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Abstract. In this article a graph theoretical approach is employed to study some specifications of

dynamic systems with time delay in the inputs and states, such as structural controllability and observ-

ability. First, the zero and non-zero parameters of a proposed system have been determined, next the

general structure of the system is presented by a graph which is constructed by non-zero parameters.

The structural controllability and observability of the system is investigated using the corresponding

graph. Our results are expressed for multi-agents systems with dead-time. As an application we find

a minimum set of leaders to control a given multi-agent system.

1. Introduction

Recently, graph theory has wide applications for modeling of large scale systems, distributed systems

and multi-agent systems. Graph is an interested tool to visual some specification of dynamic systems,

especially for multi agent systems [1], like as complex networks [2, 3, 4, 5], swarm group of unmanned

air vehicles (UAV) or autonomous underwater vehicles (AUV) [6, 7, 8, 9, 10] and physiological systems

and gene network [11].

One of the important application of graph theory is to study the controllability and observability

of systems [1, 12, 13, 14, 15]. For this goal, a graph is associated to a proposed system where the

vertices are corresponded to states, inputs or outputs and the edges are introduced the relations

between them. The associated graph may be assumed directed or undirected [1, 15] also weighted

or unweighted [14, 16]. The system specification can also be studied using the topology [13], the

adjacency matrix [14] or the laplacian matrix [1] of a graph. The adjacency or the laplacian matrix
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are obtained using defined parameters of a given system, while graph topology is constructed due to

the location of zero and non-zero parameters of the system. The latter case generally discusses about

structural controllability and observability of every system having a graph topology.

Moreover, some researchers claim that a delay must be considered between relations of distinct

states in real multi-agent systems such as complex networks [2, 3, 4, 5] and swarm UAVs or AUVs

[6, 9]. So the delay parameter must be assumed in the model and accordingly in the associated graph.

Ji and et al. [14] discuss about controllability of multi-agent systems with a time-delay. In [14], the

controllability of proposed system are studied by investigating the eigenvalues of adjacency matrix of

the associated graph. However in [14] the authors do not consider any delay in the leader states, while

usually there is no difference between leaders and followers to have delay in their communications.

Moreover, usually it is considered that the leaders are preassumed.

One of the interested and newest research aria in multi-agent systems is to present a method for

leaders selection [16, 17, 18, 19]. Finding the minimum possible leaders given a controllable multi-agent

system is the main challenge in this topic. Increasing the number of leaders significantly growths up

the complexity of any control algorithm; because leaders must lead the group of followers coordinately,

while they are conceptually independent. In other words, a follower may control by different leaders

which declare conflicting commands and cause a fault in the system. Therefore we are interested

on presenting a method to find a minimum possible leaders. Some authors [16, 18] consider the

followers and theirs relation are identified and it is possible to add a number of leaders with arbitrary

influence. However usually in multi-agent systems as swarm group of UAVs or complex network, the

leaders must be chosen among the existing states (with defined relation) and remaining states are

appropriated followers [18].

In this paper, the structural controllability and observability of dead-time systems are studied by

using an associated graph. The graph is made based zero and non-zero parameters of the proposed

system. In other words, the structure of relation between the inputs, states and output are presented by

the graph. As mentioned in [13], it is possible to study the controllability of a system by investigation

the paths topology in the associated graph. We use the latter result for dead-time systems and extend

it for multi-agent systems with delay in state and input. Consequently, the result of the structural

controllability is employed to find minimum number of leaders such that the proposed multi agent

system potentially controlled. Here we assume that the defined state must be divided to leaders and

followers group.

2. Preliminaries

In this section, some definitions and basic theorems of control and graph theory are presented. After

that, the method of associating graph to a system is described.

2.1. Control Theory. The goal in the control theory is to design a suitable input for a proposed

system such that the output converge to the desired value. For this target, the model of the system

must be defined such that the relations between inputs and outputs are determined. On the other
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hand, all systems have dynamic behavior and must be described by a differential equation. State space

is the famous method for modeling of the system in the control engineering. Generally, the state space

is obtain as following for linear time invariant (LTI) systems:

(2.1)

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
,

where x(t) ∈ Rn is the state vector, ẋ(t) is the derivation of x(t), u(t) ∈ Rm is controllable input vector,

y(t) ∈ Rp is the output vector and A,B,C and D are constant matrices. The constant matrices

play a fundamental role in control concepts such as controllability, observability, stabilizeability or

detectability. In this article we focus to the controllability and observability of systems. Generally,

the controllability definition and its basic theorem are presented as following.

