double star $S_{n,m}$, the two-out degree equitable domination number is:

$$
\gamma_{2oe}(S_{n,m}) = \begin{cases} 2, & \text{if } |n-m| \leq 2 ; \\ n+m-1, & \text{if } |n-m| \geq 3, n \text{ or } m=1; \\ n+m-2, & \text{if } |n-m| \geq 3, n,m \geq 2. \end{cases}
$$

Theorem 2.3. For any connected graph G, if $\Delta - \delta \leq 2$, then $\gamma_{2oe}(G) = \gamma(G)$.

Proof. Let G be a connected graph such that $\Delta - \delta \leq 2$ and let D be a minimum dominating set of G. Then $|D| = \gamma(G)$. Since $\Delta - \delta \leq 2$, it follows that for any two vertices $u, v \in D$, $|od_D(u) - od_D(v)| \leq 2$. Hence $\gamma_{2oe}(G) = \gamma(G)$.

[www.SID.ir](www.sid.ir)

Theorem 2.4. Let D be a two-out degree equitable dominating set of a graph G. Then D is a minimal two-out degree equitable dominating set of G if and only if one of the following holds:

- (1) D is minimal dominating set.
- (2) For any vertex $v \in D$, the set U_v is nonempty, where $U_v = \{x, y \in D, |od_D(x) od_D(y)| = 2$, and v is adjacent to x but not adjacent to y .

Proof. Suppose that D is a minimal two-out degree equitable dominating set of G . Then for any $v \in D$, $D - \{v\}$ is not two-out degree equitable dominating set. If D is a minimal dominating set, then we are done. If not, then for any $v \in D$, let $U_v = \{x, y \in D, |od_D(x) - od_D(y)| = 2$, and v is adjacent to x but not adjacent to y}. There exist $x, y \in D - \{v\}$ such that $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| > 2$. If both x, y are adjacent to v, then $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_D(x) - od_D(y)| \le 2$, a contradiction. If both x, y are not adjacent to v, then $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_{D}(x) - od_{D}(y)| \le 2$, a contradiction. So, v is adjacent to precisely one vertex of $\{x, y\}$. Without loss of generality, assume that v is adjacent to x and v not adjacent to y .

Then,

$$
2 < |od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_{D}(x) + 1 - od_{D}(y)| \leq |od_{D}(x) - od_{D}(y)| + 1
$$

So, $|od_{D}(x) - od_{D}(y)| > 1$. But $|od_{D}(x) - od_{D}(y)| \leq 2$.

So, $|od_D(x) - od_D(y)| = 2$. Hence U_v is not empty.

Conversely, let D be a two-out degree equitable dominating set and suppose that D is a minimal two-out degree equitable dominating set. Suppose to the contrary D is not a minimal two-out degree equitable dominating set. Then for every $v \in D$, $D - \{v\}$ is a two-out degree equitable dominating set. So, D is not a minimal dominating set, a contradiction. Next, suppose that D is a two-out degree equitable dominating set and (2) holds. Then for every $v \in D$, U_v is not empty. So, for every $v \in D$, there exist $x, y \in D$ such that v is adjacent to precisely one vertex of $\{x, y\}$, and $|od_D(x)-od_D(y)| = 2$. Suppose to the contrary D is not a minimal two-out degree equitable dominating set. Then for every $v \in D, D - \{v\}$ is a two-out degree equitable dominating set. So, $2 < |od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| \leq 2$ and thus *Archive of* y , there exist $x, y \in D - \{v\}$ such that $|od_{D-\{v\}}(x) - od_{D-\{v\}}(x)|$
 $|d_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_D(x) - od_D(y)| \leq 2$, a contra

igneent to v , then $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_D(x) - od_{D}(y)| \leq 2$, a contra
 Ato p

$$
2 \geq |od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_{D}(x) - od_{D}(y)| \leq |od_{D}(x) - od_{D}(y)| + 1 = 3
$$

Since $D - \{v\}$ is a two-out degree equitable dominating set, we have $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = 2$. Then $|od_{D-\{v\}}(x) - od_{D-\{v\}}(y)| = |od_D(x) - od_D(y)|$, either $\{x, y\} \subseteq N(v)$, or $\{x, y\} \cap N(v) = \phi$. \Box

Theorem 2.5. Let G be a graph. Then G has a unique minimal two-out degree equitable dominating set if and only if $G = \overline{K}_n$.

