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Abstract. Let n be any positive integer and Fn be the friendship (or Dutch windmill) graph with 2n+1

vertices and 3n edges. Here we study graphs with the same adjacency spectrum as Fn. Two graphs are

called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let G be a graph

cospectral with Fn. Here we prove that if G has no cycle of length 4 or 5, then G ∼= Fn. Moreover if G

is connected and planar then G ∼= Fn. All but one of connected components of G are isomorphic to K2.

The complement Fn of the friendship graph is determined by its adjacency eigenvalues, that is, if Fn is

cospectral with a graph H, then H ∼= Fn.

1. Introduction

All graphs in this paper are simple of finite orders, i.e., graphs are undirected with no loops or

parallel edges and with finite number of vertices. Let V (G) and E(G) denote the vertex set and

edge set of a graph G, respectively. Also, A(G) denotes the (0, 1)-adjacency matrix of graph G. The

characteristic polynomial of G is det(λI −A(G)), and we denote it by PG(λ). The roots of PG(λ) are

called the adjacency eigenvalues of G and since A(G) is real and symmetric, the eigenvalues are real

numbers. If G has n vertices, then it has n eigenvalues and we denote its eigenvalues in descending

order as λ1 ≥ λ2 ≥ · · · ≥ λn. Let λ1, λ2, . . . , λs be the distinct eigenvalues of G with multiplicity

m1,m2, . . . ,ms, respectively. The multiset Spec(G) = {(λ1)m1 , (λ2)m2 , . . . , (λs)ms} of eigenvalues of

A(G) is called the adjacency spectrum of G.

For two graphs G and H, if Spec(G) = Spec(H), we say G and H are cospectral with respect to

adjacency matrix. A graph G is said to be determined by its spectrum or DS for short, if Spec(G) =
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Spec(H) for some graph H, then G ∼= H. So far numerous examples of cospectral but non-isomorphic

graphs are constructed by interesting techniques such as Seidel switching, Godsil-McKay switching,

Sunada or Schwenk method. For more information, one may see [1, 2, 3] and the references cited in

them. Only a few graphs with very special structures have been reported to be determined by their

spectra (see [1, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references cited in them). Recently Wei Wang and

Cheng-Xian Xu have developed a new method in [12] to show that many graphs are determined by

their spectrum and the spectrum of their complement.

The friendship (or Dutch windmill) graph Fn is a graph that can be constructed by coalescence n

copies of the cycle graph C3 of length 3 with a common vertex. By construction, the friendship graph

Fn is isomorphic to the windmill graph Wd (3, n) [13]. The Friendship Theorem of Paul Erdös, Alfred

Rényi and Vera T. Sós [14] states that graphs with the property that every two vertices have exactly

one neighbour in common are exactly the friendship graphs.

Figure 1 shows some examples of friendship graphs.

F2 F3 F4 Fn

Figure 1. Friendship graphs F2, F3, F4 and Fn

In [15] it is proved that the friendship graphs can be determined by the signless Laplacian spectrum

and in [15, 16] the following conjecture has been proposed:

Conjecture 1. The friendship graph is DS with respect to the adjacency matrix.

Conjecture 1 has been recently studied in [17]. It is claimed as [17, Theorem 3.2] that Conjecture 1

is valid. We believe that there is a gap in the proof of [17, Theorem 3.2] where Interlacing Theorem

has been applied for subgraphs of the graph which are not clear if they are induced or not. Therefore,

we give our results independently.

The rest of this paper is organized as follows. In Section 2, we obtain some preliminary results about

the cospectral mate of a friendship graph. In Section 2 we prove that if the cospectral mate of Fn is

connected and planar then it is isomorphic to Fn. In Section 3, it is proved that, if the cospectral mate

of Fn is connected and does not have C5 as a subgraph, then it is isomorphic to Fn. Also, we prove that,

if there are two adjacent vertices with degree 2 in a cospectral mate of Fn, then G is isomorphic to Fn
and some variations of the latter result is studied. In Section 4, the complement of the cospectral mate

is studied and we show that if this complement is disconnected, then the cospectral mate is isomorphic

to Fn. Also, it is shown that the complement of the friendship graph Fn is DS.
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2. Some Properties of Cospectral Mate of Fn

We first give some preliminary facts and theorems which are useful in the sequel. For the proof of

these facts one may see [18].

