

Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 2 No. 4 (2013), pp. 53-62. © 2013 University of Isfahan

DIRECTIONALLY *n*-SIGNED GRAPHS-III: THE NOTION OF SYMMETRIC BALANCE

P. SIVA KOTA REDDY* AND U. K. MISRA

(DEDICATED TO HONORABLE SHRI DR. M. N. CHANNABASAPPA ON HIS 82ND BIRTHDAY)

Communicated by Alireza Abdollahi

ABSTRACT. Let G = (V, E) be a graph. By directional labeling (or d-labeling) of an edge x = uv of G by an ordered n-tuple (a_1, a_2, \ldots, a_n) , we mean a labeling of the edge x such that we consider the label on uv as (a_1, a_2, \ldots, a_n) in the direction from u to v, and the label on x as $(a_n, a_{n-1}, \ldots, a_1)$ in the direction from v to u. In this paper, we study graphs, called (n, d)-sigraphs, in which every edge is d-labeled by an n-tuple (a_1, a_2, \ldots, a_n) , where $a_k \in \{+, -\}$, for $1 \le k \le n$. In this paper, we give different notion of balance: symmetric balance in a (n, d)-sigraph and obtain some characterizations.

1. Introduction

For graph theory terminology and notation in this paper we follow the book [3]. All graphs considered here are finite and simple.

There are two ways of labeling the edges of a graph by an ordered *n*-tuple (a_1, a_2, \ldots, a_n) (See [12]). 1. Undirected labeling or labeling. This is a labeling of each edge uv of G by an ordered *n*-tuple (a_1, a_2, \ldots, a_n) such that we consider the label on uv as (a_1, a_2, \ldots, a_n) irrespective of the direction from u to v or v to u.

2. Directional labeling or d-labeling. This is a labeling of each edge uv of G by an ordered n-tuple (a_1, a_2, \ldots, a_n) such that we consider the label on uv as (a_1, a_2, \ldots, a_n) in the direction from u to v,

MSC(2010): Primary: 05C22; Secondary: 05C25.

Keywords: Signed graphs, Directional labeling, Complementation, Balance.

Received: 18 August 2013, Accepted: 10 October 2013.

^{*}Corresponding author.

and $(a_n, a_{n-1}, \ldots, a_1)$ in the direction from v to u.

Note that the *d*-labeling of edges of *G* by ordered *n*-tuples is equivalent to labeling the symmetric digraph $\vec{G} = (V, \vec{E})$, where uv is a symmetric arc in \vec{G} if, and only if, uv is an edge in *G*, so that if (a_1, a_2, \ldots, a_n) is the *d*-label on uv in *G*, then the labels on the arcs \vec{uv} and \vec{vu} are (a_1, a_2, \ldots, a_n) and $(a_n, a_{n-1}, \ldots, a_1)$ respectively.

Let H_n be the *n*-fold sign group,

$$H_n = \{+, -\}^n = \{(a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n \in \{+, -\}\}$$

with co-ordinate-wise multiplication. Thus, writing $a = (a_1, a_2, \ldots, a_n)$ and $t = (t_1, t_2, \ldots, t_n)$ then $at := (a_1t_1, a_2t_2, \ldots, a_nt_n)$. For any $t \in H_n$, the *action* of t on H_n is $a^t = at$, the co-ordinate-wise product.

Let $n \ge 1$ be a positive integer. An *n*-signed graph (*n*-signed digraph) is a graph G = (V, E) in which each edge (arc) is labeled by an ordered *n*-tuple of signs, i.e., an element of H_n . A signed graph G = (V, E) is a graph in which each edge is labeled by + or -. Thus a 1-signed graph is a signed graph. Signed graphs are well studied in literature (See for example [1, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32]).

In this paper, we study graphs in which each edge is labeled by an ordered *n*-tuple $a = (a_1, a_2, \ldots, a_n)$ of signs (i.e., an element of H_n) in one direction but in the other direction its label is the reverse: $a^r = (a_n, a_{n-1}, \ldots, a_1)$, called *directionally labeled n-signed graphs* (or (n, d)-signed graphs).

Note that an *n*-signed graph G = (V, E) can be considered as a symmetric digraph $\vec{G} = (V, \vec{E})$, where both \vec{uv} and \vec{vu} are arcs if, and only if, uv is an edge in G. Further, if an edge uv in G is labeled by the *n*-tuple (a_1, a_2, \ldots, a_n) , then in \vec{G} both the arcs \vec{uv} and \vec{vu} are labeled by the *n*-tuple (a_1, a_2, \ldots, a_n) .

