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Abstract. Let G = (V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge

labeling f∗ : E → Z2 defined by f∗(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)|
and ef (i) = |f∗−1(i)|. A labeling f is called friendly if |vf (1)− vf (0)| ≤ 1. The full friendly index set

of G consists all possible differences between the number of edges labeled by 1 and the number of edges

labeled by 0. In recent years, full friendly index sets for certain graphs were studied, such as tori, grids

P2 × Pn, and cylinders Cm × Pn for some n and m. In this paper we study the full friendly index sets

of cylinder graphs Cm × P2 for m ≥ 3, Cm × P3 for m ≥ 4 and C3 × Pn for n ≥ 4. The results in this

paper complement the existing results in literature, so the full friendly index set of cylinder graphs are

completely determined.

1. Introduction

Let G = (V,E) be a simple connected graph. A vertex labeling f : V → Z2 induces an edge labeling

f∗ : E → Z2, given by

f∗(xy) := f(x) + f(y),

where xy ∈ E. For i ∈ Z2, define vf (i) = |f−1(i)| and ef (i) = |(f∗)−1(i)|, i.e., vf (i) is the number of

vertices labeled by i and ef (i) is the number of edges labeled by i. A vertex labeling f is said to be

friendly if

|vf (1)− vf (0)| ≤ 1.
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For a friendly labeling f of a graph G the friendly index of G with respect to f , denoted by if (G), is

defined to be

if (G) := ef (1)− ef (0).

The friendly index set [2] FI(G) of G is defined to be

FI(G) = {|if (G)||f is a friendly labeling of G}.

In [7] Shiu-Kwong generalize the friendly index set to the full friendly index set FFI(G):

FFI(G) = {if (G)|f is a friendly labeling of G}.

Friendly index of some graphs are studied in [4, 3, 5, 6]. Let m ≥ 3 and n ≥ 2. Denote by Cm an

m-cycle and Pn an n-path. The full friendly index sets are studied in the case of a torus Cm×Cn [8,9],

a cylinder Cm×Pn for m,n ≥ 4 [10,11] and a grid P2×Pn [7]. In this paper we study the full friendly

index sets of cylinder graphs Cm×P2 for m ≥ 3, Cm×P3 for m ≥ 4 and C3×Pn for n ≥ 4. Together

with [10,11] the full friendly index sets of cylinder graphs Cm×Pn for arbitrary m and n are completely

determined.

Henceforth the term “labeling” on a graph G means a vertex labeling from V (G) to Z2.

2. Notation and preliminary results

We refer to [1] for general notions of graphs. Let m ≥ 3 and n ≥ 2. Denote by Cm an m-cycle and

Pn an n-path. The Cartesian product Cm × Pn is a cylinder graph with mn vertices labeled by uij

(or ui,j), where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The size of Cm ×Pn is 2mn−m. Two vertices uij and uhk
of Cm × Pn are adjacent if either

i = h and j = k ± 1, or

j = k and i ≡ h± 1 (mod m)

We recall some results of the extremely friendly index of Cm × Pn in [10].

Theorem 2.1. [10, Theorem 2.4] If f is a friendly labeling of Cm × Pn, then

if (Cm × Pn) ≤

2mn−m− 2n, if m is odd;

2mn−m, if m is even.

Theorem 2.2. [10, Theorems 3.2–3.5] Let f be a friendly labeling of Cm × Pn.

(1) Suppose n is even.

(a) If m ≤ 2n, then if (Cm × Pn) ≥ 3m− 2mn.

(b) If m ≥ 2n, then

if (Cm × Pn) ≥

4n+m+ 2− 2mn, if m is odd;

4n+m− 2mn, if m is even.

(2) Suppose n is odd.
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(a) If m ≤ 2n− 1, then if (Cm × Pn) ≥ 3m+ 4− 2mn.

(b) If m ≥ 2n− 2, then

if (Cm × Pn) ≥

4n+m+ 2− 2mn, if m is odd;

4n+m− 2mn, if m is even.

3. Non-existence of friendly indices of Cm × Pn

In the previous section we recall the upper bound and the lower bound of the friendly index of the

graph Cm × Pn. In this section we prove that some integers lying between the upper bound and the

lower bound cannot be the friendly index of Cm × Pn.

We begin with some elementary observations.

Lemma 3.1. Let f be a friendly labeling of Cm × P2 = (V,E). Then

vf (1) ≡ m (mod 2).

Proof. Since the degree of each of the vertices of Cm × P2 is 3, it follows that

ef (1) ≡
∑
e∈E

f∗(e) =
∑
v∈V

deg(v)f(v) =
∑
v∈V

3f(v) ≡ 3vf (1) ≡ vf (1) (mod 2).

Since f is a friendly labeling, it follows that vf (0) = vf (1) = m. Thus vf (1) ≡ m (mod 2). �

Theorem 3.2. [11, Theorem 2.1] For even m with m ≥ 4 and n ≥ 2, there is no friendly labeling f

of Cm × Pn such that ef (1) = 2mn−m− p, where p = 1, 2, 3.

Let G be a graph and f : V → Z2 a vertex labeling of G. A subgraph H of G is said be to mixed

with respect to f if there are two vertices u, v ∈ V (H) such that f(u) = 1 and f(v) = 0. An edge

e ∈ E(G) is called an k-edge if f∗(e) = k, where k ∈ Z2.