Proof. Suppose that D is a unique minimal two-out degree equitable dominating set of G . Suppose $G \neq \overline{K}_n$, then there exists $u \in D$ such that $deg(u) \geq 1$. Then $V - \{u\}$ is a two-out degree equitable dominating set of G. Hence there exists $D' \subseteq V - \{u\}$ such that D' is a minimal two-out degree equitable dominating set. Since $u \notin D'$, $D \neq D'$. Hence G has two minimal two-out degree equitable

dominating sets, a contradiction. Thus $G = \overline{K}_n$ and $V(G)$ is the only two-out degree equitable dominating set of G .

Theorem 2.6. Let G be a graph of order n. Let $u, v \in V(G)$ such that $N(u) \neq \emptyset$, $N(v) \neq \emptyset$ and $N[u] \cap N[v] = \phi$. Then $\gamma_{2oe}(G) \leq n-2$.

Proof. Let $D = V - \{u, v\}$. Since $N[u] \cap N[v] = \phi$, u and v are not adjacent vertices. Since u and v are not isolated, there exist two distinct vertices $x, y \in D$ such that x is adjacent to u but not adjacent to v and y is adjacent to v but not adjacent to u. Clearly the out degree of any vertex of D is either 0 or 1. Hence D is a two-out degree equitable dominating set of G. Thus $\gamma_{2oe}(G) \leq n-2$.

Lemma 2.7. Let $G = (V, E)$ be a connected graph and let $D = \{u, v\}$ be a subset of V such that $N(u) \cap N(v) = \phi$ and $|od_D(u) - od_{V-D}(v)| \leq 2$. Then $\gamma_{2oe}(\overline{G}) = 2$.

Proof. Let $D = \{u, v\}$ and let x be any vertex of $V - D$. Since $u, v \in V(G)$ such that $N(u) \cap N(v) = \phi$, we consider the following cases.

Case 1: x is adjacent to precisely one vertex of $\{u, v\}$ in G. Then x is adjacent to precisely one vertex of $\{u, v\}$ in \overline{G} also.

Case 2: x is not adjacent to both u and v in G. Then x is adjacent to both u and v in \overline{G} .

Since G is connected, it follows from the above two cases that $\{u, v\}$ is a dominating set of \overline{G} and $|od_p(u) - od_p(v)| \leq 2$ of \overline{G} . Hence there is no vertex with full degree and hence $\{u, v\}$ is a minimum two-out degree equitable dominating set. Thus $\gamma_{2oe}(\overline{G}) = 2$. Let $G = (V, E)$ be a connected graph and let $D = \{u, v\}$ be a subset
 $=\phi$ and $|od_D(u) - od_{V-D}(v)| \leq 2$. Then $\gamma_{2\alpha \epsilon}(\overline{G}) = 2$.
 $=\{u, v\}$ and let x be any vertex of $V-D$. Since $u, v \in V(G)$ such that N

are following cas

Theorem 2.8. Let $G = (V, E)$ be a connected graph, let u and v be any two vertices of $V(G)$ such that $N(u) \cap N(v) = \phi$ and $|deg(u) - deg(v)| \leq 2$. Then

- (1) $\gamma_{2oe}(G) + \gamma_{2oe}(\overline{G}) \leq n$.
- (2) $\gamma_{2oe}(G)\gamma_{2oe}(\overline{G}) \leq 2(n-2).$

Proof. Let $G = (V, E)$ be a connected graph. By Lemma 2.7, $\gamma_{2oe}(G) = 2$ and by Theorem 2.6, $\gamma_{2oe}(G) \leq n-2$. Hence $\gamma_{2oe}(G) + \gamma_{2oe}(\overline{G}) \leq n$ and $\gamma_{2oe}(G)\gamma_{2oe}(\overline{G}) \leq 2(n-2)$.

