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Abstract. The reciprocal degree distance (RDD), defined for a connected graph G as vertex-degree-

weighted sum of the reciprocal distances, that is, RDD(G) =
∑

u,v∈V (G)

dG(u)+dG(v)
dG(u,v)

. The reciprocal degree

distance is a weight version of the Harary index, just as the degree distance is a weight version of the

Wiener index. In this paper, we present exact formulae for the reciprocal degree distance of join, tensor

product, strong product and wreath product of graphs in terms of other graph invariants including the

degree distance, Harary index, the first Zagreb index and first Zagreb coindex. Finally, we apply some of

our results to compute the reciprocal degree distance of fan graph, wheel graph, open fence and closed

fence graphs.

1. Introduction

All the graphs considered in this paper are simple and connected. For vertices u, v ∈ V (G), the

distance between u and v in G, denoted by dG(u, v), is the length of a shortest (u, v)-path in G and let

dG(v) be the degree of a vertex v ∈ V (G). For two simple graphs G and H their tensor product, denoted

by G×H, has vertex set V (G)× V (H) in which (g1, h1) and (g2, h2) are adjacent whenever g1g2 is an

edge in G and h1h2 is an edge in H. Note that if G and H are connected graphs, then G×H is connected

only if at least one of the graph is nonbipartite. The strong product of graphs G and H, denoted by

G � H, is the graph with vertex set V (G) × V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)} and (u, x)(v, y)

is an edge whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G) and x = y, or (iii) uv ∈ E(G)

and xy ∈ E(H). Similarly, the wreath product of the graphs G and H, denoted by G ◦ H, has vertex

set V (G) × V (H) in which (g1, h1)(g2, h2) is an edge whenever g1g2 is an edge in G or, g1 = g2 and

h1h2 is an edge in H, see Fig.1. The tensor product of graphs has been extensively studied in relation
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to the areas such as graph colorings, graph recognition, decompositions of graphs, design theory, see

[1, 2, 3, 12, 16].

A sum G+H of two graphs G and H with disjoint vertex sets V (G) and V (H) is the graph on the

vertex set V (G)∪V (H) and the edge set E(G)∪E(H)∪{uv | u ∈ V (G), v ∈ V (H)}. Hence, the sum of

two graphs is obtained by connecting each vertex of one graph to each vertex of the other graph, while

keeping all edges of both graphs. The sum of two graphs is sometimes also called a join, and is denoted

by G∇H.
A topological index of a graph is a real number related to the graph; it does not depend on labeling

or pictorial representation of a graph. In theoretical chemistry, molecular structure descriptors (also

called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological

and other properties of chemical compounds [9]. There exist several types of such indices, especially

those based on vertex and edge distances. One of the most intensively studied topological indices is the

Wiener index; for other related topological indices see [22].

Let G be a connected graph. Then Wiener index of G is defined as W (G) = 1
2

∑
u, v ∈V (G)

dG(u, v)

with the summation going over all pairs of distinct vertices of G. Similarly, the Harary index of G is

defined as H(G) = 1
2

∑
u, v ∈V (G)

1
dG(u,v) .

Dobrynin and Kochetova [5] and Gutman [8] independently proposed a vertex-degree-weighted version

of Wiener index called degree distance or Schultz molecular topological index, which is defined for a

connected graph G as DD(G) = 1
2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v), where dG(u) is the degree of the

vertex u in G. Note that the degree distance is a degree-weight version of the Wiener index. Hua and

Zhang [11] introduced a new graph invariant named reciprocal degree distance, which can be seen as a

degree-weight version of Harary index, that is, RDD(G) = 1
2

∑
u,v∈V (G)

dG(u)+dG(v)
dG(u,v) .

The Harary index of a graph G was introduced independently by Plavsic et al. [20] and by Ivanciuc

et al. [13] in 1993. Its applications and mathematical properties are well studied in [4, 7, 23, 15]. Zhou

et al. [24] have obtained the lower and upper bounds of the Harary index of a connected graph. Very

recently, Xu et al. [21] have obtained lower and upper bounds for the Harary index of a connected

graph in relation to χ(G), chromatic number of G and ω(G), clique number of G. and characterized

the extremal graphs that attain the lower and upper bounds of Harary index. Also, Feng et. al. [7]
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have given a sharp upper bound for the Harary indices of graphs based on the matching number, that

is, the size of a maximum matching. Various topological indices on tensor product, Cartesian product

and strong product have been studied various authors, see [17, 18, 19, 14, 10]. Hua and Zhang [11] have

obtained lower and upper bounds for the reciprocal degree distance of graph in terms of other graph

invariants including the degree distance, Harary index, the first Zagreb index, the first Zagreb coindex,

pendent vertices, independence number, chromatic number and vertex-, and edge-connectivity.