Clearly, mixed cycles and mixed paths contain at least two 1-edges and one 1-edge, respectively.

Let k ∈ Z2. A cycle C is called an k-pure cycle, where k ∈ Z2, with respect to f if f(u) = k for all

u ∈ V (C). We define k-pure path in a similar fashion.

A path in Cm × Pn of the form ui1ui2 · · ·uin is called a vertical path for each fixed 1 ≤ i ≤ m. A

cycle in Cm × Pn of the form u1ju2j · · ·umju1j is called a horizontal cycle for each fixed 1 ≤ j ≤ n.

Lemma 3.3. [11, Lemma 2.2] For even m, if Cm×Pn contains a vertical mixed path under a friendly

labeling f , then the number of vertical mixed paths is at least two.

Lemma 3.4. [7, Corollary 5] Let f be a labeling of a graph G that contains a cycle C as its subgraph.

If C contains a 1-edge, then the number of 1-edges in C is a positive even number.

Lemma 3.5. Let m ≥ 6 be even. If Cm × P3 contains a horizontal pure cycle (either a 1-pure cycle

or a 0-pure cycle) and a horizontal mixed cycle with respect to a friendly labeling f , then ef (1) ≥ 8.
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Proof. Let r be the number of horizontal 1-pure cycles and s the number of horizontal 0-pure cycles.

Since f is a friendly labeling, it follows that 0 ≤ r, s ≤ 1. There are two cases.

(1) Suppose r = 1 and s = 0. Then there are two horizontal mixed cycles, each of which has

at least two 1-edges. Since vf (0) =
3m
2

, there are at least
3m
4

mixed vertical paths. Thus

ef (1) ≥ 4 +
3m
4

> 8. Hence ef (1) ≥ 9. The case r = 0 and s = 1 is similar.

(2) Suppose r = 1 = s. Then there is one horizontal mixed cycle, and all vertical paths are mixed.

Thus

ef (1) ≥ 2 +m ≥ 2 + 6 = 8.

�

Proposition 3.6. Let m ≥ 6 be even. There is no friendly labeling f of Cm×P3 such that ef (1) = 7.

Proof. Let a be the number of horizontal mixed cycles and b the number of vertical mixed paths of

Cm × P3. Note that a 6= 0 by friendliness, and b 6= 1 by Lemma 3.3. If a = 1 or 2, then ef (1) ≥ 8 by

Lemma 3.5.

Suppose a = 3. If b = 0, then by Lemma 3.4 each horizontal mixed cycle contains at least two

1-edges. Thus ef (1) ≥ 2 + 2 + 2 = 6. Note that in this case ef (1) cannot be an odd integer by the

same reason. If b ≥ 2, then ef (1) ≥ 2 + 2 + 2 + b ≥ 8, where the 2’s follows from the reason as above.

Combining all these cases together we conclude that ef (1) 6= 7. �

Lemma 3.7. [11, Lemma 2.3] Let n be even. If Cm × Pn contains a horizontal mixed cycle with

respect to a friendly labeling f , then the number of horizontal mixed cycles is at least two.

Lemma 3.8. [11, Lemma 2.4] Let n ≥ 4 be even and 3 ≤ m ≤ 2n. If Cm × Pn contains a horizontal

pure cycle and a horizontal mixed cycle with respect to a friendly labeling f , then

ef (1) ≥


m+ 4, if m is odd;

m+ 3, if m is even and m = 2n;

m+ 4, if m is even and m ≤ 2n− 2.

Lemma 3.9. Let n ≥ 4 be even. There is no friendly labeling f of C3 × Pn such that ef (1) = 4, 5.

Proof. Let a be the number of horizontal mixed cycles and b the number of vertical mixed paths. If

b = 0, then all three vertical paths are pure and therefore |vf (1) − vf (0)| ≥ n ≥ 4, contradicting to

the assumption that f is a friendly labeling. Thus b 6= 0. We consider the following three cases for a.

(1) Suppose a = 0. Then all three vertical paths are identical. Thus ef (1) is a multiple of 3, so

ef (1) 6= 4, 5.

(2) Suppose 1 ≤ a < n. Then C3 × Pn contains a horizontal mixed cycles and at least one pure

cycle. By Lemma 3.8 we have ef (1) ≥ 3 + 4 = 7.

(3) Suppose a = n. Since b ≥ 1, it follows from Lemma 3.4 that ef (1) ≥ 2n+ b ≥ 8 + 1 = 9.

Combining all these cases together we conclude that ef (1) 6= 4, 5. �
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4. Elementary operations on vertex labeling

In this section we prove some results that will be useful in studying the full friendly index set of

Cm × Pn.

Let f be a labeling of Cm × Pn. An n × m matrix Af , whose (j, i)-entry is defined by (Af )ji =

f(uij), is called the labeling matrix of Cm × Pn under f . For convenience, we write f for Af . Let

[a, b] = {i ∈ Z | a ≤ i ≤ b}. We denote by Op,q and Jp,q the p × q zero matrix and the p × q matrix

whose entries are 1 respectively.