Lemma 2.1. Let G be a graph. For the adjacency matrix of G, the following information can be

deduced from the spectrum:

1. The number of vertices

2. The number of edges

3. The number of closed walks of any length

4. Being regular or not and the degree of regularity

5. Being bipartite or not.

Theorem 2.2 (Interlacing Theorem, Theorem 2.5.1 of [3]). Let G be a graph of order n and H be an

induced subgraph of G of order m. Suppose that λ1(G) ≥ · · · ≥ λn(G) and λ1(H) ≥ · · · ≥ λm(H) are

the eigenvalues of G and H, respectively. Then for every i, 1 ≤ i ≤ m, λi(G) ≥ λi(H) ≥ λn−m+i(G).

Proposition 2.3. Let Fn denote the friendship graph with 2n+ 1 vertices. Then

Spec(Fn) =

{(
1
2
− 1

2
√

1 + 8n
)1

, (−1)n, (1)n−1,

(
1
2

+
1
2
√

1 + 8n
)1
}
.

Proof. The friendship graph Fn with 2n + 1 vertices is the cone of the disjoint union of n complete

graphs K2: K1∇nK2. It follows from Theorem 2.1.8 of [18] that the characteristic polynomial of Fn is:

PFn(x) = (x+ 1)
(
x2 − 1

)n−1 (
x2 − x− 2n

)
.

This completes the proof. �

Let H be any graph. A graph G is called H-free if it does not have an induced subgraph isomorphic

to H. In the following, we examine the structure of G as a cospectral graph of Fn.

Proposition 2.4. Let G be a graph cospectral with friendship graph Fn. Then

1. If H is a graph with λ2 (H) > 1, then G is H-free.

2. If H is a graph having at least two eigenvalues less than −1, then G is H-free.

Proof. We know that λ2 (Fn) = 1 and Fn has only one eigenvalue less than −1. Now applying Interlacing

Theorem for the induced subgraph H, it follows that G is H-free. �

Theorem 2.5. Let G be a graph cospectral with friendship graph Fn. Then G is either connected or it

is a disjoint union of some K2 and a connected component.

Proof. It is easy to see that λ2(K3∪P3) and λ2(K3∪K3) are both greater than 1. Thus by Proposition

2.4 all but one of the connected components of G do not contain K3 or P3 as an induced subgraph. So,

if G is not connected, all but one connected components of G must be isomorphic to K2, since G does

not have any isolated vertices. �
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Definition 2.6. [19] A graph is triangulated if it has no chordless induced cycle with four or more

vertices. It follows that the complement of a triangulated graph cannot contain a chordless cycle with

five or more vertices.

Proposition 2.7. Let G be a connected, planar and cospectral graph with friendship graph Fn. Then

G is triangulated.

Proof. The graph G is planar and connected with n triangles, 2n+ 1 vertices and 3n edges. Also, the

number of faces is an invariant parameter between two cospectral connected planar graphs, since it

only depends on the number of vertices and edges. Let f(G) denote the number of faces of graph G.

By Euler formula for connected planar graphs, f(G) = 2 − |V (G)| + |E(G)|, the number of faces of G

is n + 1 and each inner face of G must be an induced triangle. Therefore G has no chordless induced

cycle with four or more vertices. �

In the following, we express an interesting corollary extracted from a theorem of Vladimir Nikiforov

in [20], and we use it to prove some results.

Theorem 2.8. [20, Theorem 3] Let G be a graph of order n with λ1(G) = λ. If G has no 4-cycles,

then

λ2 − λ ≥ n− 1,

and equality holds if and only if every two vertices of G have exactly one common neighbour.

Proof. Apply Theorem 3 of [20] for k = l = 1. See also the abstract of [21]. �

Corollary 2.9. Let G be connected, planar and cospectral with friendship graph Fn. Then G is iso-

morphic to Fn.

Proof. By Proposition 2.7, the graph G is C4-free and λ2
1(G)−λ1(G) = 2n. Therefore by Theorem 2.8,

the graph G must be isomorphic to Fn. �

Suppose χ(G) and ω(G) denote chromatic number and clique number of a graph G, respectively. A

graph G is called perfect if χ(H) = ω(H) for every induced subgraph H of G. It is proved that a graph

G is perfect if and only if G is Berge, that is, it contains no odd hole or antihole, where odd hole and

antihole are odd cycle, Cm for m ≥ 5, and its complement, respectively. Also in 1972 Lovász proved

that, a graph is perfect if and only if its complement is perfect [22].

Proposition 2.10. Let G be a graph cospectral with Fn. Then both G and G are perfect.

