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Abstract. Let G = (V, E) be a graph. By directional labeling (or d-labeling) of an edge x = uv of

G by an ordered n-tuple (a1, a2, . . . , an), we mean a labeling of the edge x such that we consider the

label on uv as (a1, a2, . . . , an) in the direction from u to v, and the label on x as (an, an−1, . . . , a1) in

the direction from v to u. In this paper, we study graphs, called (n, d)-sigraphs, in which every edge

is d-labeled by an n-tuple (a1, a2, . . . , an), where ak ∈ {+,−}, for 1 ≤ k ≤ n. In this paper, we give

different notion of balance: symmetric balance in a (n, d)-sigraph and obtain some characterizations.

1. Introduction

For graph theory terminology and notation in this paper we follow the book [3]. All graphs consid-

ered here are finite and simple.

There are two ways of labeling the edges of a graph by an ordered n-tuple (a1, a2, . . . , an) (See [12]).

1. Undirected labeling or labeling. This is a labeling of each edge uv of G by an ordered n-tuple

(a1, a2, . . . , an) such that we consider the label on uv as (a1, a2, . . . , an) irrespective of the direction

from u to v or v to u.

2. Directional labeling or d-labeling. This is a labeling of each edge uv of G by an ordered n-tuple

(a1, a2, . . . , an) such that we consider the label on uv as (a1, a2, . . . , an) in the direction from u to v,
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and (an, an−1, . . . , a1) in the direction from v to u.

Note that the d-labeling of edges of G by ordered n-tuples is equivalent to labeling the symmetric

digraph
−→
G = (V,

−→
E ), where uv is a symmetric arc in

−→
G if, and only if, uv is an edge in G, so that

if (a1, a2, . . . , an) is the d-label on uv in G, then the labels on the arcs −→uv and −→vu are (a1, a2, . . . , an)

and (an, an−1, . . . , a1) respectively.

Let Hn be the n-fold sign group,

Hn = {+,−}n = {(a1, a2, . . . , an) : a1, a2, . . . , an ∈ {+,−}}

with co-ordinate-wise multiplication. Thus, writing a = (a1, a2, . . . , an) and t = (t1, t2, . . . , tn) then

at := (a1t1, a2t2, . . . , antn). For any t ∈ Hn, the action of t on Hn is at = at, the co-ordinate-wise

product.

Let n ≥ 1 be a positive integer. An n-signed graph (n-signed digraph) is a graph G = (V,E) in

which each edge (arc) is labeled by an ordered n-tuple of signs, i.e., an element of Hn. A signed graph

G = (V,E) is a graph in which each edge is labeled by + or −. Thus a 1-signed graph is a signed

graph. Signed graphs are well studied in literature (See for example [1, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32]).

In this paper, we study graphs in which each edge is labeled by an ordered n-tuple a = (a1, a2, . . . , an)

of signs (i.e, an element of Hn) in one direction but in the other direction its label is the reverse:

ar = (an, an−1, . . . , a1), called directionally labeled n-signed graphs (or (n, d)-signed graphs).

Note that an n-signed graph G = (V,E) can be considered as a symmetric digraph
−→
G = (V,

−→
E ),

where both −→uv and −→vu are arcs if, and only if, uv is an edge in G. Further, if an edge uv in G is

labeled by the n-tuple (a1, a2, . . . , an), then in
−→
G both the arcs −→uv and −→vu are labeled by the n-tuple

(a1, a2, . . . , an).

In [1], the authors study voltage graph defined as follows: A voltage graph is an ordered triple
−→
G = (V,

−→
E ,M), where V and

−→
E are the vertex set and arc set respectively and M is a group. Fur-

ther, each arc is labeled by an element of the group M so that if an arc −→uv is labeled by an element

a ∈M , then the arc −→vu is labeled by its inverse, a−1.

Since each n-tuple (a1, a2, . . . , an) is its own inverse in the group Hn, we can regard an n-signed

graph G = (V,E) as a voltage graph
−→
G = (V,

−→
E ,Hn) as defined above. Note that the d-labeling of

edges in an (n, d)-signed graph considering the edges as symmetric directed arcs is different from the

above labeling. For example, consider a (4, d)-signed graph in Figure 1. As mentioned above, this
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can also be represented by a symmetric 4-signed digraph. Note that this is not a voltage graph as

defined in [1], since for example; the label on −−→v2v1 is not the (group) inverse of the label on −−→v1v2.

Figure 1.

In [10, 11], the authors initiated a study of (3, d) and (4, d)-Signed graphs. Also, discussed some

applications of (3, d) and (4, d)-Signed graphs in real life situations.