In [1], the authors study voltage graph defined as follows: A voltage graph is an ordered triple $\vec{G} = (V, \vec{E}, M)$, where V and \vec{E} are the vertex set and arc set respectively and M is a group. Further, each arc is labeled by an element of the group M so that if an arc \vec{uv} is labeled by an element $a \in M$, then the arc \vec{vu} is labeled by its inverse, a^{-1} .

Since each *n*-tuple (a_1, a_2, \ldots, a_n) is its own inverse in the group H_n , we can regard an *n*-signed graph G = (V, E) as a voltage graph $\overrightarrow{G} = (V, \overrightarrow{E}, H_n)$ as defined above. Note that the *d*-labeling of edges in an (n, d)-signed graph considering the edges as symmetric directed arcs is different from the above labeling. For example, consider a (4, d)-signed graph in **Figure 1**. As mentioned above, this

can also be represented by a symmetric 4-signed digraph. Note that this is not a voltage graph as defined in [1], since for example; the label on $\overrightarrow{v_2v_1}$ is not the (group) inverse of the label on $\overrightarrow{v_1v_2}$.

FIGURE 1.

In [10, 11], the authors initiated a study of (3, d) and (4, d)-Signed graphs. Also, discussed some applications of (3, d) and (4, d)-Signed graphs in real life situations.

In [12], the authors introduced the notion of complementation and generalize the notion of balance in signed graphs to the directionally *n*-signed graphs. In this context, the authors look upon two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge. Also given some motivation to study (n, d)-signed graphs in connection with relations among human beings in society.

In [12], the authors defined complementation and isomorphism for (n, d)-signed graphs as follows: For any $t \in H_n$, the *t*-complement of $a = (a_1, a_2, \ldots, a_n)$ is: $a^t = at$. The reversal of $a = (a_1, a_2, \ldots, a_n)$ is: $a^r = (a_n, a_{n-1}, \ldots, a_1)$. For any $T \subseteq H_n$, and $t \in H_n$, the *t*-complement of T is $T^t = \{a^t : a \in T\}$.

For any $t \in H_n$, the *t*-complement of an (n, d)-signed graph G = (V, E), written G^t , is the same graph but with each edge label $a = (a_1, a_2, \ldots, a_n)$ replaced by a^t . The reversal G^r is the same graph but with each edge label $a = (a_1, a_2, \ldots, a_n)$ replaced by a^r .

Let G = (V, E) and G' = (V', E') be two (n, d)-signed graphs. Then G is said to be *isomorphic* to G' and we write $G \cong G'$, if there exists a bijection $\phi : V \to V'$ such that if uv is an edge in G which is d-labeled by $a = (a_1, a_2, \ldots, a_n)$, then $\phi(u)\phi(v)$ is an edge in G' which is d-labeled by a, and conversely.

For each $t \in H_n$, an (n, d)-signed graph G = (V, E) is *t*-self complementary, if $G \cong G^t$. Further, G is self reverse, if $G \cong G^r$.

Proposition 1.1. (E. Sampathkumar et al. [12]) For all $t \in H_n$, an (n, d)-signed graph G = (V, E) is t-self complementary if, and only if, G^a is t-self complementary, for any $a \in H_n$.

Let v_1, v_2, \ldots, v_m be a cycle C in G and $(a_{k1}, a_{k2}, \ldots, a_{kn})$ be the *n*-tuple on the edge $v_k v_{k+1}, 1 \le k \le m-1$, and $(a_{m1}, a_{m2}, \ldots, a_{mn})$ be the *n*-tuple on the edge $v_m v_1$.

www.SID.ir

For any cycle *C* in *G*, let $P(\vec{C})$ denotes the product of the *n*-tuples on *C* given by: $(a_{11}, a_{12}, \ldots, a_{1n})(a_{21}, a_{22}, \ldots, a_{2n}) \ldots (a_{m1}, a_{m2}, \ldots, a_{mn})$ and $P(\overleftarrow{C}) = (a_{mn}, a_{m(n-1)}, \ldots, a_{m1})(a_{(m-1)n}, a_{(m-1)(n-1)}, \ldots, a_{(m-1)1}) \ldots (a_{1n}, a_{1(n-1)}, \ldots, a_{11}).$

An *n*-tuple (a_1, a_2, \ldots, a_n) is *identity n*-tuple, if each $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. Further an *n*-tuple $a = (a_1, a_2, \ldots, a_n)$ is symmetric, if $a^r = a$, otherwise it is a *non-symmetric n*-tuple. In (n, d)-sigraph G = (V, E) an edge labeled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Note that the above products $P(\vec{C})$ as well as $P(\vec{C})$ are *n*-tuples. In general, these two products need not be equal. However, the following holds.