Proof. The spectrum of a hole, that is an n-cycle Cn for n odd and n ≥ 5, is λj = 2 cos(2πj
n ) for

j = 0, 1, . . . , n − 1. It is easy to check that for n odd and n ≥ 5, λn−1(Cn) and λn(Cn) is strictly less

than −1. Therefore by Proposition 2.4, any hole cannot be an induced subgraph of G. Also, since the

spectrum of an antihole that is the complement of a hole, are n− 3 and −1− λj (j = 1, . . . , n− 1), it

follows that any antihole has at least two eigenvalues less than −1. Now Proposition 2.4 shows that G

cannot have any antihole. So, both G and G are perfect graphs. �
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Theorem 2.11 (Theorem 6 of [23]). A graph G is P6-free if and only if each connected induced subgraph

of G contains a dominating induced C6 or a dominating (not necessarily induced) complete bipartite

graph. Moreover, we can find such a dominating subgraph in polynomial time.

Proposition 2.12. Let G be a connected and cospectral graph with Fn. Then each connected induced

subgraph of G contains a dominating (not necessarily induced) complete bipartite graph.

Proof. By Theorem 2.11 and Proposition 2.4, we must only prove that G has no induced dominating C6

as a subgraph. Suppose G has an induced dominating C6 subgraph. By hand checking and Interlacing

Theorem, it is not hard to see that a seventh vertex of G (except the vertices of the latter C6) must

join to three non adjacent vertices of C6. Also, for each 2n + 1 − 7 = 2n − 6 remaining vertices, we

have at least two edges. So, the total number of edges in G is at least 2(2n− 6) + 3 + 6 = 4n− 3, that

is contradiction. �

3. Structural Properties of Cospectral Mates of Fn

It can be seen by Theorem 2.8 that, if G is cospectral with Fn and does not have C4 as a subgraph

then G is isomorphic to Fn. In the following, we study the cospectral mate of Fn with respect to the C5

subgraph. Also, we know that in the graph Fn, and also in its cospectral mate, the average number of

triangles containing a given vertex is 6n
4n+2 , that is strictly greater than one. Using the latter property

we obtain some results about the cospectral mate of Fn.

Firstly, we will prove that if G is a connected graph cospectral with Fn and does not have C5 as a

subgraph, then G is isomorphic to Fn. We need the following well-known result.

Lemma 3.1. [18] Suppose that the graph G is connected and H is a proper subgraph of G. Then

λmax(H) < λmax(G).

Lemma 3.2. Let G be a connected graph cospectral with Fn and δ(G) be the minimum degree of G.

Then, δ(G) = 2 and G has at least three vertices with this minimum degree.

Proof. Suppose, for a contradiction, that G has at least one vertex with degree 1, say v. Suppose that

v is adjacent to the vertex w. The graphs G \ {v} and G \ {v, w} are induced subgraphs of G. Let

µ1 ≥ µ2 ≥ . . . ≥ µ2n−1 be the eigenvalues of graph G \ {v, w}. Then Interlacing Theorem implies that

λj ≥ µj ≥ λj+2, (j = 1, 2, . . . , 2n− 1),

where λi, (i = 1, 2, . . . , 2n+ 1) are the eigenvalues of G. Thus

i) |µ1| ≤ |λ1| =
∣∣∣1+
√

8n+1
2

∣∣∣,
ii) |µ2n−1| ≤ |λ2n+1| =

∣∣∣1−√1+8n
2

∣∣∣,
iii) |µj | ≤ 1 for j = 2, 3, . . . , 2n− 2.

Now Theorem 2.2.1 of [18] implies that

PG(x) = xPG\{v}(x)− PG\{v,w}(x).
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It follows that

(−1)n(2n) = PG(0) = PG\{v,w}(0) =
2n−1∏
j=1

µj .

Therefore, by (i), (ii) and (iii) we obtain µ1 = λ1, contradicting Lemma 3.1. So, G does not have any

vertex of degree one.

Now, suppose G has t vertices of degree 2. Therefore

2t+ 3(2n+ 1− t) ≤
2n+1∑
i=1

deg(vi(G)) = 6n.

It follows that t ≥ 3, δ(G) = 2 and G has at least three vertices of degree two. �

Remark 3.3. By similar arguments as in Lemma 3.2, one can show that if G is not connected, then

the component of G that is not isomorphic to K2 does not have any vertex with degree one. In this

case, the minimum degree of G depends to the number of components isomorphic to K2.