The first Zagreb index and first Zagerb coindex are defined as M1(G) =
∑

u∈V (G)

dG(u)2 and M1(G) =∑
uv/∈E(G)

(dG(u) + dG(v)). In fact, one can rewrite the first Zagreb index as M1(G) =
∑

uv∈E(G)

(dG(u) +

dG(v)). The Zagreb indices are found to have appilications in QSPR and QSAR studies as well, see [6].

Denoted by Pn, Cn and Kn the path, cycle and complete graphs on n vertices, respectively. We call

C3 a triangle. In this paper, we present exact formulae for the reciprocal degree distance of join, tensor

product, strong product and wreath product of graphs in terms of other graph invariants including the

degree distance, Harary index, the first Zagreb index and first Zagreb coindex. Finally, we apply some

of our results to compute the reciprocal degree distance of fan graph, wheel graph, open fence and closed

fence graphs.

2. Reciprocal degree distance of G+H

In this section, we compute the reciprocal degree distance of join of two connected graphs.

Theorem 2.1. Let G and H be graphs with n and m vertices, respectively. Then RDD(G + H) =

M1(G) +M1(H) + 1
2(M1(G) +M1(H)) + 3(n |E(H)|+m |E(G)|) + nm

2 (3n+ 3m− 2).

Proof. Set V (G) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm}. By definition of the join of two graphs,

one can see that,

dG+H(x) =

dG(x) + |V (H)| , if x ∈ V (G)

dH(x) + |V (G)| , if x ∈ V (H)

and dG+H(u, v) =


0, if u = v

1, if uv ∈ E(G) or uv ∈ E(H) or (u ∈ V (G) and v ∈ V (H))

2, otherwise.
Therefore,
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RDD(G+H) =
1
2

∑
u,v∈V (G+H)

dG+H(u) + dG+H(v)
dG+H(u, v)

=
1
2

( ∑
uv∈E(G)

(
dG(u) +m+ dG(v) +m

)
+

1
2

∑
uv/∈E(G)

(
dG(u) +m+ dG(v) +m

)
+

∑
uv∈E(H)

(
dH(u) + n+ dH(v) + n

)
+

1
2

∑
uv∈E(H)

(
dH(u) + n+ dH(v) + n

)
+

∑
u∈V (G), v∈V (H)

(
dG(u) +m+ dH(v) + n

))
= M1(G) +M1(H) +

1
2

(M1(G) +M1(H)) + 3(n |E(H)|+m |E(G)|)

+
nm

2
(3n+ 3m− 2).

�

Using Theorem 2.1, we have the following corollary.

Corollary 2.2. Let G be graph on n vertices. Then RDD(G+Km) = M1(G)+ 1
2M1(G)+3m |E(G)|+

m
2

(
2(m− 1)2 + 3n(m− 1) + n(3n+ 3m− 2)

)
.

One can observe that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, M1(Pn) = 4n − 6, n > 1 and M1(Kn) =

n(n− 1)2. Similarly, M1(Kn) = 0, M1(Pn) = 2(n− 2)2 and M1(Cn) = 2n(n− 3).

Using M1(Cn),M1(Pn),M1(Pn) and M1(Cn) and Corollary 2.2, we compute the formulae for recipro-

cal degree distance of fan and wheel graphs, Pn +K1 and Cn +K1, see Figs. 2a and 2b.

Example 1.

(i) RDD(Pn +K1) = 1
2(5n2 + 7n− 10).

(ii) RDD(Cn +K1) = 1
2(5n2 + 9n).

3. Reciprocal degree distance of tensor product of graphs

In this section, we compute the reciprocal degree distance of G×Kr.

The proof of the following lemma follows easily from the properties and structure of G × Kr. The

lemma is used in the proof of the main theorem of this section.
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Lemma 3.1. Let G be a connected graph on n ≥ 2 vertices. For any pair of vertices xij , xkp ∈
V (G×Kr), r ≥ 3

(i) If vivk ∈ E(G), then

dG×Kr(xij , xkp) =


1, if j 6= p,

2, if j = p and vivk is on a triangle of G,

3, if j = p and vivk is not on a triangle of G.