Proposition 1.2. (E. Sampathkumar et al. [12]) For any cycle C of an (n, d)-sigraph G = (V, E), $P(\overleftarrow{C}) = P(\overrightarrow{C})^r$.

Corollary 1.3. (E. Sampathkumar et al. [12]) For any cycle C, $P(\overrightarrow{C}) = P(\overrightarrow{C})$ if, and only if, $P(\overrightarrow{C})$ is a symmetric n-tuple. Furthermore, $P(\overrightarrow{C})$ is the identity n-tuple if, and only if, $P(\overleftarrow{C})$ is.

2. Balance in an (n, d)-Signed Graph

In [12], the authors defined two notions of balance in an (n, d)-signed graph G = (V, E) as follows:

Definition. Let G = (V, E) be an (n, d)-sigraph. Then,

(i) G is *identity balanced* (or *i-balanced*), if $P(\vec{C})$ on each cycle of G is the identity *n*-tuple, and (ii) G is *balanced*, if every cycle contains an even number of non-identity edges.

Note: An *i*-balanced (n, d)-sigraph need not be balanced and conversely. For example, consider the (4, d)-sigraphs in Figure 2. In Figure 2(a) G is an *i*-balanced but not balanced, and in Figure 2(b) G is balanced but not *i*-balanced.

FIGURE 2.

www.SID.ir

An (n, d)-signed graph G = (V, E) is *i*-balanced if each non-identity *n*-tuple appears an even number of times in $P(\vec{C})$ on any cycle of G.

However, the converse is not true. For example see Figure.3(a). In Figure.3(b), the number of non-identity 4-tuples is even and hence it is balanced. But it is not *i*-balanced, since the 4-tuple (+ + --) (as well as (- - ++)) does not appear an even number of times in $P(\vec{C})$ of 4-tuples.

In [12], the authors obtained some characterizations of balanced and *i*-balanced (n, d)-sigraphs.

In [13], E. Sampathkumar et al. defined the path balance in an (n, d)-signed graphs as follows: Let G = (V, E) be an (n, d)-sigraph. Then G is

- (1) Path *i*-balanced, if any two vertices u and v satisfy the property that for any u v paths P_1 and P_2 from u to v, $\mathcal{P}(\vec{P}_1) = \mathcal{P}(\vec{P}_2)$.
- (2) Path balanced if any two vertices u and v satisfy the property that for any u v paths P_1 and P_2 from u to v have same number of non identity *n*-tuples.

Clearly, the notion of path balance and balance coincides. That is an (n, d)-signed graph is balanced if, and only if, G is path balanced. If an (n, d) signed graph G is *i*-balanced then G need not be path *i*-balanced and conversely. In [13], the authors obtained the characterization path *i*-balanced (n, d)signed graphs as follows:

Theorem 2.1. (Characterization of Path *i*-balanced (n, d)-Signed Graphs)

An (n, d)-signed graph is path *i*-balanced if, and only if, any two vertices u and v satisfy the property that for any two vertex disjoint u - v paths P_1 and P_2 from u to v, $\mathcal{P}(\vec{P}_1) = \mathcal{P}(\vec{P}_2)$.

3. Symmetric Balance in an (n, d)-Signed Graph

Let $n \ge 1$ be an integer. An *n*-tuple (a_1, a_2, \ldots, a_n) is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let

$$H_n = \{(a_1, a_2, \dots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$$

be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil n/2 \rceil$.

www.SID.ir

We now define a new notion of balance in (n, d)-sigraphs as follows:

Definition. Let G = (V, E) be an (n, d)-sigraph. Then G is symmetric balanced or s-balanced if P(C) on each cycle C of G is symmetric n-tuple.

Note.

1. If an (n, d)-sigraph G = (V, E) is *i*-balanced then clearly G is *s*-balanced. But a *s*-balanced (n, d)-sigraph need not be *i*-balanced. For example, the (4, d)-sigraphs in Figure 4. G is an *s*-balanced but not *i*-balanced.

2. A s-balanced (n, d)-sigraph need not be balanced and conversely.

3. In view of Corollary 1.3, the notion of s-balance is well defined since if $\mathcal{P}(\vec{C})$ is symmetric n-tuple then $\mathcal{P}(\overleftarrow{C})$ is also symmetric.