Theorem 2.9. Let G be an isolate-free graph of order n and let D be a maximum independent set of G such that for $u \in V - D$, $|N(u) \cap D| \leq 2$. Then $\gamma_{2oe}(G) \leq n - \beta$.

Proof. Let G be an isolate-free graph of order n. Since D is a maximum independent set of $G, V - D$ is dominating set of G. Then for any $u, v \in V - D$, $|od_{V-D}(u) - od_{V-D}(v)| \leq 2$. Hence $V - D$ is a two-out degree equitable dominating set of G. Thus $\gamma_{2oe}(G) \leq |V - D| \leq n - |D| \leq n - \beta$.

Theorem 2.10. For any graph G of order n and size m, $\gamma_{2oe}(G) = n-m$ if and only if $G = \bigcup_{i=1}^{\gamma_{2oe}} K_{1,r_i}$ such that $|r_i - r_j| \leq 2, 1 \leq i, j \leq \gamma_{2oe}(G)$.

Proof. Let $\gamma_{2oe}(G) = n-m$. Suppose that G has t-components. The minimum number of edges in each component is n_i-1 , where n_i is the number of vertices in that component. Since any dominating set of G has at least one vertex from each component of $G, t \leq \gamma_{2oe}(G)$. But $m \geq n_1-1+n_2-1+\cdots+n_t-1$.

[www.SID.ir](www.sid.ir)

So, $m \geq n-t$. Hence $t \geq \gamma_{2oe}(G)$. Thus $t = \gamma_{2oe}(G)$. If G is not a forest, then G contains a component G_1 , say which is cyclic. Then $m \geq n$, so that $\gamma_{2oe}(G) \leq 0$ which is not possible. Hence G is a forest. Since $t = \gamma_{2oe}(G)$, it follows that each component is a star. That is $G = \bigcup_{i=1}^{\gamma_{2oe}} K_{1,r_i}$. Since the centers of the stars constitute a minimum two-out degree equitable dominating set, it follows that if $G_i = K_{1,r_i}$ and $G_j = K_{1,r_j}$, then $|r_i - r_j| \le 2$.

Theorem 2.11. For any positive integer m, there exists a graph G such that $\gamma_{2oe}(G) - \lfloor \frac{n}{\Delta+1} \rfloor = m$, where $|x|$ denotes the greatest integer not exceeding x.

Proof. For $m = 1$, take $G = K_{4,4}$, $\gamma_{2oe}(G) - \lfloor \frac{n}{\Delta + 1} \rfloor = 2 - 1 = 1$. For $m = 2$, take $G = K_{3,6}$, $\gamma_{2oe}(G) - \lfloor \frac{n}{\Delta + 1} \rfloor = 3 - 1 = 2$. For $m \ge 3$, take $G = S_{r,s}$, where $r + s = m + 3$, $s \ge r + 3$ $\gamma_{2oe}(G) = r + s - 2 = m + 1,$ $\lfloor \frac{n}{\Delta+1} \rfloor = \lfloor \frac{r+s+2}{s+2} \rfloor = 1,$ $\gamma_{2oe}(G) - \lfloor \frac{n}{\Delta + 1} \rfloor = r + s - 3 = m.$ ke $G = K_{3,6}, \gamma_{2ce}(G) - \lfloor \frac{n}{\Delta+1} \rfloor = 3 - 1 = 2$.
 Acchive of $S = S_{r,s}$, where $r + s = m + 3$, $s \geq r + 3$
 $s - 2 = m + 1$,
 $\frac{42}{\Delta} = 1 = 1$,
 $\frac{42}{\Delta} = 1 = r + s - 3 = m$.
 12. Let G be a graph of order n having p_0 isolated ve

Theorem 2.12. Let G be a graph of order n having p_0 isolated vertices. Then $\gamma_{2oe}(G) \geq \frac{n+2p_0}{3}$ $\frac{2p_0}{3}$.