(ii) If vivk /∈ E(G), then dG×Kr(xij , xkp) = dG(vi, vk).

(iii) dG×Kr(xij , xip) = 2.

Theorem 3.2. Let G be a connected graph with n ≥ 2 vertices and m edges. Then RDD(G ×Kr) =

r(r − 1)

(
rRDD(G)− M1(G)

2 − 1
6

∑
uiuk∈E2

(d(ui) + d(uk)) + (r − 1)m

)
, where r ≥ 3.

Proof. Set V (G) = {u1, u2, . . . , un} and V (Kr) = {v1, v2, . . . , vr}. Let xij denote the vertex (ui, vj) of

G×Kr. The degree of the vertex xij in G×Kr is dG(ui)dKr(vj), that is, dG×Kr(xij) = (r − 1)dG(ui).

By the definition of reciprocal degree distance

RDD(G×Kr) =
1
2

∑
xij , xkp ∈V (G×Kr)

dG×Kr(xij) + dG×Kr(xkp)
dG×Kr(xij , xkp)

=
1
2

(
n−1∑
i =0

r−1∑
j, p =0
j 6= p

dG×Kr(xij) + dG×Kr(xip)
dG×Kr(xij , xip)

+
n−1∑

i, k =0
i 6= k

r−1∑
j =0

dG×Kr(xij) + dG×Kr(xkj)
dG×Kr(xij , xkj)

+
n−1∑

i, k =0
i 6= k

r−1∑
j, p =0
j 6= p

dG×Kr(xij) + dG×Kr(xkp)
dG×Kr(xij , xkp)

)

=
1
2
{A1 +A2 +A3},(3.1)

where A1 to A3 are the sums of the above terms, in order.

We shall calculate A1 to A3 of (3.1) separately.

(A1) First we compute
n−1∑
i =0

r−1∑
j, p =0
j 6= p

dG×Kr (xij)+dG×Kr (xip)
dG×Kr (xij ,xip) .

n−1∑
i =0

r−1∑
j, p =0
j 6= p

dG×Kr(xij) + dG×Kr(xip)
dG×Kr(xij , xip)

=
n−1∑
i =0

r−1∑
j, p =0
j 6= p

dG(ui)(r − 1) + dG(ui)(r − 1)
2

, by Lemma 3.1

= 2r(r − 1)2m.(3.2)

(A2) Next we compute
r−1∑
j =0

n−1∑
i, k =0
i 6= k

dG×Kr (xij)+dG×Kr (xkj)
dG×Kr (xij ,xkj)

.

Let E1 = {uv ∈ E(G) |uv is on a C3 in G} and E2 = E(G)− E1.
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n−1∑
i, k = 0
i 6= k

dG×Kr
(xij) + dG×Kr

(xkj)
dG×Kr (xij , xkj)

=
( n−1∑

i, k = 0
i 6= k

uiuk /∈E(G)

+
n−1∑

i, k = 0
i 6= k

uiuk∈E1

+
n−1∑

i, k = 0
i 6= k

uiuk∈E2

)(dG×Kr (xij) + dG×Kr (xkj)
dG×Kr

(xij , xkj)

)

=

(
n−1∑

i, k = 0
i 6= k

uiuk /∈E(G)

dG(ui)(r − 1) + dG(uk)(r − 1)
dG(ui, uk)

+
n−1∑

i, k = 0
i 6= k

uiuk∈E1

dG(ui)(r − 1) + dG(uk)(r − 1)
2

+
n−1∑

i, k = 0
i 6= k

uiuk∈E2

dG(ui)(r − 1) + dG(uk)(r − 1)
3

)
, by Lemma 3.1

= (r − 1)

{(
n−1∑

i, k = 0
i 6= k

uiuk /∈E(G)

dG(ui) + dG(uk)
dG(ui, uk)

+
n−1∑

i, k = 0
i 6= k

uiuk∈E1

dG(ui) + dG(uk)
dG(ui, uk)

+
n−1∑

i, k = 0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)
dG(ui, uk)

)

−
n−1∑

i, k = 0
i 6= k

uiuk∈E1

dG(ui) + dG(uk)
2

− 2
n−1∑

i, k = 0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)
3

}

= (r − 1)

{
2RDD(G)−

n−1∑
i, k = 0
i 6= k

uiuk∈E(G)

dG(ui) + dG(uk)
2

−
n−1∑

i, k = 0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)
6

}

= (r − 1)

