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ABSTRACT 
 

This paper explores the use of artificial neural networks in predicting the failure load of 
castellated beams. 47 experimental data collected from the literature cover the simply 
supported beams with various modes of failure, under the action of either central single load, 
uniformly distributed load or two-point loads acting symmetrically with respect to the center 
line of the span. The data are arranged in a format such that 8 input parameters cover the 
geometrical and loading properties of castellated beams and the corresponding output is the 
ultimate failure load. 

A back-propagation artificial neural network is developed using Neuro-shell predictor 
software, and used to predict the ultimate load capacity of castellated beams. The main 
benefit in using neural network approach is that the network is built directly from the 
experimental or theoretical data using the self-organizing capabilities of the neural network. 
Results are compared with available methods in the literature such the Blodgett’s Method 
and the BS Code. It is found that the average ratio of actual to predicted failure loads of 
castellated was 0.99 for neural network, 2.2 for Blodgett’s Method, and 1.33 for BS Code. It 
is clear that neural network provides an efficient alternative method in predicting the failure 
load of castellated beams. 
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1. INTRODUCTION 
 

Castellation is the process of cutting the web of a rolled section in a zigzag pattern. One of 
the halves is then turned for end and welded to the other; this increases the depth (h) of the 
original beam by the depth of the cut (d), Ref. [1]. The shape of the castellated beam is 
shown in Figure 1. This shape fits the dictionary definition of castellated as “castle-like” or 
battlemented. 
 
Historical Development 
Castellated beams appear to have been first used in 1910, Ref. [2]. Known initially as the 
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“Boyd beam”, these products were first marketed in the United Kingdom in the early 1940s. 
Boyd’s patent specification discussed various geometries of castellation, and his beam type 
was later adopted as the standard castellated beam geometry in the United Kingdom. 

 

 

Figure 1. Castellation process 

 
The Litzka castellation process was developed by Litzka Stahlbau of Bavaria [1,3,4]. 

They also produced a variation on the standard castellated beams, where the depth of section 
was increased by the provision of increment plates. The end product is characterized by 
octagonal rather than hexagonal openings and is known as the Litzka beam or the extended 
castellated beam. 

 
Advantages of Castellated Beams 
The principal advantage of castellation is the increase in vertical bending stiffness; 
castellated beams have proved to be efficient for moderately loaded longer spans where the 
design is controlled by moment capacity or deflection. Castellated beams, because of their 
high strength-to-weight ratios and their lower maintenance and painting costs, can 
sometimes advantageously replace built-up girders. Numerous examples may be seen of the 
application of castellated beams as either secondary or main units in light to medium 
constructions for medium to long spans. 

They are used in multi-storey buildings, commercial and industrial buildings warehouses, 
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and portal frames. Incidental benefits are their attractive appearance and the possible 
utilization of the web openings as passages for services. The latter leads to useful savings in 
the overall heights of multi-storey structures. 

 
Disadvantages of Castellated Beams  
Due to the presence of the holes in the web, the structural behavior of castellated beams will 
be different from that of the plain webbed beams. Because of different possible modes of 
failure or even new modes also, they are highly indeterminate structures, which are not 
susceptible to simple methods of analysis. The shear capacity of the web posts is a limiting 
factor, and castellated beams are not appropriate for short heavily loaded spans. Shear 
deformations in the tees are significant and the analysis of deflections is more complex than 
for solid-web beams.  The re-entrant corners at the openings give rise to stress 
concentrations and limit the usefulness of castellated beams in situations where dynamic 
effects are severe. 

 
 

2. ANALYSIS AND DESIGN OF CASTELLATED BEAMS 
 

The geometry of a castellated beam is dictated by three parameters such as the cutting angle 
φ, the expansion ratio α, the welded length c as shown in Figure 2. 

  

 

Figure 2.  Castellated beam 

 
Cutting angle φ 
The cutting angle influences the number of castellation N per unit length of the beam. N is 
small when the angle is flat and large when it is steep. Tests have shown that while an 
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increase in N has little effect on the elastic stiffness of a castellated beam, it considerably 
enhances the ductility and rotation capacity, current practice shows that the adoption of the 
60° angle is an effective industry standard [1]. 
 