Definition 2.1. System (2.1) is said to be controllable, if for any initial state x(0) = ϕ and any

terminal state xf , there exist a real number T > 0 and input u(t) (for t ∈ [0, T ]) such that x(T ) = xf .

Theorem 2.2. [20] System (2.1) is controllable if and only if the rank of the (n × n.m) matrix

Mc = [B,AB,A2B, . . . , An−1B] is n.

Sometimes, states are affected by other states and inputs with a dead-time because of the distance

between state, the communication time, processing lag or actuators performance. In this case, a delay

is introduced in the model as follows:

(2.2)

{
ẋ(t) = Ax(t) +Adx(t− d) +Bu(t− d)

y(t) = Cx(t) +Du(t− d)
,

where d ∈ R+ is the delay time. Distributed systems, multi agent systems, complex networks and

so on can be modeled by dead-time systems. Controllability concept of dead-time systems has some

differences compared with non-delayed systems. For example, the controllability definition and its

basic theorem are modified as follows.

Definition 2.3. System (2.2) is said to be controllable, if for any initial state x(τ) = ϕ(τ), any initial

input u(τ) = ψ(τ) (for τ ∈ [−d, 0]) and any terminal state xf , there exist a real number T > d and

input u(t) (for t ∈ [0, T ]) such that x(T ) = xf .

Theorem 2.4. [14] System (2.2) is controllable if and only if the rank of (n × n(n + 1)m/2) matrix

Q = [Q1
1, Q

2
1, Q

2
2, Q

3
1, . . . , Q

n
n] is n, where Q1

1 = B, Qk+1
j = AQk

j + AdQ
k
j−1 for j = 1, 2, . . . , k and

Qk
j = 0 for j > k.

Note that the presence or absence of a delay in the input causes no change in the Theorem 2.4 while

Definition 2.3 are changed if there is no delay in the input.

One of the other important features of a system is identified by observability. Based on Duality

proposition [20], the observability investigation of a system are similar to controllability investigation,

if the input and output are replaced with together. The observability of dead-time systems are

introduced as follows.
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Definition 2.5. System (2.2) is said to be observable, if for any unknown initial state x(0) = ϕ,

there exists a real number T > 0 such that the knowledge of u(τ) (for τ ∈ [−d, T − d]) and y(t) (for

t ∈ [0, T ]) are sufficient to determine uniquely initial state x(0).

In some kinds of systems (e.g. multi agent systems), the system topology or location of agent causes

relationships between some states while some other states may be independent. Also the coefficients

of related states can be arbitrary. Due to states dependability, the constant matrices A,Ad, B,C and

D have some zero and non-zero elements, for example:

(2.3)

A(λ) =

 λ1 λ2 λ3

0 0 0

λ4 0 0

 , Ad(λ) =

 0 λ5 0

0 λ6 0

0 λ7 0

 , B(λ) =

 λ8 0

0 0

0 λ9

 , C(λ) =

[
0 λ10 λ11

0 0 λ12

]

A zero entry in ith row and jth column of A or Ad means the ith state are not affected by jth state.

Also it is possible to set the non-zero entries of the constant matrices arbitrarily. In this case, the

controllability of a system depends on locations of zero and non-zero elements; we call these locations

the structure of the system. So the controllability and observability must be re-defined for structure

of the system.

Definition 2.6. System (2.1) is structurally controllable if at least there exists a suitable set of λis

such that system (2.1) is controllable.

Definition 2.7. System (2.1) is structurally observable if at least there exists a suitable set of λis such

that system (2.1) is observable.

2.2. Graph terminology. A graph G contains a number of vertices and edges which is presented

by G(V,E), where V = {v1, v2, . . . , vn} is the set of vertices, E = {(vi, vj), . . . , (vk, vf )} is a set of

ordered pairs of elements of V , and (vi, vj) denotes a directed edge from vi to vj . The graph is called

directed graph or digraph where its edges are directed. A graph H = (V ′, E′) is called a subgraph of

G(V,E) if V ′ ⊆ V and E′ ⊆ E.

In this article all edges are unweighted and we have no multi edges. The adjacency matrix A of

the graph G is the matrix A = [aij ], where aij = 1 if there exists an edge from vj to vi and aij = 0

otherwise. So unlike to undirected graph, A is not symmetric . Here self loop can be considered, thus

the diagonal entries of A can be non-zero.