{
2RDD(G)−M1(G)−

n−1∑
i, k = 0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)
3

}
,(3.3)

Now summing (3.3) over j = 0, 1, . . . , r − 1, we get,

r−1∑
j = 0

 n−1∑
i, k = 0
i 6= k

dG×Kr (xij) + dG×Kr (xkj)
dG×Kr

(xij , xkj)

 = r(r − 1)

{
2RDD(G)−M1(G)−

n−1∑
i, k = 0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)
3

}
.(3.4)

(A3) Next we compute
n−1∑

i, k =0
i 6= k

 r−1∑
j, p =0
j 6= p

dG×Kr (xij)+dG×Kr (xkp)
dG×Kr (xij ,xkp)

 .
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n−1∑
i, k =0
i 6= k

r−1∑
j, p =0,
j 6= p

dG×Kr(xij) + dG×Kr(xkp))
dG×Kr(xij , xkp

=
n−1∑

i, k =0
i 6= k

r−1∑
j, p =0,
j 6= p

dG(ui)(r − 1) + dG(uk)(r − 1)
dG(ui, uk)

, by Lemma 3.1

= r(r − 1)2
n−1∑

i, k =0
i 6= k

dG(ui) + dG(uk)
dG(ui, uk)

= 2r(r − 1)2RDD(G).(3.5)

Using (3.1) and the sums A1,A2 and A3 in (3.2),(3.4) and (3.5), respectively, we have,

RDD(G×Kr) = r(r − 1)

(
rRDD(G)− 1

2
M1(G)− 1

6

∑
uiuk∈E2

(dG(ui) + dG(uk)) + (r − 1)m

)
.

�

Using Theorem 3.2, we have the following corollaries.

Corollary 3.3. Let G be a connected graph on n ≥ 2 vertices with m edges. If each edge of G is on a

C3, then RDD(G×Kr) = r(r − 1)
(
rRDD(G)− 1

2M1(G) + (r − 1)m
)
, where r ≥ 3.

Corollary 3.4. If G is a connected triangle free graph on n ≥ 2 vertices and m edges, then RDD(G×
Kr) = r(r − 1)

(
rRDD(G)− 2

3M1(G) + (r − 1)m
)
.

4. Reciprocal degree distance of strong product of graphs

In this section, we obtain the reciprocal degree distance of G�Kr.

Theorem 4.1. Let G be a connected graph with n vertices and m edges. Then RDD(G � Kr) =

r
(
r2RDD(G) + 2r(r − 1)H(G) + 2r(r − 1)m+ n(r − 1)2

)
.

Proof. Set V (G) = {u1, u2, . . . , un} and V (Kr) = {v1, v2, . . . , vr}. Let xij denote the vertex (ui, vj) of

G�Kr. The degree of the vertex xij in G�Kr is dG(ui)+dKr(vj)+dG(ui)dKr(vj), that is dG�Kr(xij) =

rdG(ui) + (r − 1). One can see that for any pair of vertices xij , xkp ∈ V (G �Kr), dG�Kr(xij , xip) = 1

and dG�Kr(xij , xkp) = dG(ui, uk).
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By the definition of reciprocal degree distance

RDD(G�Kr) =
1
2

∑
xij , xkp ∈V (G�Kr)

dG�Kr(xij) + dG�Kr(xkp)
dG�Kr(xij , xkp)

=
1
2

(
n−1∑
i =0

r−1∑
j, p =0
j 6= p

dG�Kr(xij) + dG�Kr(xip)
dG�Kr(xij , xip)

+
n−1∑

i, k =0
i 6= k

r−1∑
j =0

dG�Kr(xij) + dG�Kr(xkj)
dG�Kr(xij , xkj)

+
n−1∑

i, k =0
i 6= k

r−1∑
j, p =0
j 6= p

dG�Kr(xij) + dG�Kr(xkp)
dG�Kr(xij , xkp)

)

=
1
2
{A1 +A2 +A3},(4.1)

where A1, A2 and A3 are the sums of the terms of the above expression, in order.

We shall obtain A1 to A3 of (4.1), separately.