In this section, we obtain some characterizations for s-balanced (n, d)-sigraphs:

Theorem 4.1. An (n,d)-sigraph is s-balanced if, and only if, every cycle of G contains an even number of non-symmetric n-tuples.

Proof. (Necessary) Suppose that G is *s*-balanced. We first note that product any two non-symmetric *n*-tuples is symmetric, it follows that product of an even number of non-symmetric *n*-tuples is symmetric. Suppose that there exists a cycle C in G containing odd number of non-identity *n*-tuple. Since product of odd number of non-symmetric *n* tuples is non-symmetric, and product of symmetric *n*-tuples is symmetric, $\mathcal{P}(\vec{C})$ is non-symmetric *n*-tuple, a contradiction.

(Sufficiency) Suppose that every cycle C of G contains even number of non-symmetric n-tuples. Then $\mathcal{P}(\vec{C})$ is symmetric and hence G is s-balanced.

The following result gives a necessary and sufficient condition for a balanced (n, d)-sigraph to be s-balanced.

Theorem 4.2. A balanced (n,d)-sigraph G = (V, E) is s-balanced if and only if every cycle of G contains even number of non identity symmetric n tuples.

Proof. Suppose G is balanced and every cycle of G contains even number of non identity symmetric *n*-tuples. Let C be a cycle in G. Since G is balanced, C contains an even number of non identity *n*-tuples and so number of non-symmetric n tuples in C is even. Hence $\mathcal{P}(\vec{C})$ is symmetric n tuple. Hence G is s-balanced.

Conversely suppose that G is balanced and s-balanced. Then the number of non-identity n-tuples as well as the number of non-symmetric n-tuples on any cycle C of G is even. Hence the number of every cycle of G contains an even number of non-identity symmetric n-tuples.

The following result is well known (see [4]).

Theorem 4.3. (Harary [4]).

A sigraph G = (V, E) is balanced, if, and only if, its vertex set V can be partitioned into two sets V_1 and V_2 such that every negative edge joins a vertex in V_1 and a vertex in V_2 , and every positive edge joins two vertices in V_1 or in V_2 .

Let G = (V, E) be an (n, d)-sigraph. An edge in G labelled by a symmetric edge is called *symmetric* edge. Otherwise it is called *non-symmetric* edge. We now give another characterization of s-balanced (n, d)-sigraph, which is analogous to the partition criteria for balance in signed graph due to Harary [4].

Theorem 4.4. (Characterization of *s*-balanced (n, d)-sigraph)

An (n, d)-sigraph G = (V, E) is s-balanced if and only if the vertex set V(G) of G can be partitioned into two sets V_1 and V_2 such that each symmetric edge joins the vertices in the same set and each non-symmetric edge joins a vertex of V_1 and a vertex of V_2 .

Proof. We associate a sigraph G' with G on the same vertex set V and the edge set E of G as follows: an edge ab in G' is labeled + or - according as ab is a symmetric edge or non-symmetric edge in G. Clearly, the (n, d)-sigraph G is s-balanced if, and only if, the sigraph G' is balanced, and the result follows from Theorem 4.3.

An (n, d)-sigraph is said to be *complete* if the underlying graph of G is complete. The *s*-balance base with axis a of a complete (n, d)-sigraph G = (V, E) consists list of the product of the n-tuples on the triangles containing a.

Theorem 4.5. A complete (n, d)-sigraph is s-balanced if, and only if, all the triangles of a base are s-balanced.

Proof. Suppose all the triangles a base are s-balanced. Indeed, for any triangle (*bed*) not appearing in the base with axis a, we have $\overrightarrow{\mathcal{P}(bcd)} = \overrightarrow{\mathcal{P}(abc)}. \ \overrightarrow{\mathcal{P}(abd)}. \ \overrightarrow{\mathcal{P}(acd)} = \text{symmetric } n\text{-tuple.}$

Conversely, if the (n, d)-sigraph is s-balanced, all these triangles are symmetric and particular those of a base.

5. Locally s-Balanced (n, d)-Signed Graph

The notion of local balance in signed graph was introduced by F. Harary [5]. A signed graph G = (V, E) is locally at a vertex v, or G is *balanced at* v, if all cycles containing v are balanced. A cut point in a connected graph G is a vertex whose removal results in a disconnected graph. The following result due to Harary [5] gives interdependence of local balance and cut vertex of a signed graph.