For a given matrix A, define a row operation σi on A by shifting the i-th row of A to the right by

1 entry (the last entry of the i-th row shifts to the first entry). Denote by σi(A) the resulting matrix.

Proposition 4.1. Consider Cm × P2 with a labeling f represented by the matrix

f =
(
J2,bm/2c O2,dm/2e

)
.

For 0 ≤ j ≤ bm/2c, let fj = σj1(f), where σj1 :=
j︷ ︸︸ ︷

σ1 ◦ · · · ◦ σ1. Then efj
(1) = 4 + 2j.

Proof. Note that f is friendly for even m but not for odd m. Note also that shifting the vertex

labeling of first horizontal cycle will not change the number of 1-edges in the horizontal cycle; it will

only change the number of 1-edges in the vertical paths.

Note that f = f0 and ef (1) = 4. Clearly

f1 =

0 1 · · · 1 1 0 · · · 0

1 1 · · · 1︸ ︷︷ ︸
bm/2c−1

0 0 · · · 0︸ ︷︷ ︸
dm/2e−1

 =

(
0

1
J2,bm/2c−1

1

0
O2,dm/2e−1

)
.

Thus there are two more 1-edges in the vertical paths. It is easy to see that efj
(1)− efj−1

(1) = 2 for

each 1 ≤ j ≤ bm/2c+ 1. Thus efj
(1) = 4 + 2j.

Proposition 4.2. Consider Cm × P2.

(1) Let f be a friendly labeling of Cm × P2 represented by(
1 1 · · · 1

0 0 · · · 0

)
.

Interchange the labeling of the 2j-th column of the above matrix for all 1 ≤ j ≤ k, and denote

by fk the resulting labeling with f0 := f . Then ef (1) = m and efk
(1) = m + 4k for each

0 ≤ k ≤ bm/2c.
(2) Let g be a friendly labeling of Cm × P2 represented by(

1 · · · 1 1 0 1

0 · · · 0 0 0 1

)
.

Interchange the labeling of the 2j-th column of the above matrix for all 1 ≤ j ≤ k, and denote

by gk the resulting labeling with g0 := g. Then eg(1) = m+ 2 and egk
(1) = m+ 2 + 4k for each

0 ≤ k ≤ dm/2e − 2.
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Proof. Note that interchanging the labeling of the columns will only change the number of 1-edges

in the horizontal cycles and will not change the number of 1-edges of the vertical paths.

(1) It is obvious that ef (1) = m. Note that f1 is obtained by interchanging the second column of

the labeling f , and the resulting matrix is(
1 0 1 · · · 1

0 1 0 · · · 0

)
.

Thus four more 1-edges are obtained from the horizontal cycles. It is easy to see that efk
(1)−

efk−1
(1) = 4 for all 1 ≤ k ≤ bm/2c. Thus efk

(1) = m+ 4k.

(2) Similar to the above proof. �

For a friendly labeling f of a graph G, we have

ef (1)− ef (0) = 2ef (1)− |E(G)|.

To compute FFI(G), it suffices to compute the set

a(G) = {ef (1) | f is a friendly labeling of G}.

Then FFI(G) = {2i− |E(G)| | i ∈ a(G)}.
By substituting m by 2m and 2m+ 1 in Proposition 4.2 we have

Corollary 4.3. For m ≥ 2

{2m+ 2i | i ∈ [0, 2m] \ {2m− 1}} = {2i | i ∈ [m, 3m] \ {3m− 1}} ⊆ a(C2m × P2),

and for m ≥ 1

{2m+ 1 + 2i | i ∈ [0, 2m]} = {2i+ 1 | i ∈ [m, 3m]} ⊆ a(C2m+1 × P2).

The following lemma is obvious.

Lemma 4.4. Let f be a friendly labeling on C4 × P3 represented by1 0 1 0

∗ 1 0 ∗
1 0 1 0

 ,

where ∗ is either 1 or 0. Interchange the (1, 2)-entry with (1, 3)-entry of f (or the (3, 2)-entry with

(3, 3)-entry, not both) decreases ef (1) by 4. Interchange the (1, 2)-entry with (1, 3)-entry and the

(3, 2)-entry with (3, 3)-entry decreases ef (1) by 8.

Proposition 4.5. Consider the labeling f =

(
Jbn/2c,3

Odn/2e,3

)
on C3×Pn. Interchange the (bn/2c−i+1, 3)-

entry with the (bn/2c+ i, 1)-entry of f for each 1 ≤ i ≤ k, where k ≤ bn/2c − 1, and denote by fk the

resulting labeling. Then ef (1) = 3 and efk
(1) = 3 + 4k.
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Proof. Note that f is friendly for even n but not for odd n. Note also that ef (1) = 3. After

interchanging the (bn/2c, 3)-entry with the (bn/2c+ 1, 1)-entry from f , we have the following matrix

f1 =


Jbn/2c−1,3

1 1 0

1 0 0

Odn/2e−1,3

 .

¿From the above matrix we see that ef1(1) = 7 = 3 + 4. After interchanging the (bn/2c − 1, 3)-entry

with the (bn/2c+ 2, 1)-entry from f1, we have

f2 =



Jbn/2c−2,3

1 1 0

1 1 0

1 0 0

1 0 0

Odn/2e−2,3


.