A1 =
n−1∑
i=0

r−1∑
j, p =0
j 6= p

dG�Kr(xij) + dG�Kr(xip)
dG�Kr(xij , xip)

=
n−1∑
i=0

r−1∑
j, p =0
j 6= p

(
2dG(ui) + 2(r − 1) + 2(r − 1)dG(ui)

)
= 4r2(r − 1)m+ 2nr(r − 1)2(4.2)

A2 =
r−1∑
j =0

n−1∑
i, k =0
i 6= k

dG�Kr(xij) + dG�Kr(xkj)
dG�Kr(xij , xkj)

=
r−1∑
j =0

n−1∑
i, k =0
i 6= k

dG(ui) + (r − 1)dG(ui) + dG(uk) + (r − 1)dG(uk) + 2(r − 1)
dG(ui, uk)

= r

r−1∑
j =0

n−1∑
i, k =0
i 6= k

dG(ui) + dG(uk)
dG(ui, uk)

+
r−1∑
j =0

n−1∑
i, k =0
i 6= k

2(r − 1)
dG(ui, uk)

= 2r2RDD(G) + 4r(r − 1)H(G).(4.3)

A3 =
n−1∑

i, k =0
i 6= k

r−1∑
j, p =0,
j 6= p

dG�Kr(xij) + dG�Kr(xkp)
dG�Kr(xij , xkp)

= r2(r − 1)
n−1∑

i, k =0
i 6= k

dG(ui) + dG(uk)
dG(ui, uk)

+ 2r(r − 1)2
n−1∑

i, k =0
i 6= k

1
dG(ui, uk)

= 2r2(r − 1)RDD(G) + 4r(r − 1)2H(G).(4.4)
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Using (4.2), (4.3) and (4.4) in (4.1), we have

RDD(G�Kr) = r
(
r2RDD(G) + 2r(r − 1)H(G) + 2r(r − 1)m+ n(r − 1)2

)
.

�

By direct calculations we obtain expressions for the values of the Harary indices of Pn and Cn.

H(Pn) = n
( n∑

i=1

1
i

)
− n and H(Cn) =


n
( n

2∑
i=1

1
i

)
− 1 n is even

n
( n−1

2∑
i=1

1
i

)
n is odd.

The following are the reciprocal degree distance for complete graph, path and cycle on n vertices by

direct calculations:

RDD(Kn) = n(n− 1)2, RDD(Pn) = H(Pn) + 4
( n−1∑

i=1

1
i

)
− 3

n−1 and RDD(Cn) = 4H(Cn).

As an application we present formulae for reciprocal degree distance of open and closed fences, Pn�K2

and Cn �K2, see Fig. 3.

By using Theorem 4.1, RDD(Cn) and H(Cn), we obtain the exact reciprocal degree distance of the

following graphs.

Example 2.

(i) RDD(Pn �K2) = 16
( n∑

i=1

1
i

)
+ 32

( n−1∑
i=1

1
i

)
− 6n− 24

n−1 − 8.

(ii) RDD(Cn �K2) =


10n

(
1 + 4

n
2∑

i=1

1
i

)
− 40 n is even

10n
(

1 + 4
n−1

2∑
i=1

1
i

)
n is odd.

5. Reciprocal degree distance of G ◦G′

In this section, we obtain the reciprocal degree distance of the wreath product of graphs.
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Theorem 5.1. Let G and G′ be two connected graphs with n1 and n2 vertices, respectively. Then

RDD(G ◦ G′) = n3
2RDD(G) + 2H(G)

(
2 |E(G′)| + M1(G′) + M1(G′)

)
+ n2 |E(G)|

(
n2

2 + 2 |E(G′)| −

n2

)
+ n1

2

(
2M1(G′) +M1(G′)

)
.

Proof. Let V (G) = {u1, u2, . . . , un1} and let V (G′) = {v1, v2, . . . , vn2}. Let xij denote the vertex (ui, vj)
of G ◦ G′. The degree of the vertex xij in G ◦ G′ is n2dG(ui) + dG′(vj). By the definition of reciprocal
degree distance

RDD(G ◦G′) =
1
2

∑
xij ,xk`∈V (G◦G′)

dG◦G′(xij) + dG◦G′(xk`)
dG◦G′(xij , xk`)

=
1
2

(
n1−1∑
i = 0

n2−1∑
j, ` = 0
j 6= `

dG◦G′(xij) + dG◦G′(xi`)
dG◦G′(xij , xi`)

+
n1−1∑

i, k = 0
i 6= k

n2−1∑
j = 0

dG◦G′(xij) + dG◦G′(xkj)
dG◦G′(xij , xkj)

+
n1−1∑

i, k = 0
i 6= k

n2−1∑
j, ` = 0
j 6= `

dG◦G′(xij) + dG◦G′(xk`)
dG◦G′(xij , xk`)

)

=
1
2
{A1 +A2 +A3},(5.1)

where A1 to A3 are the sums of the above terms, in order

We shall calculate the terms A1 to A3 of above expression separately.