We say that a path from v0 to vl exists if there is a subset {v0, v1, . . . , vl−1, vl} ⊆ V such that all

ordered pairs (vi−1, vi) ∈ E. It is said that the path consists of l + 1 vertices with l-link. Also v0 is

called the begin vertex and vl is called the end vertex. As there exists a 1-link (an edge) from vj to

vi if the ijth entry of A is non-zero; it is well known that the ijth entry of l power of A (Al) are

non-zero, if there exists an l-link path from vj to vi. A path is called simple where every vertex on

the path occurs in only once. Two paths are said disjoint if the set of their vertices are disjoint. Also

a closed path is a path such that v0 = vl.
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Consider U,X and Y are three nonempty subsets of V . There exists a path from U to X if there

exists a path from ui ∈ U to xj ∈ X; i.e. the begin vertex of a path is in U and the end vertex

of it is in X. A path is called a U -rooted path if the begin vertex of path is in U . Accordingly, a

U -rooted path family consists of a number of mutually disjoint U -rooted paths. Similarly, Y -topped

path is a path such that the end vertex is in Y and Y -topped path family consists of a number

of mutually disjoint Y -topped paths. Also, a cycle is a simple and closed path in X, of the form

(xi, xi+1), (xi+1, xi+2), . . . , (xt, xi) with unique start and end vertex. A number of mutually disjoint

cycle is called cycle family. An union of U -rooted path family, Y -topped Path family and cycle family

is disjoint if their path mutually have no vertices in common. Moreover, X is reachable by U if each

vertex in X are the end vertex of at least a U -rooted path.

2.3. State space description by graph method. Consider system (2.2) where x = [x1, . . . , xn]T ,

u = [u1, . . . , um]T and y = [y1, . . . , yp]T . The structure of a dynamic system is represented by an asso-

ciated graph G(V,E), where V = U ∪X ∪ Y , U = {u1, . . . , um}, X = {x1, . . . , xn}, Y = {y1, . . . , yp},
E = EB ∪ EA ∪ EAd

∪ EC ∪ ED, EB = {(uj , xi)|(B)ij 6= 0}, EA = {(xj , xi)|(A)ij 6= 0}, EAd
=

{(xj , xi)|(Ad)ij 6= 0}, EC = {(xj , yi)|(C)ij 6= 0} and ED = {(uj , yi)|(D)ij 6= 0}. Similarly, the un-

weighted adjacency matrix A = [aij ] ∈ R(n+m+p)×(n+m+p) can be obtained by A, Ad, B, C and D as

following:

(2.4) A(A,Ad, B,C,D) ,

 0 0 0

B(1) (A+Ad)(1) 0

D(1) C(1) 0

 ,
where (A + Ad)(1), B(1), C(1) and D(1) mean that the λi’s and all combinations are replaced by 1.

For example, if an entry of (A+Ad) is (λk) or (λh + λp), it is replaced by 1. Note that A and Ad can

cause similar edges between elements of X. Also inputs (U) are not affected by any vertices and also

outputs (Y ) do not affect on any vertices, so the first row and the last column of A are blocking zero.

For example, the associated graph to the system (2.3) is shown in Figure 1.

u1

u2

x1 x2

x3

y1

y2

B

B

A

A

A,Ad

Ad

Ad

C

C

C

A

Figure 1. Associated graph to the system (2.3).
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3. Structural controllability of dead-time system

As we mentioned in Section 2, a graph can represent the structure of a dead-time system. This

section is mainly interested on studying the structural specification of dead-time systems based on the

associated graph. The structural controllability of dead-time systems are described in Theorem 3.1.

Theorem 3.1. System (2.2) with a graph G({U,X, Y }, {EB, EA, EAd
, EC , ED}), is structurally con-

trollable if one of the following statements holds:

• (a) In one of sub-graphs G({U,X, Y }, {EB, EA, ∅, EC , ED}) or G({U,X, Y }, {EB, ∅, EAd
, EC ,

ED}), every state is the end vertex of an U -rooted path and there exist a disjoint union of an

U -rooted path family and a cycle family such that covers all state vertices.

• (b) Every state in graph G({U,X, Y }, {EB, EA, EAd
, EC , ED}) is the end vertex of an U -rooted

path and there exist a disjoint union of an U -rooted path family and a cycle family such that

covers all state vertices.

Also system (2.2) can be structurally controllable only if every state in graph G({U,X, Y }, {EB, EA, EAd
,

EC , ED}) is the end vertex of an U -rooted path.