¿From the above matrix we see that ef2(1) = 11 = ef1(1)+4. It is easy to see that efk
(1)−efk−1

(1) = 4

for each k ≤ bn/2c − 1, and therefore efk
(1) = 3 + 4k. �

5. Realizing the full friendly index set

In this section we realize all the potential friendly indices of Cm × Pn for some n and m.

In the following we determine for a(Cm × P2) for m ≥ 4, a(Cm × P3) for m ≥ 4 and a(C3 × Pn) for

n ≥ 4.

Theorem 5.1. For m ≥ 2, we have

a(C2m × P2) = {2i | i ∈ [2, 3m] \ {3m− 1}}.

Proof. Let φ be any friendly labeling of C2m × P2. By Theorem 2.1 and (1)(b) of Theorem 2.2, we

have

6m ≥ iφ(C2m × P2) ≥ 8− 6m.

On the other hand, we have

iφ(C2m × P2) = 2eφ(1)− |E(C2m × P2)| = 2eφ(1)− 6m.

It follows that 6m ≥ eφ(1) ≥ 4.

Let f be the labeling of C2m × P2 of Proposition 4.1. Note that f is friendly. By Proposition 4.1

we have {2i | i ∈ [2,m+ 2]} ⊆ a(C2m × P2). The result follows from Corollary 4.3. �

Theorem 5.2. For m ≥ 2, we have

a(C2m+1 × P2) = {2i+ 1 | i ∈ [2, 3m]}.
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Proof. Let φ be any friendly labeling of C2m+1×P2. By Theorem 2.1 and (1)(b) of Theorem 2.2, we

have

6m− 1 ≥ iφ(C2m × P2) ≥ 7− 6m.

It follows that 6m+ 1 ≥ eφ(1) ≥ 5.

Let f be a labeling on C2m+1 × P2 represented by the matrix(
J2,m

0

1
O2,m

)
.

Note that f is a friendly labeling of C2m+1 × P2 and ef (1) = 5. By applying the procedure in

Proposition 4.1 we have efj
(1) = 5 + 2j for 0 ≤ j ≤ m. Thus {2i+ 1 | i ∈ [2,m+ 2]} ⊆ a(C2m+1×P2).

The result follows from Corollary 4.3. �

Theorem 5.3. For m ≥ 3, we have

a(C2m × P3) = {6, 10m} ∪ [8, 10m− 4].

Proof. Let φ be any friendly labeling of C2m × P3. By Theorem 2.1 and (2)(b) of Theorem 2.2, we

have

10m ≥ iφ(C2m × P3) ≥ 12− 10m.

That means 10m ≥ eφ(1) ≥ 6. By Theorem 3.2, eφ(1) /∈ {10m− 1, 10m− 2, 10m− 3}.
Let f be a labeling on C2m×P3 represented by the matrix

(
J3,m O3,m

)
. Note that f is a friendly

labeling of C2m × P2 and ef (1) = 6. Let fj = σj3(f) for 0 ≤ j ≤ m. Similar to the proof of

Proposition 4.1, we have efj
(1) = 6 + 2j for 0 ≤ j ≤ m. Thus {2i | i ∈ [3,m + 3]} ⊆ a(C2m × P3).

The matrix representing fm is given by (
J2,m O2,m

O1,m J1,m

)
.

Consider σj1(fm) for 0 ≤ j ≤ m. Similar to the proof of Proposition 4.1 we see that

{2i | i ∈ [m+ 3, 2m+ 3]} ⊆ a(C2m × P3).

Consider another labeling g of C2m × P3 represented by the matrix J3,m−1

1 1

0 0

1 0

O3,m−1

 .

Note that g is a friendly labeling and eg(1) = 9. Consider σj1(g) for 0 ≤ j ≤ m − 1. Similar to the

proof of Proposition 4.1, we have {2i+ 1 | i ∈ [4,m+ 3]} ⊆ a(C2m × P3). Let g̃ = σm−1
1 (g). Consider

σj3(g̃) for 0 ≤ j ≤ m− 1. Similarly we have {2i+ 1 | i ∈ [m+ 3, 2m+ 2]} ⊆ a(C2m × P3).

Combining the above cases, we have {6} ∪ [8, 4m+ 6] ⊆ a(C2m × P3).
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By Theorem 2.1 we have eφ(1) ≤ 10m for any friendly labeling φ. Let h be a labeling of C2m × P3

whose matrix representation is given by

1 0 1 0 · · · 1 0 1 0

0 1 0 1 · · · 0 1 0 1

1 0 1 0 · · · 1 0 1 0

 .

Then h is a friendly labeling and eh(1) = 10m.

Case 1: Suppose m = 2k for some k ≥ 2. Then we can subdivide the above matrix into k sub-

matrices (blocks) of size 3 × 4 starting from the first column. Apply the procedure in Lemma 4.4 to

the first row and the third row in each of these blocks consecutively, we see that {4i | i ∈ [3k, 5k]} ⊆
a(C2m × P3).