Theorem 5.1. (F. Harary [5])

If a connected signed graph G = (V, E) is balanced at a vertex u. Let v be a vertex on a cycle C passing through u which is not a cut point, then G is balanced at v.

In [13], the authors extend the notion of local balance in signed graph to (n, d)-signed graphs as follows: Let G = (V, E) be a (n, d)-signed graph. Then for any vertices $v \in V(G)$, G is locally *i*-balanced at v (locally balanced at v) if all cycles in G containing v is *i*-balanced (balanced.)

Analogous to the above result, in [13], the authors obtained the following for an (n, d)-signed graphs: **Theorem 5.2.** If a connected (n, d)-signed graph G = (V, E) is locally i-balanced (locally balanced) at a vertex u and v be a vertex on a cycle C passing through u which is not a cut point, then S is locally i-balanced (locally balanced) at v.

By the motivation of the above locally *i*-balanced (*locally balanced*) in an (n, d)-signed graph introduced by E. Sampathkumar et al. [13], in this section, we define locally *s*-balanced for an (n, d)-signed graphs:

Definition. Let G = (V, E) be a (n, d)-sigraph. Then for any vertices $v \in V(G)$, G is *locally s-balanced* at v if all cycles in G containing v is s-balanced.

Theorem 5.3. If a connected (n, d)-signed graph G = (V, E) is locally s-balanced at a vertex u and v be a vertex on a cycle C passing through u which is not a cut point, then S is locally s-balanced at v.

Proof. Suppose that G is s-balanced at u and v be a vertex on a cycle C passing through u which is not a cut point. Assume that G is not s-balanced at v. Then there exists a cycle C_1 in G which is not s-balanced. Since G is s-balanced at u, the cycle C is s-balanced.

With out loss of generality we may assume that $u \notin C$ for if u is in C and G is s-balanced at u C is s-balanced. Let e = uw be an edge in C. Since v is not a cut point there exists a cycle C_0 containing e and v. Then C_0 consists of two paths P_1 and P_2 joining u and v.

Let v_1 be the first vertex in P_1 and v_2 be a vertex in P_2 such that $v_1 \neq v_2 \in C$, such points do exist since v is not a cut point and $v \in C$. Since $u, v \in C_0$. Let P_3 be the path on C_0 from v_1 and v_2 , P_4 be a path in C containing v and P_5 is the path from v_1 to v_2 . Then $P_5 \cup P_4$ and $P_3 \cup P_5$ are cycles containing u and hence are s-balanced, since they contain u. That is $\mathcal{P}(P_3)$ and $(\mathcal{P}(P_5))$ are either symmetric or non-symmetric so that $C = P_3 \cup P_5$ is s-balanced. This completes the proof. \Box

Acknowledgments

The authors would like to thank referee for his valuable comments.

References

- B. D. Acharya and M. Acharya, New algebraic models of a social system, *Indian J. of Pure and Appl. Math.*, 17 no. 2 (1986) 152-168.
- [2] J. Edmonds and E. L. Johnson, Matching: a well-solved class of integral linear programs, in: Richard Guy et al., eds., Combinatorial Structures and Their Applications (Proc. Calgary Int. Conf., Calgary, 1969), Gordon and Breach, New York, 1970.
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969 89-92.
- [4] F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2 (1953-54) 143-146.
- [5] F. Harary, On local balance and N-balance in signed graphs, Michigan Math. J., 3 (1955) 37-41.
- [6] F. Harary, R. Norman and D. Cartwright, Structural models: An introduction to the theory of directed graphs, Jon Wiley, New York, 1965.
- [7] R. Rangarajan, M. S. Subramanya and P. Siva Kota Reddy, The *H*-line signed graph of a signed graph, *International J. Math. Combin.*, 2 (2010) 37-43.
- [8] R. Rangarajan and P. Siva Kota Reddy, The edge C_4 signed graph of a signed graph, Southeast Asian Bulletin of Mathematics, **34** no. 6 (2010) 1077-1082.
- [9] R. Rangarajan, M. S. Subramanya and P. Siva Kota Reddy, Neighborhood signed graphs, Southeast Asian Bulletin of Mathematics, 36 no. 3 (2012) 389-397.
- [10] E. Sampathkumar, P. Siva Kota Reddy and M. S. Subramanya, (3, d)-sigraph and its applications, Advn. Stud. Contemp. Math., 17 no. 1 (2008) 57-67.
- [11] E. Sampathkumar, P. Siva Kota Reddy and M. S. Subramanya, (4, d)-sigraph and its applications, Advn. Stud. Contemp. Math., 20 no. 1 (2010) 115-124.
- [12] E. Sampathkumar, P. Siva Kota Reddy, and M. S. Subramanya, Directionally n-signed graphs, in: B.D. Acharya et al., eds., Advances in Discrete Mathematics and Applications: Mysore, 2008 (Proc. Int. Conf. Discrete Math., ICDM-2008), pp. 153-160, Ramanujan Math. Soc. Lect. Notes Ser., 13, Ramanujan Mathematical Society, Mysore, India, 2010.
- [13] E. Sampathkumar, P. Siva Kota Reddy, and M. S. Subramanya, Directionally n-signed graphs-II, Int. J. Math. Combin., 4 (2009) 89-98.
- [14] P. Siva Kota Reddy and M. S. Subramanya, Signed graph equation $L^k(S) \sim \overline{S}$, International J. Math. Combin., 4 (2009) 84-88.
- [15] P. Siva Kota Reddy, S. Vijay and V. Lokesha, nth Power signed graphs, Proceedings of the Jangjeon Math. Soc., 12 no. 3 (2009) 307-313.
- [16] P. Siva Kota Reddy, S. Vijay and H. C. Savithri, A note on path sidigraphs, International J. Math. Combin., 1 (2010) 42-46.
- [17] P. Siva Kota Reddy, S. Vijay and V. Lokesha, nth Power signed graphs-II, International J. Math. Combin., 1 (2010) 74-79.
- [18] P. Siva Kota Reddy and S. Vijay, Total minimal dominating signed graph, International J. Math. Combin., 3 (2010) 11-16.
- [19] P. Siva Kota Reddy and K. V. Madhusudhan, Negation switching equivalence in signed graphs, International J. Math. Combin., 3 (2010) 85-90.