Proof. (a) Based on Theorem 2.2, System (2.2) is controllable if Rank(Q) = n, where:

Q = [Q1
1, Q

2
1, Q

2
2, Q

3
1, . . . , Q

n
n].

One can calculate Qk
j of Q as follows:

Q1
1 = B,Q2

2 = AB,Q3
3 = A2B, . . . , Qn

n = An−1B,

Q1
1 = B,Q2

1 = AdB,Q
3
1 = A2

dB, . . . , Q
n
1 = An−1

d B.

Consider two linear non-delayed systems as:

(3.1) ẋ(t) = Ax(t) +Bu(t)

(3.2) ẋ(t) = Adx(t) +Bu(t)

The controllable matrices of system (3.1) and (3.2) are equal to Q̄1 = [Q1
1, Q

2
2, . . . , Q

n
n] and Q̄2 =

[Q1
1, Q

2
1, . . . , Q

n
1 ] respectively. On the other hand, Rank(Q) = n if Rank(Q̄1) = n or Rank(Q̄2) = n

because Q contains Q̄1 and Q̄2 elements. So system (2.2) is structurally controllable if system (3.1) or

(3.2) is structurally controllable. Theorem 1 of [13] shows that a system as (3.1) or (3.2) is structurally

controllable if condition (a) of Theorem 3.1 holds.

(b) Now consider a linear non-delayed system as follows:

(3.3) ẋ(t) = (A+Ad)x(t) +Bu(t) .

The controllability matrix of system (3.3) is equal to Q̄3 = [B, (A+Ad)B, . . . , (A+Ad)n−1B]. On the

other hand we have:

Q2
1 +Q2

2 = (A+Ad)B,Q3
1 +Q3

2 +Q3
3 = (A+Ad)2B, . . . , Qn

1 + · · ·+Qn
n = (A+Ad)n−1B.
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One can see that Q̄3 consists of linear combinations of partitions of Q (i.e. Qk
j ). So if Rank(Q̄3) = n

then Rank(Q) = n. The rest of the proof can be followed similar to the part (a).

Now consider in graph G({U,X, Y }, {EB, EA, EAd
, EC , ED}), Xū ⊆ X is the set of states which are

not the end of any U -rooted path. Let assume that Xū = {xi|i ∈ I} for some I ⊆ {1, . . . , n}. On the

other hand, consider Xu ⊆ X is the set of states such that there exists a direct edge from U to each

them. Let also assume that Xu = {xj |j ∈ J} for some J ⊆ {1, . . . , n}. The jth (j ∈ J) rows of B are

non-zero and other rows (included ith (i ∈ I) rows) of B is completely zero. As there is no path from

Xu to Xū, the ijth entries of (A+ Ad)l are zero (for i ∈ I, j ∈ J and l = 0, 1, . . . , n− 1). So the ith

rows of (A+Ad)lB is completely zero (because in these rows, for non-zero rows of B, the corresponded

columns of (A+Ad)l is zero). One can see that
∑l

i=1Q
i
l = (A+Ad)l−1B. So the ith rows of

∑l
i=1Q

i
l

are zero. In other words, the ith rows of all Qi
l are zero (for j = 1, 2, . . . , l and l = 1, 2, . . . , n), because

the entries of Qi
l are parametric and the summation of them are zero when all of the rows are zero. In

this case, the rank of Q is less than n and the system (2.2) is not controllable. Therefore system (2.2)

can be structurally controllable only if every state in graph G({U,X, Y }, {EB, EA, EAd
, EC , ED}) is

the end vertex of a U -rooted path. �

Theorem 3.1 can be very useful to design the structure of multi agent systems. For swarm group of

UAVs in example, the position of UAVs must be first selected, next the possibility of communications

between each ordered pairs of UAVs must be determined. Finally the controllability of the structure of

group must be investigated. Based on Theorem 3.1, the associated graph in Figure 1 is not controllable

because x2 is not the end vertex of an U -rooted path.

Usually observability can be defined very similar to controllability where the output concept is

replaced by input one. While we are especially interested on controllability but it is possible to

present a corollary about structural observability based on previous result.

Corollary 3.2. System (2.2) with a graph G({U,X, Y }, {EB, EA, EAd
, EC , ED}) is structurally ob-

servable if one of the following statements holds:

• (a) In one of sub-graphs G({U,X, Y }, {EB, EA, ∅, EC , ED}) or G({U,X, Y }, {EB, ∅, EAd
, EC ,

ED}), every state is the begin vertex of a Y -topped path and there exists a disjoint union of a

Y -topped path family and a cycle family that covers all state vertices.