Consider the labelings p, q and r whose matrix representations are of the form

p =

 1 0 1 0 · · · 1 0 1 0 1 0 1 0

0 1 0 1 · · · 0 1 0 1 0 0 0 1

1 0 1 0 · · · 1 0 1 0 1 1 1 0

 ,

q =

 1 0 1 0 · · · 1 0 1 0 1 0 1 0

0 1 0 1 · · · 0 1 0 1 0 0 1 1

1 0 1 0 · · · 1 0 1 0 1 1 0 0

 ,

r =

 1 0 1 0 · · · 1 0 1 0 1 0 1 0

0 1 0 1 · · · 0 1 0 1 0 1 0 0

1 0 1 0 · · · 1 0 1 0 1 1 1 0

 .

Note that p, q and r are friendly labelings of C2m × P3 and ep(1) = 20k − 5, eq(1) = 20k − 6 and

er(1) = 20k−7. By applying the procedure of Lemma 4.4 to the first k−1 blocks of all these matrices

consecutively, we see that {4i+3 | i ∈ [3k, 5k−2]}, {4i+2 | i ∈ [3k, 5k−2]} and {4i+1 | i ∈ [3k, 5k−2]}
are subsets of a(C2m × P3).

Combining the above four cases, we have [6m, 10m− 4] ∪ {10m} ⊆ a(C2m × P3).

Let s be a friendly labeling of C2m × P3 whose matrix representation is given by

s =

 1 0 1 0 · · · 1 0 1 0

1 1 0 0 · · · 1 1 0 0

0 1 1 0 · · · 0 1 1 0

 .

Note that es(1) = 6m. By applying a similar procedure in Lemma 4.4 to the first row of each block

of s consecutively, we see that {4i | i ∈ [2k, 3k]} ⊆ a(C2m × P3).
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Consider the labelings t, u and v of C2m × P3 whose matrix representations are given by

t =

 1 0 1 0 · · · 1 0 1 0 1 0 1 0

1 1 0 0 · · · 1 1 0 0 1 0 0 1

0 1 1 0 · · · 0 1 1 0 0 1 1 0

 ,

u =

 1 0 1 0 · · · 1 0 1 0 1 0 1 0

1 1 0 0 · · · 1 1 0 0 1 0 1 1

0 1 1 0 · · · 0 1 1 0 0 1 0 0

 ,

v =

 1 0 1 0 · · · 1 0 1 0 1 0 1 0

1 1 0 0 · · · 1 1 0 0 1 0 1 1

0 1 1 0 · · · 0 1 1 0 0 0 1 0

 .

Note that t, u and v are friendly labelings of C2m × P3 and et(1) = 6m + 2, eu(1) = 6m + 1 and

ev(1) = 6m− 1. By applying a similar procedure of Lemma 4.4 to the first row of each boxed block of

these matrices, we see that {4i+2 | i ∈ [2k+1, 3k]}, {4i+1 | i ∈ [2k+1, 3k]} and {4i+3 | i ∈ [2k, 3k−1]}
are subsets of a(C2m × P3).

Combining the above four cases, we have [4m + 3, 6m + 2] ⊆ a(C2m × P3). The theorem holds for

even m by considering all the above cases.

Case 2: Suppose m = 2k+ 1 for some k ≥ 1. We shall keep the labelings h, p, q, r, s, t, u and v for

m = 2k. Let

A =

1 0

0 1

1 0

 , B =

1 0

1 0

1 0

 .

We construct a labeling h similar to h in Case 1 by inserting the sub-matrix A into h as the last two

columns. Then eh(1) = 20k + 10 = 10m. Similar to Case 1 (i.e., apply the procedure in Lemma 4.4

to the first k blocks consecutively), we have {4i+ 10 | i ∈ [3k, 5k]}.
Construct labelings p, q and r by inserting the sub-matrix A into p, q and r between the last fifth and

the last fourth column, respectively. Then ep(1) = 20k+5, eq(1) = 20k+4 and er(1) = 20k+3. Similar

to Case 1, after combining the above four cases, we have [6m + 4, 10m− 4] ∪ {10m} ⊆ a(C2m × P3).

Denote by pk−1 the labeling after the procedure in Lemma 4.4 is applied k−1 times. Then epk−1
(1) =

20k + 5 − 8(k − 1) = 12k + 13. By swapping the entries of the first row of A in pk−1, we see that

e(1) = 12k + 9 = 6m+ 3.

Similarly, let s be obtained from s by inserting the sub-matrix B as the last two columns. We also

construct labelings t, u and v by inserting the sub-matrix B into t, u and v between the last fifth and

last the fourth column, respectively. Then es(1) = 12k + 6, et(1) = 12k + 8, eu(1) = 12k + 7 and

ev(1) = 12k + 5. Similar to Case 1, we will obtain {4m+ 5} ∪ [4m+ 7, 6m+ 2] ⊆ a(C2m × P3). Note

that 4m+ 6 is covered before defining the labeling h.

The theorem now holds for odd m. �
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Theorem 5.4. For m ≥ 2, we have

a(C2m+1 × P3) = [7, 10m+ 2].

Proof. For m = 2k, let fj be the labelings of C2m×P3 defined in the proof of Theorem 5.3, 0 ≤ j ≤ m.

Let f j be the labeling obtained from fj by inserting the sub-matrix A =

0

0

1

 as the last column.