- [20] P. Siva Kota Reddy, t-Path sigraphs, Tamsui Oxford J. of Math. Sciences, 26 no. 4 (2010) 433-441.
- [21] P. Siva Kota Reddy, E. Sampathkumar and M. S. Subramanya, Common-edge signed graph of a signed graph, J. Indones. Math. Soc., 16 no. 2 (2010) 105-112.
- [22] P. Siva Kota Reddy, B. Prashanth and Kavita. S. Permi, A note on antipodal signed graphs, International J. Math. Combin., 1 (2011) 107-112.
- [23] P. Siva Kota Reddy and B. Prashanth, The common minimal dominating signed graph, Trans. Comb., 1 no. 3 (2012) 39-46.
- [24] P. Siva Kota Reddy and B. Prashanth, S-Antipodal signed graphs, Tamsui Oxf. J. Inf. Math. Sci., 28 no. 2 (2012) 165-174.
- [25] P. Siva Kota Reddy, B. Prashanth, and T. R. Vasanth Kumar, Antipodal signed directed graphs, Advn. Stud. Contemp. Math., 21 no. 4 (2011) 355-360.
- [26] P. Siva Kota Reddy and U. K. Misra, Common minimal equitable dominating signed graphs, Notes on Number Theory and Discrete Mathematics, 18 no. 4 (2012) 40-46.
- [27] P. Siva Kota Reddy and S. Vijay, The super line signed graph $\mathcal{L}_r(S)$ of a signed graph, Southeast Asian Bulletin of Mathematics, **36** no. 6 (2012) 875-882.
- [28] P. Siva Kota Reddy, K. R. Rajanna and Kavita S Permi, The common minimal common neighborhood dominating signed graphs, *Trans. Comb.*, 2 no. 1 (2013) 1-8.
- [29] P. Siva Kota Reddy and U. K. Misra, The equitable associate signed graphs, Bull. Int. Math. Virtual Inst., 3 no. 1 (2013) 15-20.
- [30] P. Siva Kota Reddy and U. K. Misra, Graphoidal signed graphs, Advn. Stud. Contemp. Math., 23 no. 3 (2013) 451-460.
- [31] T. Zaslavsky, Signed graphs, Discrete Appl. Math., 4 no. 1 (1982) 47-74.
- [32] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and its allied areas, *Electron. J. Combin.*, Dynamic Surveys in Combinatorics (1998), No. DS8. Eighth ed., (2012).

P. Siva Kota Reddy

Department of Mathematics, Siddaganga Institute of Technology Tumkur-572 103, India Email: pskreddy@sit.ac.in; reddy_math@yahoo.com

U. K. Misra

Department of Mathematics, Berhampur University, Berhampur-760 007, Orissa, India Email: umakanta_misra@yahoo.com