A1 =
n1−1∑
i = 0

n2−1∑
j, ` = 0
j 6= `

dG◦G′(xij) + dG◦G′(xi`)
dG◦G′(xij , xi`)

=
n1−1∑
i = 0

n2−1∑
j, ` = 0
j 6= `

2n2dG(ui) + dG′(vj) + dG′(v`)
dG′(vj , v`)

=
n1−1∑
i = 0

n2−1∑
j, ` = 0
j 6= `

2n2dG(ui)
dG′(vj , v`)

+
n1−1∑
i = 0

n2−1∑
j, ` = 0
j 6= `

dG′(vj) + dG′(v`)
dG′(vj , v`)

= 2n2

n1−1∑
i = 0

dG(ui)

 ∑
vjv`∈E(G′)

1
dG′(vj , v`)

+
∑

vjv` /∈E(G′)

1
dG′(vj , v`)


+

n1−1∑
i = 0

 ∑
vjv`∈E(G′)

dG′(vj) + dG′(v`)
dG′(vj , v`)

+
∑

vjv` /∈E(G′)

dG′(vj) + dG′(v`)
dG′(vj , v`)


= 4n2 |E(G)|

 ∑
vj∈V (G′)

dG′(vj) +
∑

vj∈V (G′)

1
2

(|E(G′)| − dG′(vj)− 1)


+

n1−1∑
i = 0

 ∑
vjv`∈E(G′)

(dG′(vj) + dG′(v`)) +
∑

vjv` /∈E(G′)

dG′(vj) + dG′(v`)
2

 ,

since each row

induces a copy of G′ and dG◦G′(xij , xi`) =

1, if vjv` ∈ E(G′)

2, if vjv` /∈ E(G′).

= 2n2 |E(G)| (n2
2 + 2 |E(G′)| − n2) + n1(2M1(G′) +M1(G′)).(5.2)
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A2 =
n1−1∑

i, k = 0
i 6= k

n2−1∑
j = 0

d(xij) + d(xkj)
dG◦G′(xij , xkj)

=
n1−1∑

i, k = 0
i 6= k

n2−1∑
j = 0

n2(d(ui) + d(uk)) + 2d(vj)
dG(ui, uk)

,

since the distance between a pair of vertices

in a column is same as the distance between the corresponding

vertices of other column

=
n1−1∑

i, k = 0
i 6= k

n2−1∑
j = 0

n2(d(ui) + d(uk))
dG(ui, uk)

+
n1−1∑

i, k = 0
i 6= k

n2−1∑
j = 0

2d(vj)
dG(ui, uk)

= 2n2
2RDD(G) + 8 |E(G′)|H(G).(5.3)

A3 =
n1−1∑

i, k = 0
i 6= k

n2−1∑
j, ` = 0
j 6= `

d(xij) + d(xk`)
dG◦G′(xij , xk`)

=
n1−1∑

i, k = 0
i 6= k

n2−1∑
j, ` = 0
j 6= `

n2d(ui) + d(vj) + n2d(uk) + d(v`)
dG(ui, uk)

,

since dG◦G′(xij , xk`) = dG(ui, uk) for all j and k and further the distance

between the corresponding vertices of the layers is counted in A2

=
n1−1∑

i, k = 0
i 6= k

n2−1∑
j, ` = 0
j 6= `

n2(d(ui) + d(uk))
dG(ui, uk)

+
n1−1∑

i, k = 0
i 6= k

n2−1∑
j, ` = 0
j 6= `

d(vj) + d(v`)
dG(ui, uk)

,

= 2n2
2(n2 − 1)RDD(G) + 4H(G)(M1(G′) +M1(G′)).(5.4)

Using (5.2),(5.3) and (5.4) in (5.2), we have,

RDD(G ◦G′) = n3
2RDD(G) + 2H(G)

(
2
∣∣E(G′)

∣∣+M1(G′) +M1(G′)
)

+n2 |E(G)|
(
n2

2 + 2
∣∣E(G′)

∣∣− n2

)
+
n1

2

(
2M1(G′) +M1(G′)

)
.
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