Lemma 3.4. Let G be a graph of order n. Then, the number of closed walks of length five in G is

given by

tr(A5(G)) =
n∑
i=1

λ5
i (G) = 30NG(C3) + 10NG(C5) + 10NG(C∗3 ),

where C∗3 is isomorphic to K3 with one pendant.

Proof. It is easy to see that, the only subgraphs of G occur in counting of closed walks of length five

are, C3, C5 and C∗3 . By summation the fifth power of the eigenvalues of these graphs, the coefficients

of NG(C3), NG(C5) and NG(C∗3 ) must be 30, 10 and 40, respectively. Since C3 is counted twice in G

and C∗3 , 30 times for each C∗3 , and we have to subtract it. This completes the proof. �

Lemma 3.5. Suppose S : Rn → R is a function defined as S(x1, x2, . . . , xn) =
∑n

i=1 x
2
i and let∑n

i=1 xi = M . Then

i) If xi ≥ 0 for i = 1, 2, . . . , n, then the maximum of S is M2 and this value only happens in Mei,

where {e1, e2, . . . , en} is the standard orthogonal basis of Rn.

ii) If xi ≥ d (i = 1, 2, . . . , n), then the maximum of S is (n− 1)d2 + (M − (n− 1)d)2 and this value

only happens in (M − (n− 1)d)ei + dj, where j denotes the all-1 vector of size 1× n.

Proof. Let T = 2
∑

1≤i<j≤n xixj . To prove case (i), it suffices to note that S = M2 − T , and for

maximizing the function S, we must minimize the function T . But the minimum of T is zero and it

happens only in Me i, since we have
∑n

i=1 xi = M .

For proving case (ii), let yi = xi − d (i = 1, 2, . . . , n) and T (y1, y2, . . . , yn) =
∑n

i=1 y
2
i . So, yi ≥ 0

and
∑n

i=1 yi = M − nd. Now by using part (i), the maximum of T is (M − nd)2 and it only happens

in (M − nd)e i. Therefore, by backing the changed variables and the fact S = T − nd2 + 2Md, this

completes the proof. �
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Lemma 3.6. Suppose S : Rn → R is the function defined as S(x1, x2, . . . , xn) =
∑n

i=1 tixi, where ti
(i = 1, 2, . . . , n) are real numbers,

∑n
i=1 xi = M and xi ≥ d. If 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, then the

maximum of function S is d(t1 + t2 + . . .+ tn−1) + tn(M − (n− 1)d).

Proof. Since the real numbers ti (i = 1, 2, . . . , n) are in increasing order, the result follows from Lemma

3.5. �

Theorem 3.7. Suppose that G is connected graph cospectral with Fn. If G does not have C5 as a

subgraph, then G is isomorphic to Fn.

Proof. Since G is cospectral with Fn, the number of vertices, edges, triangles and closed walks of length

5 are the same in both graphs G and Fn. By Lemma 3.4, we have NG(C∗3 ) = NFn(C∗3 ). Now, we

calculate the number of NG(C∗3 ) in two ways. Suppose v1, v2, . . . , v2n+1 are the vertices of G. Let ti
(i = 1, 2, . . . , 2n+ 1) denote the number of triangles having vi as a vertex. So the total number of C∗3
having vi as a vertex with degree three is ti(degG(vi)− 2). Therefore,

NG(C∗3 ) =
2n+1∑
i=1

ti(degG(vi)− 2) =
2n+1∑
i=1

tidegG(vi)− 2
2n+1∑
i=1

ti.(3.1)

On the other hand
2n+1∑
i=1

ti = 3NG(C3) = 3n =⇒ NG(C∗3 ) =
2n+1∑
i=1

tidegG(vi)− 6n.(3.2)

Since NFn(C∗3 ) = 2n2 + 4n− 6n, by (3.1) and (3.2) we obtain
2n+1∑
i=1

tidegG(vi) = 2n2 + 4n(3.3)

Now we prove that G is isomorphic to Fn. Suppose xi ≥ 2, yi ≥ 0 (i = 1, 2, . . . , 2n+ 1),
∑2n+1

i=1 xi = 3n,∑2n+1
i=1 yi = 6n and define the function F as follow

F (x1, x2, . . . , x2n+1, y1, y2, . . . , y2n+1) =
2n+1∑
i=1

xiyi.

We show that, if (x1, . . . , x2n+1) = (t1, . . . , t2n+1) and (y1, . . . , y2n+1) = (degG(v1), . . . , degG(v2n+1)),

then the maximum of function F is happen for the graph Fn.