Note that f j is friendly. Similar to the proof of Theorem 5.3 we have {7 + 2i | 0 ≤ i ≤ 2m} \ {9} ⊆

a(C2m+1 × P3). If we replace the sub-matrix A in f j by B, where B =

0

1

0

, then it is easy to see

that {8 + 2i | 0 ≤ i ≤ 2m} ⊆ a(C2m+1 × P3). On the other hand, it is easy to see that eσ1
1(f0)(1) = 9.

Combining all these cases we have [7, 4m+ 8] ⊆ a(C2m+1 × P3).

Consider the labeling h represented by the following matrix

 1 0 1 0 · · · 1 0 1 0 1

0 1 0 1 · · · 0 1 0 1 0

1 0 1 0 · · · 1 0 1 0 1

 .

Note that h is a friendly labeling of C2m+1 × P3 and eh(1) = 10m + 2. Apply the procedure in

Lemma 4.4 to the first row and the third row in each of first k blocks consecutively, we see that

{10m + 2 − 4i | 0 ≤ i ≤ 2k} ⊆ a(C2m+1 × P3). Consider the labelings p, q and r represented by the

matrices

p =

 1 0 1 0 · · · 1 0 1 0 0

0 1 0 1 · · · 0 1 0 1 0

1 0 1 0 · · · 1 0 1 0 1

 ,

q =

 1 0 1 0 · · · 1 0 1 0 0

1 1 0 1 · · · 0 1 0 1 0

1 0 1 0 · · · 1 0 1 0 0

 ,

r =

 1 0 1 0 · · · 1 0 1 0 0

1 1 0 1 · · · 0 1 0 1 0

1 0 1 0 · · · 1 0 1 0 1

 .

They are friendly and ep(1) = 10m+1, eq(1) = 10m, and er(1) = 10m−1. Similarly, apply the proce-

dure in Lemma 4.4 to p, q and r we see that {10m+ 1− 4i | 0 ≤ i ≤ 2k} and {10m− 4i | 0 ≤ i ≤ 2k}
and {10m− 1− 4i | 0 ≤ i ≤ 2k} are subsets of a(C2m+1×P3). Combining these four cases we see that

[6m− 1, 10m+ 2] ⊆ a(C2m+1 × P3).
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Consider the labelings

t =

 1 0 1 0 · · · 1 0 1 0 1

1 1 0 0 · · · 1 1 0 0 0

0 1 1 0 · · · 0 1 1 0 1

 ,

u =

 1 0 1 0 · · · 1 0 1 0 0

1 1 0 0 · · · 1 1 0 0 0

0 1 1 0 · · · 0 1 1 0 1

 ,

v =

 1 0 1 0 · · · 1 0 1 0 0

1 1 0 0 · · · 1 1 0 0 1

0 1 1 0 · · · 0 1 1 0 0

 ,

w =

 1 0 1 0 · · · 1 0 1 0 1

1 1 0 0 · · · 1 1 0 0 1

0 1 1 0 · · · 0 1 1 0 0

 .

These are friendly labelings and et(1) = 6m+ 4, eu(1) = 6m+ 3, ev(1) = 6m+ 2 and ew(1) = 6m+ 1.

Similar to the proof of Case 1 of Theorem 5.3, we see that [4m+ 1, 6m+ 4] ⊆ a(C2m+1 × P3).

By considering all the above cases, the theorem holds when m is even. When m is odd, one can

prove the theorem similar to the proof of Case 2 of Theorem 5.3. Thus the theorem holds for all

m ≥ 2. �

Theorem 5.5. For n ≥ 3, we have

a(C3 × P2n) = {3} ∪ [6, 10n− 3].

Proof. Let φ be any friendly labeling of C3 × P2n. By Lemma 3.9, Theorem 2.1 and (1)(a) of

Theorem 2.2, we have 10n− 3 ≥ eφ(1) ≥ 3 and eφ(1) 6= 4, 5.

Obviously, q =

 O1,3

Jn,3

On−1,3

 is a friendly labeling of C3 × P2n and eq(1) = 6.

Let f be the labeling of C3 × P2n in Proposition 4.5. It is a friendly labeling and ef (1) = 3. By

applying the procedure in Proposition 4.5 to f we see that {4k + 3 | k ∈ [0, n− 1]} ⊆ a(C3 × P2n).

Consider the labelings g, h and ` of C3 × P2n represented by the matrices

g =


1 1 0

Jn−1,3

1 0 0

On−1,3

 , h =



1 1 1

1 1 0

Jn−2,3

1 0 0

On−1,3


, ` =



1 1 0

1 1 0

Jn−2,3

1 1 0

On−1,3


.
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Note that g, h and ` are friendly and eg(1) = 8, eh(1) = 9 and e`(1) = 10 respectively. For the

labelings g and h, interchange the (n− i+ 1, 3)-entry with the (n+ i, 3)-entry for 1 ≤ i ≤ k if n ≥ 4,

where k ≤ n− 3. The resulting labelings are denoted by gk and hk, respectively.

For the labeling g, we have

{8 + 4k | 0 ≤ k ≤ n− 3} ⊆ a(C3 × P2n).

Extend the above procedure to the labeling g to k = n − 2 and k = n − 1. It is easy to see that

egn−2(1) = 8 + 4(n− 2) = 4n and egn−1(1) = 8 + 4(n− 2) + 2 = 4n+ 2. Thus

{8 + 4k | 0 ≤ k ≤ n− 2} ∪ {4n+ 2} ⊆ a(C3 × P2n).