Proof. Let D be any minimum two-out degree equitable dominating set of G. Then for any $v \in D$, v is dominating at most two vertices of $V - D$. Let $|D'| = |D| - p_0$. Then $2|D'| \geq |V - D|$. It follows that, $2|D'| + |D| \ge n$. Then $\gamma_{2oe}(G) \ge \frac{n+2p_0}{3}$ 3 . We can consider the set of \Box

The bound is sharp for $\overline{K_n}$.

Theorem 2.13. Let G be a graph and let D be a minimum two-out degree equitable dominating set of G containing t pendant vertices such that every vertex of $V - D$ is a pendant vertex. Then $\gamma_{2oe}(G) \geq \frac{n+t}{3}$ $\frac{+t}{3}$.

Proof. Let D be any minimum two-out degree equitable dominating set of G containing t pendant vertices such that every vertex $v \in V - D$ is a pendant vertex. Then $2|D| - t \geq |V - D|$. It follows that, $3|D|-t\geq n$. Hence $\gamma_{2oe}(G)\geq \frac{n+t}{3}$ 3 . В последните поставите на селото на се
Селото на селото на

The bound is sharp for lK_2 , $l \geq 1$.

Theorem 2.14. Let G be a graph, and $u, v, w \in V(G)$ such that u, v, w are not isolates and $(uv, vw, uw) \notin$ $E(G)$. Then $V - \{u, v, w\}$ is a two-out degree equitable dominating set if and only if one of the following conditions hold:

- (1) $N(u) \cap N(v) \cap N(w) = \phi$.
- (2) $N(u) \cap N(v) \cap N(w) \neq \emptyset$ and $N[u] \cup N[v] \cup N[w] = V$.

Proof. Let $D = V - \{u, v, w\}$. Suppose one of the conditions $(1), (2)$ holds. Since u, v, w are not isolates and $(uv, vw, uw) \notin E(G)$, then D is a dominating set. If (1) holds, then any vertex $x \in D$ is adjacent to at most two of u, v, w , such that the out degree of x is at most two. Hence D is a two-out degree equitable dominating set. If (2) holds, then there exists $x \in N(u) \cap N(v) \cap N(w)$ such that

 $x \in D$. It follows that $od_p(x) \leq 3$. Since $N[u] \cup N[v] \cup N[w] = V$, $od_p(y) \geq 1$, for each $y \in D$. Hence D is a two-out degree equitable dominating set.

Conversely, suppose $D = V - \{u, v, w\}$ is a two-out degree equitable dominating set. If (1) hold, then we are done. If not then there exists $x \in N(u) \cap N(v) \cap N(w)$. i.e, $x \in D$, and $od_D(x) = 3$. Since D is a two-out degree equitable dominating set, then for any $y \in D$, $1 \leq od_D(y) \leq 3$.

Hence $N(u) \cap N(v) \cap N(w) \neq \phi$ and $N[u] \cup N[v] \cup N[w] = V$.

3. Two-Out Degree Equitable Domatic Number in Graphs

Definition 3.1. A partition $P = \{V_1, V_2, \ldots, V_l\}$ of $V(G)$ is called a two-out degree equitable domatic partition if V_i is a two-out degree equitable dominating set for every $1 \leq i \leq l$.

Example :

 $\{\{1,2\},\{3,4\}\}\$ is a two-out degree equitable domatic partition of G.

Definition 3.2. The two-out degree equitable domatic number of G is the maximum cardinality of a two-out degree equitable domatic partition of G and is denoted by $d_{2oe}(G)$.