LetA = {G1, G2, . . . , Gk} be the set of all connected graphs with 2n+1 vertices, 3n edges, n triangles,

minimum degree 2 and without any subgraph isomorphic to C5. The vertices of Gi (i = 1, 2, . . . , k) can

be labeled in such a way that, for each graph Gi we have t1 ≤ t2 ≤ . . . ≤ t2n+1. It is easy to see that,

Fn is a member of A. Now, we want to find the maximum of
∑2n+1

i=1 tidegG(vi) among the members of

A. We prove that, the maximum value of
∑2n+1

i=1 tidegG(vi) is equal to 2n2 + 4n and it only happens

for the graph Fn.

For each graph G ∈ A, let XG = (t1, t2, . . . , t2n+1), YG = (degG(v1), degG(v2), . . . , degG(v2n+1)) and

F (G) = F (XG, YG) = XG ·YG. It is clear that F (Fn) = 2n2 +4n. By Lemma 3.6, for each graph G ∈ A
we have

F (G) = t1degG(v1) + . . .+ t2n+1degG(v2n+1) ≤ 2t1 + . . .+ 2nt2n+1.
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The latter inequality implies that, for each graph G ∈ A

F (G) ≤ F (XG, Y0),

where Y0 = (2, 2, . . . , 2n). Among the members of A, the only graph having Y0 as a degree sequence is

Fn. Therefore, the graph G is isomorphic to Fn, since by (3.3) we have
∑2n+1

i=1 tidegG(vi) = F (Fn). �

In the next proposition, we show that the cospectral mates of a friendship graph have‘many’ vertices

of degree two.

Proposition 3.8. Suppose that G is a graph cospectral Fn and let d2(G) and 4(G) be the number of

vertices of degree two and maximum degree of G, respectively. Then

i) If G is disconnected, G = mK2 ∪G1, then

m ≤ λmax|V (G)| − 2|E(G)|
−2λmin

.

Moreover, if d2(G1) 6= 0, then d2(G1) ≥ λmax − 4m.

ii) If G is connected, then d2(G) ≥ 1 + λmax.

Proof. It is easy to see that, if G = mK2 ∪G1 then the component G1 has 3n−m edges, 2n+ 1− 2m

vertices, λmax = λ1(Fn) and λmin = λ2n+1(Fn). Now it follows from Theorem 3.2.1 of [18] that

2(3n−m)
2n+ 1− 2m

≤ λmax,

by simplification and using λmax − 1 = −λmin, we have proved the first part of (i). Again, using

Theorem 3.2.1 of [18] and
∑2n+1

i=1 degG(vi) = 6n, we obtain

2m+ 2d2(G1) + λmax + 3(2n+ 1− 2m− t− 1) ≤ 6n,

so by simplification, the second part of (i) is proved.

To prove part (ii), notice that G is not regular. Thus Theorem 3.2.1 of [18] implies that 4(G) ≥
1 + λmax. Therefore

2d2(G) + 1 + λmax + 3(2n+ 1− d2(G)− 1) ≤ 6n.

By simplification, we obtain the requested result. �

In the following, we obtain some structural properties of cospectral mates of a friendship graph.

Actually, these results are some good evidences to show that the friendship graph is DS.

Definition 3.9. Suppose that G is a graph and H is a subgraph of G. If x is a vertex of H with degree

r in G, we denote it by dG(x) = r.

Lemma 3.10. Suppose that G is a graph cospectral with Fn and G has a subgraph H isomorphic to

K3 having two vertices of degree 2 in G. Then G is isomorphic to Fn.
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Proof. Suppose that H has vertices {x, y, z}, where dG(x) = dG(y) = 2. We prove that an arbitrary

triangle of G must share a common vertex with H at vertex z. Let {u, v, w} be the vertices of an

arbitrary triangle in G. At least one vertex of this triangle is joined to the vertex z, since G is 2K3-free.