• (b) Every state in graph G({U,X, Y }, {EB, EA, EAd
, EC , ED}) is the begin vertex of a Y -topped

path and there exists a disjoint union of a Y -topped path family and a cycle family that covers

all state vertices.

Also system (2.2) can be structurally observable only if every state in graph G({U,X, Y }, {EB, EA, EAd
,

EC , ED}) is the begin vertex of a Y -topped path.

Proof. Based on Duality proposition of Linear system [20] and similar to [13], the proof of corollary

3.2 can be followed as Theorem 3.1. �
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4. Structural controllability of dead-time multi agent system

One of the important advantages of using graph method is for controllability studying and leader

selection of multi agent systems such as complex networks and swarm vehicles, UAVs or AUVs systems.

In these cases usually some states (called followers) must be controlled by some other states (called

leaders) [1]. The main challenge in leader follower systems is the possibility of followers controllability

versus to leaders. Therefore the relation between leaders and followers must be chosen such that the

system is structurally controllable.

In the real applications as shown in [2, 3, 4, 5, 6, 9], there exists a delay between states because

of the communication delay, process lag, non-ideal actuator or computation times. In this case, the

model of system can be considered as follows:

(4.1) ẋ(t) = Ax(t) +Adx(t− d).

Usually there exists no delay for affecting a state in itself [14], so it is considered that A is diagonal

and the diagonal entries of Ad is zero.

As we noted before, some states in multi agent systems are separated to leaders and followers.

Therefore system (4.1) is divided into two parts; followers states and leader states, i.e.:

(4.2) xT =
[
x̄T

1 , . . . , x̄T
n−m, zT

1 , . . . , zT
m

]
, A =

[
A11 A12

A21 A22

]
, Ad =

[
A11

d A12
d

A21
d A22

d

]
,

x̄T =
[
x̄T

1 , . . . , x̄T
n−m

]
, zT =

[
zT

1 , . . . , zT
m

]
.

Matrices A and Ad are partitioned to four blocks corresponded to x̄ and z. As A is diagonal, A12 = 0

and A21 = 0. Moreover, A21
d = 0 because the leaders are independent versus to followers. Conse-

quently, the model of follower states is obtained as:

(4.3) ˙̄x(t) = A11x̄(t) +A11
d x̄(t− d) +A12

d z(t− d).

Ji and et al. [14] do not consider the delay in the leaders while usually there exists no difference

between leaders and followers in the presence of delay in relationship. Hence the model of multi-agent

systems with dead-time is considered as (4.3) in this paper. Figures 2 and 3 present two examples of

the associated graphs to multi-agent systems. In those figures all loops are caused by A and other

edges are corresponded to entries Ad which having a delay.
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x1 x2 x3

x4 x5 x6

A A A

A A A

Figure 2. An example for associating a graph to multi-agent with a dead-time.

x1 x2 x3

x4 x5 x6

A A A

A A A

Figure 3. An example for associating a graph to multi-agent with a dead-time.

The structural controllability of a multi-agent system can be studied using Theorem 3.1, if the leaders

and structure of the proposed systems are identified. However, sometimes leaders must be selected

based on the given structure. Moreover a system must be ideally controlled by a leader or at least

by a minimum number of leaders. Increasing the number of leaders causes more complexity of group

control because each leaders must control the followers coordinately while leaders are independent.

Next section will address the minimum leader selection for multi-agent systems with dead-time using

the associated graphs.

5. Leader selection for dead-time multi agent system

Consider a dead-time multi agent system as (4.1). A graph can be assigned to this systems as

follows:

G({X}, {EA, EAd
}) = G({X̄, Z}, {EA11 , EA22 , EA11

d
, EA12

d
, EA22

d
}),
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where X = {x̄1, . . . , x̄n−m, z1, . . . , zm}, X̄ = {x̄1, . . . , x̄n−m}, Z = {z1, . . . , zm}, EA11 = {(x̄j , x̄i)|
(A11)ij 6= 0}, EA22 = {(zj , zi)| (A22)ij 6= 0}, EA11

d
= {(x̄j , x̄i)|(A11

d )ij 6= 0}, EA12
d

= {(zj , x̄i)|(A12
d )ij 6=

0}, EA22
d

= {(zj , zi)|(A22
d )ij 6= 0}. In this section we try to find a leader subset Z ⊆ X of the minimum

size such that the corresponding systems is structural controllable. First Theorem 5.1 describes which

subset of X has the capability to be a leader set.