In [12], the authors introduced the notion of complementation and generalize the notion of balance

in signed graphs to the directionally n-signed graphs. In this context, the authors look upon two kinds

of complementation: complementing some or all of the signs, and reversing the order of the signs on

each edge. Also given some motivation to study (n, d)-signed graphs in connection with relations

among human beings in society.

In [12], the authors defined complementation and isomorphism for (n, d)-signed graphs as fol-

lows: For any t ∈ Hn, the t-complement of a = (a1, a2, . . . , an) is: at = at. The reversal of

a = (a1, a2, . . . , an) is: ar = (an, an−1, . . . , a1). For any T ⊆ Hn, and t ∈ Hn, the t-complement

of T is T t = {at : a ∈ T}.

For any t ∈ Hn, the t-complement of an (n, d)-signed graph G = (V,E), written Gt, is the same

graph but with each edge label a = (a1, a2, . . . , an) replaced by at. The reversal Gr is the same graph

but with each edge label a = (a1, a2, . . . , an) replaced by ar.

Let G = (V,E) and G′ = (V ′, E′) be two (n, d)-signed graphs. Then G is said to be isomorphic to

G′ and we write G ∼= G′, if there exists a bijection φ : V → V ′ such that if uv is an edge in G which is

d-labeled by a = (a1, a2, . . . , an), then φ(u)φ(v) is an edge in G′ which is d-labeled by a, and conversely.

For each t ∈ Hn, an (n, d)-signed graph G = (V,E) is t-self complementary, if G ∼= Gt. Further, G

is self reverse, if G ∼= Gr.

Proposition 1.1. (E. Sampathkumar et al. [12]) For all t ∈ Hn, an (n, d)-signed graph G = (V,E)

is t-self complementary if, and only if, Ga is t-self complementary, for any a ∈ Hn.

Let v1, v2, . . . , vm be a cycle C in G and (ak1, ak2, . . . , akn) be the n-tuple on the edge vkvk+1, 1 ≤
k ≤ m− 1, and (am1, am2, . . . , amn) be the n-tuple on the edge vmv1.
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For any cycle C in G, let P (
−→
C ) denotes the product of the n-tuples on C given by:

(a11, a12, . . . , a1n)(a21, a22, . . . , a2n) . . . (am1, am2, . . . , amn) and P (
←−
C ) =

(amn, am(n−1), . . . , am1)(a(m−1)n, a(m−1)(n−1), . . . , a(m−1)1) . . . (a1n, a1(n−1), . . . , a11).

An n-tuple (a1, a2, . . . , an) is identity n-tuple, if each ak = +, for 1 ≤ k ≤ n, otherwise it is a

non-identity n-tuple. Further an n-tuple a = (a1, a2, . . . , an) is symmetric, if ar = a, otherwise it is

a non-symmetric n-tuple. In (n, d)-sigraph G = (V,E) an edge labeled with the identity n-tuple is

called an identity edge, otherwise it is a non-identity edge.

Note that the above products P (
−→
C ) as well as P (

←−
C ) are n-tuples. In general, these two products

need not be equal. However, the following holds.

Proposition 1.2. (E. Sampathkumar et al. [12])

For any cycle C of an (n, d)-sigraph G = (V,E), P (
←−
C ) = P (

−→
C )r.

Corollary 1.3. (E. Sampathkumar et al. [12])

For any cycle C, P (
←−
C ) = P (

−→
C ) if, and only if, P (

−→
C ) is a symmetric n-tuple. Furthermore, P (

−→
C ) is

the identity n-tuple if, and only if, P (
←−
C ) is.

2. Balance in an (n, d)-Signed Graph

In [12], the authors defined two notions of balance in an (n, d)-signed graph G = (V,E) as follows:

Definition . Let G = (V,E) be an (n, d)-sigraph. Then,

(i) G is identity balanced (or i-balanced), if P (
−→
C ) on each cycle of G is the identity n-tuple, and

(ii) G is balanced, if every cycle contains an even number of non-identity edges.

Note: An i-balanced (n, d)-sigraph need not be balanced and conversely. For example, consider

the (4, d)-sigraphs in Figure.2. In Figure.2(a) G is an i-balanced but not balanced, and in Figure.2(b)

G is balanced but not i-balanced.

Figure 2.
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An (n, d)-signed graph G = (V,E) is i-balanced if each non-identity n-tuple appears an even number

of times in P (
−→
C ) on any cycle of G.

However, the converse is not true. For example see Figure.3(a). In Figure.3(b), the number of

non-identity 4-tuples is even and hence it is balanced. But it is not i-balanced, since the 4-tuple

(+ +−−) (as well as (−−++)) does not appear an even number of times in P (
−→
C ) of 4-tuples.