Therefore, the all cases that can happen are shown in Figure 2. The graph G is {A2, A3, A4}-free, since

λ2(A2) = 1.73205, λ2(A3) = 1.50694 and λ2(A4) = 1.33988. Now, we prove that, there is no edge

between other n− 1 triangles in G. Suppose that there are two triangles in G with some edges between

them. Since these two triangles have a common vertex in z and all triangles in G must also have all

possible cases showed in Figure 3. On the other hand G is {B1, B2}-free, since λ2(B1) = 1.19799 and

λ2(B2) = 1.28917. This is a contradiction and so there are no edges between other n − 1 triangles in

G. This completes the proof. �

A1

y

x
z u

v

w

A2

y

x
z u

v

w

A3

y

x
z u

v

w

A4

y

x
z u

v

w

Figure 2. All possible cases between H and another triangle in G

B1

x

y
z

B2

x

y
z

Figure 3. All possible cases between H and two other triangles in G

Theorem 3.11. Suppose that G is a graph cospectral with Fn and G has two adjacent vertices of degree

2. Then G is isomorphic to Fn.

Proof. Suppose {x, y} are two adjacent vertices of degree 2 in G. If these two vertices are adjacent to

a vertex z in G, then we have a triangle in G with vertices {x, y, z}. So, by Lemma 3.10, the result is

clear. We show that, the latter is the only possible case. Suppose, for a contradiction, that the vertices

x and y are adjacent to vertices a and b, respectively. Thus we have a P4 with vertices {a, x, y, b} as a

subgraph of G. Therefore, at least one of the two cases in Figure 4 must be happen. First, we examine

the graph C of Figure 4. For an arbitrary K3 (or triangle) in G, we have λ2(C ∪K3) = 2. All possible

cases that can be happen by C and K3, are shown in Figure 5. Except of graphs C1 and C5 that have

two eigenvalues less than −1, for all other graphs, Ci(i = 2, . . . , 26)(i 6= 5), λ2(Ci) > 1. Therefore the

case C cannot happen in G.

Now, we examine the graph D of Figure 4. In this case, the graph D is an induced P4 in G. For an

arbitrary K3 (or triangle) in G, we have λ2(D ∪K3) = 1.61803 and so, the all possible cases that D

and K3 can construct, are shown in Figure 6. Except the graphs D3 that has two eigenvalues less than

−1, for all other graphs, Di(i = 1, . . . , 20)(i 6= 3), we have λ2(Di) > 1. Therefore, the case D can not
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happen in G.

It follows that, if there are two adjacent vertices of degree 2 in the graph G, then they are adjacent to

a common vertex in G, and this completes the proof.

C

x

y

a

b

D

x

y

a

b

Figure 4. All possible cases for P4 with vertices {a, x, y, b} in G
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b
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a

b
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C25

x
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x

y
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Figure 5. All possible cases between C and a triangle in G

�

Now suppose that G is a graph cospectral with Fn. We study the case in which two vertices of degree

2 in G are not adjacent. In this case, with one more condition we can prove that G is isomorphic to

Fn.
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D1

xa y b

D2

xa y b

D3

xa y b

D4

xa y b

D5

xa y b

D6

xa y b

D7

xa y b

D8

xa y b

D9

xa y b

D10

xa y b

D11

xa y b

D12

xa y b

D13

xa y b

D14

xa y b

D15

xa y b

D16

xa y b

D17

xa y b

D18

xa y b

D19

xa y b

D20

xa y b

Figure 6. All possible cases between D and a triangle in G

Lemma 3.12. Suppose that G is a graph cospectral with Fn. Let {x, y} be two vertices of degree 2 in

graph G, where these vertices are not adjacent. Then x and y does not have two common neighbors.

Proof. Suppose, for contradiction, that x and y have common neighbors, say {a, b}. Thus one of the

graphs in Figure 7 as a subgraph of G can occur. Suppose the adjacency matrix of G is A(G) and,

the first, second, third and fourth rows and columns of A(G) are labeled by vertices x, y, a and b,

respectively. The two first rows of A(G) are identical, since dG(x) = dG(y) = 2 and they are not

adjacent in G. Therefore, the dimension of the null space of A(G) is greater than zero. Thus 0 is an

eigenvalue of A(G) and it is contradiction with cospectrality of G and Fn. This completes the proof.

�

x

a

b

y

Figure 7. Both vertices x and y are adjacent to both a and b in G

It is known that the Kronecker product of paths P2 and P3, P2 × P3, is two cycles C4 that has a

common edge.
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Theorem 3.13. Let {x, y} be two non-adjacent vertices of degree 2 in G and G be P2×P3-free. If the

vertices x and y have at least one common neighbour vertex, then G is isomorphic to Fn.