Theorem 5.1. Consider multi-agent system (4.1) and its associated graph. A subset of states Z ⊂ X
can be selected as leaders such that the multi-agent (4.3) is structural controllable, if X̄ are reachable

by Z.

Proof. Matrix A is assumed be diagonal for dead-time multi agent systems [14], so it is possible to

find an union of a disjoint cycle family covered all states. Therefore if X̄ are reachable by leader

set Z, it is possible to find a Z-rooted path for each followers such that all followers are the end

vertices of a Z-rooted path. Hence the condition (b) of Theorem 3.1 is satisfied and (4.3) is structural

controllable. �

Note that the leaders conceptually must be independent from follower states, so there must be no

path from the followers to the leaders. Although this issue is not considered in Theorem 5.1, but it is

possible to eliminate all edges from followers to leaders as λis are arbitrary.

Usually it is not easy to search all subsets of X satisfying the condition of Theorem 5.1, next find a

leader set of the minimum size. For this proposed, Theorem 5.2 can offer a method to find the leader

set of the minimum size using adjacency matrix of the associated graph.

Theorem 5.2. Consider multi-agent system (4.1) and its associated adjacency matrix A. Minimum

number of controllable leaders for system (4.3) are minimum value of m such that at least the summa-

tion of m columns of
∑n−1

k=1 Ak has no zero entry. Moreover, the corresponded states of these columns

can be a candidate for leaders.

Proof. If ijth entry of
∑n−m

k=1 Ak is non-zero, it means that there is a path from xj to xi which can

be 1-link, 2-link, . . . or (n−m)-link. Therefore, there exists at least a path form xj to all states if all

entries of jth column of
∑n−m

k=1 Ak are non-zero. Consequently, there is at least a path from m states

to other remaining states if the summation of corresponding columns of these m state in
∑n−m

k=1 Ak is

non-zero.

Note that the computing of
∑n−1

k=1 Ak is enough to find minimum leaders, because if an entry of∑n−m
k=1 Ak is non-zero, it is certainly non-zero in

∑n−1
k=1 Ak. Also

∑s
k=1Ak (for s > n− 1) gives us no

additional information because the graph has no simple path with more than (n− 1)-link. Moreover

iith entries of
∑n−m

k=1 Ak are non-zero since A is diagonally non-zero, (i.e. Z are reachable by itself). �

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Trans. Comb. 2 no. 4 (2013) 25-36 M. Najafi and F. Shaikholeslam 35

It is possible to use Theorem 5.2 to select leader set with minimum size for a multi-agent system

such as shown in Figure 2 or 3. One can obtain
∑n−1

k=1 Ak for the graph of Figure 2 as follows:

(5.1)
6−1∑
k=1

Ak =



31 0 0 0 31 0

61 54 27 16 34 38

77 65 27 22 39 43

65 38 16 11 43 27

31 0 0 0 31 0

73 81 38 27 30 54


.

Columns 1 and 5 in (5.1) are completely non-zero. Therefore subset {x1} or {x5} can be selected for

a leader set of the graph of Figure 2. On the other hand, we can calculate
∑n−1

k=1 Ak of Figure 3 as

following:

(5.2)
6−1∑
k=1

Ak =



27 50 43 45 65 43

0 31 0 31 0 0

22 54 27 54 43 22

0 31 0 31 0 0

43 57 65 46 92 65

0 0 0 0 0 5


.

It can be seen that there exists no column such that all its entries are non-zero. However it is possible

to get {x2, x6} or {x4, x6} as leaders.

6. Problems

As shown in this paper, it is possible to investigate the structural controllability of dead-time system

based on an associated graph using sufficient condition of Theorem 3.1. It seems the condition (b) of

Theorem 3.1 can be necessary and sufficient condition. However it must be proven dependently.

Moreover, the method of finding minimum leaders is described in Section 5. Sometimes there exist

multiple choices for leader set with the minimum size, while all of them have no equivalent connectivity.

For example in Figure 2, both states x1 and x5 can be leader. Nevertheless, if the edge between x5

and x1 is eliminated, there exists no path from x5 to other states. On the other hand, there are three

dependent paths from x1 to other states. It can be studied by investigating the weight of columns of∑n−1
k=1 Ak. For example in (5.1), the entries of first column are greater than or equal to fifth column.

The degree of leaders connectivity can be equivalent to reliability concept in control theory. There-

fore a relation between the weight of columns of
∑n−1

k=1 Ak and leaders reliability can be interested

problems in future works.
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