Figure 3.

In [12], the authors obtained some characterizations of balanced and i-balanced (n, d)-sigraphs.

In [13], E. Sampathkumar et al. defined the path balance in an (n, d)-signed graphs as follows:

Let G = (V,E) be an (n, d)-sigraph. Then G is

(1) Path i-balanced, if any two vertices u and v satisfy the property that for any u − v paths P1

and P2 from u to v, P(
−→
P 1) = P(

−→
P 2).

(2) Path balanced if any two vertices u and v satisfy the property that for any u− v paths P1 and

P2 from u to v have same number of non identity n-tuples.

Clearly, the notion of path balance and balance coincides. That is an (n, d)-signed graph is balanced

if, and only if, G is path balanced. If an (n, d) signed graph G is i-balanced then G need not be path

i-balanced and conversely. In [13], the authors obtained the characterization path i-balanced (n, d)-

signed graphs as follows:

Theorem 2.1. (Characterization of Path i-balanced (n, d)-Signed Graphs)

An (n, d)-signed graph is path i-balanced if, and only if, any two vertices u and v satisfy the property

that for any two vertex disjoint u− v paths P1 and P2 from u to v, P(
−→
P 1) = P(

−→
P 2).

3. Symmetric Balance in an (n, d)-Signed Graph

Let n ≥ 1 be an integer. An n-tuple (a1, a2, . . . , an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let

Hn = {(a1, a2, . . . , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n}

be the set of all symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication,

and the order of Hn is 2m, where m = dn/2e.
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We now define a new notion of balance in (n, d)-sigraphs as follows:

Definition. Let G = (V,E) be an (n, d)-sigraph. Then G is symmetric balanced or s-balanced if P (
−→
C )

on each cycle C of G is symmetric n-tuple.

Note.

1. If an (n, d)-sigraph G = (V,E) is i-balanced then clearly G is s-balanced. But a s-balanced (n, d)-

sigraph need not be i-balanced. For example, the (4, d)-sigraphs in Figure 4. G is an s-balanced but

not i-balanced.

2. A s-balanced (n, d)-sigraph need not be balanced and conversely.

3. In view of Corollary 1.3, the notion of s-balance is well defined since if P(
−→
C ) is symmetric n-tuple

then P(
←−
C ) is also symmetric.

Figure 4.

4. Criteria for s-Balance

In this section, we obtain some characterizations for s-balanced (n, d)-sigraphs:

Theorem 4.1. An (n, d)-sigraph is s-balanced if, and only if, every cycle of G contains an even

number of non-symmetric n-tuples.

Proof. (Necessary) Suppose that G is s-balanced. We first note that product any two non-symmetric

n-tuples is symmetric, it follows that product of an even number of non-symmetric n-tuples is sym-

metric. Suppose that there exists a cycle C in G containing odd number of non-identity n-tuple.

Since product of odd number of non-symmetric n tuples is non-symmetric, and product of symmetric

n-tuples is symmetric, P(
−→
C ) is non-symmetric n-tuple, a contradiction.

(Sufficiency) Suppose that every cycle C of G contains even number of non-symmetric n-tuples.

Then P(
−→
C ) is symmetric and hence G is s-balanced. �

The following result gives a necessary and sufficient condition for a balanced (n, d)-sigraph to be

s-balanced.

Theorem 4.2. A balanced (n, d)-sigraph G = (V,E) is s-balanced if and only if every cycle of G

contains even number of non identity symmetric n tuples.
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Proof. Suppose G is balanced and every cycle of G contains even number of non identity symmetric

n-tuples. Let C be a cycle in G. Since G is balanced, C contains an even number of non identity

n-tuples and so number of non-symmetric n tuples in C is even. Hence P(
−→
C ) is symmetric n tuple.

Hence G is s-balanced.

Conversely suppose that G is balanced and s-balanced. Then the number of non-identity n-tuples

as well as the number of non-symmetric n-tuples on any cycle C of G is even. Hence the number of

every cycle of G contains an even number of non-identity symmetric n-tuples. �

The following result is well known (see [4]).

Theorem 4.3. (Harary [4]).

A sigraph G = (V,E) is balanced, if, and only if, its vertex set V can be partitioned into two sets V1

and V2 such that every negative edge joins a vertex in V1 and a vertex in V2, and every positive edge

joins two vertices in V1 or in V2.