Proof. Suppose the common neighbour vertex of two vertices x and y in G is z. Also, suppose x and y

are adjacent to a and b, respectively. By Lemma 3.12, we can assume that a 6= b. So, we have the path

P5 with vertices {a, x, z, y, b} as a subgraph of G. All possible induced subgraph that can be obtained

from this P5 are listed in Figure 8. The graphs E4, E5 and E6 have two negative eigenvalues less than

−1, so they can not happen in G. The vertex a in E2 and E3 must be join to an other vertex in G,

say t. All possible cases for these two graphs with this new edge, are shown in Figure 9. All of them

are forbidden subgraph of G. So, E2 and E3 can not happen in G. Therefore, the only case that can

happen is E1. Suppose the vertex a in E1 is adjacent to vertex t of G, since the degree of a can not

be 1. Now, the vertex t must be adjacent to some vertices of the set {z, b}, since G is P6-free. It

can not be adjacent to the both of z and b, since we do not have induced subgraph P2 × P3. Also, t

only is not adjacent to the vertex z, since its second largest eigenvalues are greater than 1. The only

remaining case is that t be adjacent only to b. In this case we have an induced C6 in G. If dG(b) = 2,

then by Lemma 3.10, G must be isomorphic to Fn and, nothing remain to prove. So, we must show

that dG(b) can not be greater than 2. But, if dG(b) > 2 and b is adjacent to the vertex f of G, by

Interlacing Theorem, the vertex f must be adjacent to some vertices of the set {z, t, a}. But, all the

resulted graphs are forbidden in G. This completes the proof. �

E1

a

x z y

b
E2

a

x z y

b
E3

a

x z y

b
E4

a

x z y

b
E5

a

x z y

b
E6

a

x z y

b

Figure 8. All induced subgraphs of P5 of Lemma 3.13

E21

a

x z y

b
t

E22

a

x z y

b
t

E23

a

x z y

b
t

E24

a

x z y

b
t

E31

a

x z y

b
t

E32

a

x z y

b
t

E33

a

x z y

b
t

E34

a

x z y

b
t

Figure 9. All induced subgraphs from E2 and E3 with one pendant at vertex a

Theorem 3.14. The friendship graphs F1, F2 and F3 are DS.
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Proof. The graph F1 is isomorphic to graph K3, and K3 is DS. Suppose that G is graph cospectral with

F2, then by Theorem 2.5 and part (i) of Proposition 3.8, G must be connected. So G is connected and

planar, since it does not have K5 or K3,3 as a subgraph. Therefore, by Corollary 2.9, G is isomorphic

to F2. Now we prove that F3 is DS. Let G be a cospectral graph with F3. By part (i) of Proposition

3.8, G must be connected. Also, G does not contain graphs K5 or K3,3 as a subgraph. So by Corollary

2.9, G is isomorphic to F3 and this completes the proof. �

4. Complement of Cospectral Mate of Friendship Graph

In this section, we study the complement of graph G, where G is cospectral with friendship graph

Fn. Also, we show that the complement of friendship graph is DS.

Lemma 4.1. Let G be a cospectral graph with Fn for some n > 2. Then G is either connected or it is

the disjoint union of K1 and a connected graph.

Proof. Since Fn has 3n edges, G has the same number of edges and so G has n(2n+1)−3n = n(2n−2)

edges. If G were disconnected, then the vertex set of G is partitioned into two parts of sizes k1 and k2

such that there is no edges between any two vertices of these two parts. So Kk1,k2 is a subgraph of G

and it follows that 3n ≥ k1k2. Without loss of generality we may assume that k2 ≥ k1. Since n > 2

and k1 + k2 = 2n+ 1, it follows that k1 = 1 and k2 = 2n. This completes the proof. �

Theorem 4.2. Let G be a cospectral graph with Fn for some n > 2. If G is disconnected, then G is

isomorphic to Fn.

Proof. By Lemma 4.1, G has two connected components L and K, where K has only one vertex. It

follows that the complement L of L has 2n vertices and n edges. If every vertex of L has degree 1 in L,

then L is the disjoint union of n complete graphs K2. In the latter case, G will be isomorphic to Fn,

since G is the join of L and K which is the same graph Fn. Since G is disconnected, G is connected

and so by Lemma 3.2 G has no vertices of degree 1. Thus L has no vertices with the property that it

has no neighbors in L (i.e. L has no isolated vertices in itself). Since the number of edges of G and

Fn are the same, L is a graph with 2n vertices and n edges without isolated vertices. Therefore L is

the disjoint union of n copies of K2. It follows that G is the cone of K1 over L which means that G is

isomorphic to Fn. �

Lemma 4.3. Let G be a graph cospectral with Fn for some n > 2. Then the eigenvalues of the

complement G of G are −2, 0 and the roots of the following polynomial

x4 + (4− 2n)x3 + (4− 4n)x2 + (4bn2 + 4cn2 − 2cn+ 2bn− 2c)x+ 8cn2 − 4cn− 4c,

where b and c are non-negative real numbers such that b+ c ≤ 1.