For the labeling h, we have

{9 + 4k | 0 ≤ k ≤ n− 3} ⊆ a(C3 × P2n).

For the labeling `, first interchange the (n, 3)-entry with the (n+ 2, 1)-entry, and then interchange the

(n+ 1− i, 3)-entry with the (n+ i, 3)-entry consecutively, for 2 ≤ i ≤ n− 3 if n ≥ 5. Then we see that

{10 + 4i | 0 ≤ i ≤ n− 3} ⊆ a(C3 × P2n).

Combining all the above cases, we see that {3} ∪ [6, 4n] ∪ {4n+ 2} ⊆ a(C3 × P2n).

The matrix representing the labeling fn−1 is given by
J1,3

A

B

O1,3

 , where A =
(
Jn−1,2 On−1,1

)
and B =

(
Jn−1,1 On−1,2

)
.

For 2 ≤ k ≤ n− 1 and n+ 1 ≤ k ≤ 2n− 2, shift consecutively the k-th row to the right by one unit

if k is even, and to the left by one unit if k odd. Applying this procedure we get

{2i− 1 | i ∈ [2n, 4n− 4]} ⊆ a(C3 × P2n) when n is odd;

{2i− 1 | i ∈ [2n, 4n− 3]} \ {6n− 3} ⊆ a(C3 × P2n) when n is even.

To realize the value 6n−3 for even n, we make a special labeling as follows. Apply the above procedure

up to shifting the (n− 1)-th row, and then shift the (n+ 1)-th row to the right by 1 unit.

The matrix representing the labeling gn−1 is given by

gn−1 =


A

1 0 1

B

0 0 0

 , where A =
(
Jn,2 On,1

)
, B =

(
On−2,2 Jn−2,1

)
.

For 1 ≤ k ≤ n− 1, shift consecutively the k-th row to the right by 1 unit if k is odd, and to the left by

1 unit if k is even. It is easy to see that each operation increases e(1) by 2. After these procedures, if

n ≥ 5, then we interchange the (n+ 2, 3)-entry with the (n+ 3, 2)-entry, the (n+ 3, 3)-entry with the
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(n+ 4, 1)-entry, the (n+ 4, 3)-entry with the (n+ 5, 2)-entry, the (n+ 5, 3)-entry with the (n+ 6, 1)-

entry, etc., up to interchanging the entry in the (2n− 3)-th row with the entry in the (2n− 2)-th row.

Again, it is easy to see that each interchange increases e(1) by 2. Thus

{4n+ 2 + 2k | 1 ≤ k ≤ 2n− 5} ⊆ a(C3 × P2n).

Let p be the labeling whose matrix representation is given by

1 0 1

0 1 0

1 0 1

0 1 0
...

1 0 1

0 1 0


.

For 1 ≤ k ≤ n + 2, shift consecutively the k-th row to the right by 1 unit if k is odd, and to the left

by 1 unit if k is even. It is easy to see that each shift decreases e(1) by 2. The resulting labeling is

denoted by pk and let p0 = p. Thus

{10n− 3− 2k | 0 ≤ k ≤ n+ 2} ⊆ a(C3 × P2n).

By swapping the (2n− 1, 3)-entry and (2n, 3)-entry of pk for 0 ≤ k ≤ n+ 2, it decreases e(1) by 1.

So we get

{10n− 4− 2k | 0 ≤ k ≤ n+ 2} ⊆ a(C3 × P2n).

The theorem follows from considering all the above cases. �

Theorem 5.6. For n ≥ 2, a(C3 × P2n+1) = [5, 10n+ 2].

Proof. By Theorem 2.1 and (2) of Theorem 2.2 we have 10n+ 2 ≥ eφ(1) ≥ 5 for any friendly labeling

φ of C3 × P2n+1.

Let f =


Jn,3

1 0 0

On,3

. Then f is friendly and ef (1) = 5. Interchanging the (n− i+ 1, 3)-entry with

the (n+ i+ 1, 1)-entry for 1 ≤ i ≤ k for each k (1 ≤ k ≤ n− 1). The resulting labeling is denoted by

fk. We see that {4k + 1 | k ∈ [1, n]} ⊆ a(C3 × P2n+1).

Let g, h and ` be labelings of C3 × P2n+1 whose matrix representations are given by

g =

1 1 0

Jn,3

On,3

 , h =


1 1 1

1 1 0

Jn−1,3

On,3

 , ` =


1 1 0

1 1 0

Jn−1,3

On,3

 .
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Note that g, h and ` are friendly, and eg(1) = 6, eh(1) = 7 and e`(1) = 8. For the labeling g,

interchange the (k, 3)-entry with the (n + k, 3)-entry consecutively for 2 ≤ k ≤ n. The resulting

labeling is denoted by gk. It is easy to see that each interchange increases e(1) by 4. Thus

{6 + 4k | 0 ≤ k ≤ n− 1} ⊆ a(C3 × P2n+1).

For the labelings h and `, interchange the (k, 3)-entry with the (n − 1 + k, 3)-entry consecutively for

3 ≤ k ≤ n if n ≥ 3. It is easy to see that each interchange increases e(1) by 4. Thus

{7 + 4k | 0 ≤ k ≤ n− 2} ⊆ a(C3 × P2n+1).