Let G = (V,E) be an (n, d)-sigraph. An edge in G labelled by a symmetric edge is called symmetric

edge. Otherwise it is called non-symmetric edge. We now give another characterization of s-balanced

(n, d)-sigraph, which is analogous to the partition criteria for balance in signed graph due to Harary

[4].

Theorem 4.4. (Characterization of s-balanced (n, d)-sigraph)

An (n, d)-sigraph G = (V,E) is s-balanced if and only if the vertex set V (G) of G can be partitioned

into two sets V1 and V2 such that each symmetric edge joins the vertices in the same set and each

non-symmetric edge joins a vertex of V1 and a vertex of V2.

Proof. We associate a sigraph G′ with G on the same vertex set V and the edge set E of G as follows:

an edge ab in G′ is lableled + or − according as ab is a symmetric edge or non-symmetric edge in G.

Clearly, the (n, d)-sigraph G is s-balanced if, and only if, the sigraph G′ is balanced, and the result

follows from Theorem 4.3. �

An (n, d)-sigraph is said to be complete if the underlying graph of G is complete.The s-balance base

with axis a of a complete (n, d)-sigraph G = (V,E) consists list of the product of the n-tuples on the

triangles containing a.

Theorem 4.5. A complete (n, d)-sigraph is s-balanced if, and only if, all the triangles of a base are

s-balanced.

Proof. Suppose all the triangles a base are s-balanced. Indeed, for any triangle (bed) not appearing

in the base with axis a, we have

P
−−−→
(bcd) = P(

−→
abc). P(

−→
abd). P(

−→
acd)=symmetric n-tuple.

Conversely, if the (n, d)-sigraph is s-balanced, all these triangles are symmetric and particular those

of a base. �
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5. Locally s-Balanced (n, d)-Signed Graph

The notion of local balance in signed graph was introduced by F. Harary [5]. A signed graph

G = (V,E) is locally at a vertex v, or G is balanced at v, if all cycles containing v are balanced. A cut

point in a connected graph G is a vertex whose removal results in a disconnected graph. The following

result due to Harary [5] gives interdependence of local balance and cut vertex of a signed graph.

Theorem 5.1. (F. Harary [5])

If a connected signed graph G = (V,E) is balanced at a vertex u. Let v be a vertex on a cycle C passing

through u which is not a cut point, then G is balanced at v.

In [13], the authors extend the notion of local balance in signed graph to (n, d)-signed graphs as fol-

lows: Let G = (V,E) be a (n, d)-signed graph. Then for any vertices v ∈ V (G), G is locally i-balanced

at v (locally balanced at v) if all cycles in G containing v is i-balanced (balanced.)

Analogous to the above result, in [13], the authors obtained the following for an (n, d)-signed graphs:

Theorem 5.2. If a connected (n, d)-signed graph G = (V,E) is locally i-balanced (locally balanced) at

a vertex u and v be a vertex on a cycle C passing through u which is not a cut point, then S is locally

i-balanced (locally balanced) at v.

By the motivation of the above locally i-balanced (locally balanced) in an (n, d)-signed graph intro-

duced by E. Sampathkumar et al. [13], in this section, we define locally s-balanced for an (n, d)-signed

graphs:

Definition. Let G = (V,E) be a (n, d)-sigraph. Then for any vertices v ∈ V (G), G is locally s-balanced

at v if all cycles in G containing v is s-balanced.

Theorem 5.3. If a connected (n, d)-signed graph G = (V,E) is locally s-balanced at a vertex u and v

be a vertex on a cycle C passing through u which is not a cut point, then S is locally s-balanced at v.

Proof. Suppose that G is s-balanced at u and v be a vertex on a cycle C passing through u which is

not a cut point. Assume that G is not s-balanced at v. Then there exists a cycle C1 in G which is

not s-balanced. Since G is s-balanced at u, the cycle C is s-balanced.

With out loss of generality we may assume that u /∈ C for if u is in C and G is s-balanced at u C is

s-balanced. Let e = uw be an edge in C. Since v is not a cut point there exists a cycle C0 containing

e and v. Then C0 consists of two paths P1 and P2 joining u and v.

Let v1 be the first vertex in P1 and v2 be a vertex in P2 such that v1 6= v2 ∈ C, such points do exist

since v is not a cut point and v ∈ C. Since u, v ∈ C0. Let P3 be the path on C0 from v1 and v2, P4

be a path in C containing v and P5 is the path from v1 to v2. Then P5 ∪ P4 and P3 ∪ P5 are cycles

containing u and hence are s-balanced, since they contain u. That is P(P3) and (P(P5)) are either

symmetric or non-symmetric so that C = P3 ∪ P5 is s-balanced. This completes the proof. �
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