Proof. By [18, Proposition 2.1.3],

PG(x) = (−1)2n+1PG(−x− 1)

(
1− (2n+ 1)

4∑
i=1

β2
i

x+ 1 + µi

)
, (1)
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where µ1 = 1+
√

8n+1
2 , µ2 = 1, µ3 = −1, µ4 = 1−

√
8n+1
2 and β1, β2, β3, β4 are the main angles of G, see

[18, page 15]. We know

β2
1 + β2

2 + β2
3 + β2

4 = 1, (2)

see [18, page 15], and it follows from [18, Theorem 1.3.5] that

6n = (2n+ 1)
(
µ1β

2
1 + β2

2 − β2
3 + µ4β

2
4

)
. (3)

Now let b := β2
2 and c := β2

3 . Using identities (2) and (3), one may simplify PG(x) given in (1) as a

product of the polynomial given in the statement of the lemma and some positive powers of polynomials

x and x+ 2. This completes the proof. �

It is well known that the minimal non-isomorphic cospectral graphs are G1 = C4∪K1 and G2 = K1,4,

where G1 = F2 and G2 is complete bipartite graph. So, we can see that F2 is not DS. The natural

question is: what happen for the complement of remaining friendship graphs? We answer to this

question in the next theorem.

Theorem 4.4. Let Fn denote the complement of friendship graph Fn. Then for n ≥ 3, Fn is DS.

Proof. It is easy to check that the complement of friendship graph Fn is CP (n) ∪K1, where CP (n) is

cocktail party graph. The spectrum of Fn is as follows:

Spec(Fn) =
{

[−2]n−1, [0]n+1, [2n− 2]1
}
.

Let G be cospectral with Fn. Firstly, we prove that G can not be connected. Suppose G is con-

nected. Because for n ≥ 3, there are 1
6((2n − 2)3 − 8(n − 1)) triangles in G, G is not bipartite

and specially is not complete bipartite graph. Also in graph G, (2n + 1)(2n − 2) is not eqal to the

(2n − 2)2 + 4(n − 1), so by Corollary 3.2.2 of [18], G is not regular and specially is not strongly

regular graph. Now by Theorem 7 of [24], G must be one of these graphs; cone over Petersen

graph, the graph derived from the complement of the Fano plane, the cone over the Shrikhande

graph, the cone over the lattice graph L2(4), the graph on the points and planes of AG(3, 2), the

graph related to the lattice graph L2(5), the cones over the Chang graphs, the cone over the tri-

angular graph T (8), and the graph obtained by switching in T (9) with respect to an 8-clique. But

these graphs have spectrum
{

[−2]5, [1]5, [5]1
}

,
{

[−2]7, [1]6, [8]1
}

,
{

[−2]10, [2]6, [8]1
}

,
{

[−2]10, [2]6, [8]1
}

,{
[−2]14, [2]7, [14]1

}
,
{

[−2]16, [3]7, [11]1
}

,
{

[−2]21, [4]7, [14]1
}

,
{

[−2]21, [4]7, [14]1
}

, and
{

[−2]28, [5]7, [21]1
}

,

respectively. But, because of the spectrum of G, this is contradiction and G is not connected.

Now, suppose G is disconnected. By similar discussion in the proof of Theorem 2.5, G must be the

disjoint union of a connected graph G1 and some isolated vertices, so G = G1 ∪mK1, for some m > 0.

If m > 2, then G1 has 2n + 1 −m vertices and 4(G1) ≤ 2n − 3, but by Theorem 3.2.1 of [18], this is

contradiction, since the index of G1 is 2n−2. If m = 2, then G1 has 2n−1 vertices and 4(G1) ≤ 2n−2.

But, the index of G1 is 2n − 2 and again by Theorem 3.2.1 of [18] we must have 4(G1) = 2n − 2. In

this case, G1 is complete graph with 2n−1 vertices, that is contradiction. So, by the first part of proof,

we have m = 1 and G = G1 ∪ k1. Therefore, the spectrum of G1 is
{

[−2]n−1, [0]n, [2n− 2]1
}
. It is well
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known that CP (n) is DS and Spec(G1) = Spec(CP (n)). Therefore G1 is isomorph to CP (n) and it

shows that G = CP (n) ∪K1 = Fn. So, we obtain that Fn is DS. �
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