{8 + 4k | 0 ≤ k ≤ n− 2} ⊆ a(C3 × P2n+1).

Combining the above results, we have [5, 4n+ 2] ⊆ a(C3 × P2n+1).

Consider

fn =


J1,3

A

B

O1,3

 , where A =
(
Jn−1,2 On−1,1

)
, B =

(
Jn,1 On,2

)
.

For k ∈ [2, 2n − 1] \ {n}, shift consecutively the k-th row to the left by 1 unit if k is odd, and to

the right by 1 unit if k is even. Applying this procedure we get

{4n+ 1 + 2i | i ∈ [0, 2n− 3]} ⊆ a(C3 × P2n+1) when n is odd;

{4n+ 1 + 2i | i ∈ [0, 2n− 2]} \ {6n− 1} ⊆ a(C3 × P2n+1) when n is even.

To realize the value 6n−1 for even n, we make a special labeling as follows. Apply the above procedure

up to shifting the (n− 1)-th row, and then shift the n-th row to the right by 1 unit.

Consider the labeling

gn =

(
A

B

)
, where A =

(
Jn,2 On,1

)
, B =


J1,3

On−1,2 Jn−1,2

O1,3

 .

For 1 ≤ k ≤ 2n− 1, shift consecutively the k-th row to the right by 1 unit if k is odd, and to the left

by 1 unit if k is even. It is easy to see that each shift increases e(1) by 2, except shifting the n-th row

and the (n+ 1)-th row which preserve e(1). Thus

{4n+ 2 + 2i | i ∈ [0, 2n− 3]} ⊆ a(C3 × P2n+1).
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Let p be the labeling whose matrix representation is given by



1 0 1

0 1 0

1 0 1

0 1 0
...

1 0 1

0 1 0

1 0 1


.

Similar to the procedure for the matrix p in Theorem 5.5, we have

[8n− 3, 10n+ 2] ⊆ a(C3 × P2n+1).

The theorem follows from considering all the above cases. �

By constructing labelings directly, it is easy to obtain that a(C4×P3) = [6, 16]∪{20}, a(C3×P2) =

{3, 5, 7}, a(C3 × P3) = [5, 12] and a(C3 × P4) = {3} ∪ [6, 17].

We summarize the full friendly index sets of cylinder graphs Cm×P2 for m ≥ 3, Cm×P3 for m ≥ 3,

and C3 × Pn for n ≥ 4, as follows.

Theorem 5.7. The full friendly index set of Cm × Pn is given by

FFI(Cm × P2) = {4i− 3m | i ∈ [2, 3m/2− 2] ∪ {3m/2}} if m ≥ 4 is even.

FFI(Cm × P2) = {4i− 3m+ 2 | i ∈ [2, (3m− 1)/2]} if m ≥ 5 is odd.

FFI(Cm × P3) = {2i− 5m | i ∈ {6, 5m} ∪ [8, 5m− 3]} if m ≥ 6 is even.

FFI(Cm × P3) = {2i− 5m | i ∈ [7, 5m− 2]} if m ≥ 5 is odd.

FFI(C3 × Pn) = {2i− 10n− 3 | i ∈ {3} ∪ [6, 5n− 3]} if n ≥ 4 is even.

FFI(C3 × Pn) = {2i− 10n− 3 | i ∈ [5, 5n+ 2]} if n ≥ 5 is odd.

FFI(C3 × P2) = {−3, 1, 5}.

FFI(C3 × P3) = {2i− 15 | i ∈ [5, 12]}.

FFI(C4 × P3) = {2i− 20 | i ∈ [6, 16] ∪ {20}}.

Together with [10, 11] (the results are listed as follows), the full friendly index set of Cm × Pn, for

all m and n, are completely determined.
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For m,n ≥ 4, FFI(Cm × Pn) is given by{
− 2mn+m+ 2i | i ∈ [2n+ 2, 2mn−m− 4] ∪ {2n, 2mn−m}

}
for m ≥ 2n+ 2 and m,n are even;{

− 2mn+m+ 2i | i ∈ [m+ 4, 2mn−m− 4] ∪ {m+ 2, 2mn−m}
}

for m ≤ 2n− 2, m is even and n is odd;{
− 2mn+m+ 2i | i ∈ [2n+ 2, 2mn−m− 4] ∪ {2n, 2mn−m}

}
for m ≥ 2n and m is even and n is odd;{

− 2mn+m+ 2i | i ∈ [m+ 4, 2mn−m− n] ∪ {m}
}

for m ≤ 2n− 3, m is odd and n is even;{
− 2mn+m+ 2i | i ∈ [m+ 2, 2mn−m− n] ∪ {m}

}
for m = 2n− 1 and n is even;{

− 2mn+m+ 2i | i ∈ [2n, 2mn−m− n]
}

for m ≥ 2n+ 1 and m is odd and n is even;{
− 2mn+m+ 2i | i ∈ [m+ 4, 2mn−m− n] ∪ {m+ 2}

}
for m ≤ 2n− 3 and m,n are odd;{

− 2mn+m+ 2i | i ∈ [2n+ 1, 2mn−m− n]
}

for m ≥ 2n− 1 and m,n are odd.
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