We now proceed to compute $d_{2oe}(G)$ for some standard graphs. It can be easily verified that

- (1) For the complete graph K_n , $d_{2oe}(K_n) = n$.
- (2) For the cycle C_n , $n \geq 4$, $d_{2oe}(C_n) = 2$.
- (3) For the path P_n , $d_{2oe}(P_n) = 2$.
- (4) For the star $K_{1,n}$, $d_{2oe}(K_{1,n}) = 2$.
- (5) For the wheel W_n with n vertices, $d_{2oe}(W_n) = 2$.
- (6) For the complete bipartite graph $K_{n,m}$, $m \leq n$ we have

$$
d_{2oe}(K_{n,m}) = \begin{cases} m, & \text{if } n-m \le 2, n,m \ge 2; \\ 2, & \text{otherwise.} \end{cases}
$$

Theorem 3.3. For any graph G , $d_{2oe}(G) \leq \delta(G) + 1$.

[www.SID.ir](www.sid.ir)

Proof. Let D be any two-out degree equitable dominating set of G. Then for any $v \in V(G)$, $D \cap N[v] \neq$ ϕ . Let $v \in V(G)$ such that $deg(v) = \delta(G)$ and $N[v] = \{v, u_1, u_2, \ldots, u_{\delta}\}.$ If $d_{2oe}(G) > \delta(G) + 1$, then there exist at least $(\delta(G)+2)$ sets of a two-out degree equitable domatic partition of G, each containing at least one element of $N[v]$. Then $deg(v) \geq \delta(G)+1$, a contradiction. Hence $d_{2oe}(G) \leq \delta(G)+1$. \Box

Theorem 3.4. For any graph G of order n, $d_{2oe}(G) \leq \frac{n}{\gamma_{\text{max}}}$ $\frac{n}{\gamma_{2oe}(G)}$.

Proof. Suppose that $d_{2oe}(G) = t$, for some positive integer t. Let $P = \{D_1, D_2, \ldots, D_t\}$ be the two-out degree equitable domatic partition of G. Obviously, $|V(G)| = \sum_{i=1}^{t} |D_i|$ and from definition of the two-out degree equitable domination number $\gamma_{2oe}(G)$, we have $\gamma_{2oe}(G) \leq |D_i|$, $i = 1, 2, ..., t$. Hence $n = \sum_{i=1}^{t} |D_i| \ge t \gamma_{2oe}(G)$. Thus $d_{2e}(G) \le \frac{n}{\gamma_{2oe}(G)}$ $\gamma_{2oe}(G)$.

4. Conclusion

We can generalize the concept of a two-out degree equitable domination as follows: Let $G = (V, E)$ be a graph with dominating set D , then D is called a k-out degree equitable dominating set if for any two vertices u and v in D, $|od_p(u) - od_p(v)| \leq k$. The similar results can be obtained from the two-out degree equitable domination. *Archive of a two-out degree equitable domination as follows:*
 A. Conclusion
 A. A. A. A. A. A. A.

Acknowledgments

The authors would like to thank and express their gratitude to the referee for reading the paper care- fully and giving valuable comments.

REFERENCES

- [1] A. Anitha, S. Arumugam and M. Chellali, Equitable domination in graphs, Discrete Math. Algorithms Appl., 3 (2011) 311-321.
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall. CRC, 4th edition, 2005.
- [3] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin., 55 (2000) 201-213.
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs, Advanced topics, Marcel Dekker, New York, 1998.
- [6] S. T. Hedetniemi and R. Laskar, Connected domination in graphs, Graph Theory and Combinatorics, B. Bollobas. Ed. Academic Press, London, (1984) 209-217.
- [7] V. Swaminathan and K. M. Dharmalingam, Degree equitable domination on graphs, Kragujevac J. Math., 35 (2011) 191-197.

Ali Sahal

Department of Mathematics, University of Mysore, Manasagangotri, Mysore - 570 006, India Email: alisahl1980@gmail.com

Veena Mathad

Department of Mathematics, University of Mysore, Manasagangotri, Mysore - 570 006, India Email: veena mathad@rediffmail.com