Expansion ratio α 
The expansion ratio is a measure of the increased depth achieved by castellation. In theory 
the original beam depth could almost double, but the overall depth of the tees is a limiting 
factor. If tees are very shallow, they will fail by Vierendeel bending over the span ‘c’. 

In practice the depth of cut ‘d’ is half the serial depth hs of the section. Thus 
 

 
4

h
h s

T = , h
2
h

h s
C +=  ,   5.1  

h
h

α C ≈=  (1)  

                          
For 60o cutting angle it becomes 
 

 S
S  h289.0   

3
 h5.0

α ==  (2) 

 
Welding length c 
If the welded length is too short, then web weld will fail in horizontal shear, and too long 
welded lengths gives long tees which may fail in Vierendeel bending, so reasonable balance 
between these two failure modes is c=hs/4 [5 ]. 

In spite of the extensive literature on castellated beams [1-8] there is little in the way of 
firm design recommendations in codes of practice, and steel handbook usually lists the 
section properties. Load tables have been published based on elastic analysis, but are valid 
only for simple spans and uniform systems of loading. Thus castellated beams of major 
structures are sometimes subject to proof loading before delivering. Their experimental 
behavior has demonstrated the need to treat them as structures, in which the strengths of the 
component tees and web posts must be carefully assessed.  

 
Failure modes 
Seven potential failure modes are associated with castellated beams and are of two different 
categories: 

 
1. Formation of a flexure mechanism. 
2. Lateral–torsional buckling of the entire beam. 
3. Formation of Vierendeel mechanism. 
4. Rupture of the welded joint in a web post. 
5. Shear bucking of a web post. 
6. Compression buckling of a web post. 
7. Compression buckling of a tee. 
 
Modes 1and 2 are similar to the corresponding modes for solid-web beams and may be 
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analyzed in almost identical fashion. Modes 3 to 7 are peculiar to castellated beams, in that 
they are associated with the tees and web posts that bound the openings. Although there is 
an obvious relationship between mode 4 and the shear failure of a solid web and between 
mode 6 and the buckling of such a web, it has generally been necessary to develop new 
analytical techniques for 3 to7. The detailed explanations of these failure modes are given in 
[8-13]. 

 
Prediction of Failure Loads  
Number of methods exist in literature for the prediction of the failure loads of castellated 
beams, the most accurate among these, which are selected and used in this study for the aim 
of comparing results from the neural network are outlined in the following. 

 
Blodgett‘s Approach 
It was found that the failure load predicted by using a column in compression approach 
adopting Blogett’s force distribution model and an effective length factor K=0.5 provided 
good agreement with the experimental results [4]. The proposed formula is  
 
 wc tSF2=uP  (3) 
 

Where Pu is the ultimate capacity of beams, Fc is the maximum permissible compressive 
stress, S is the length of the web weld joint, tw is the thickness of web. This approach treats 
the web post as a column having a width equal to the narrowest width of the webs, a length 
equal to the clear height of the castellation and a thickness equal to the web thickness. 

On the basis of the similarity in proportions between sections of the standard British 
module a simplified version of this approach using an average compressive strength of about 
160 MPa has been suggested by Okubo and Nethercot  [11], leading to 

 
 w

3 tS10x160 −=uP  (4) 
 

For the most extreme geometries this can overestimate the strength by up to 14% or be 
conservative by up to 25%. 

 
British Standards         
The recommended formula in the code is given in BS 449, Clause 28a, which is for 45o 
dispersion angle is 
 
 BtFFS wC=uP  (5) 
 

Where, Pu is the ultimate failure load, FS is the factor of safety taken as 1.7, Fc is the 
maximum permissible compressive stress, tw is the thickness of the web, and B is the 
effective width of web in bearing. It was reported by Okubo and Nethercot [11] that 
test/code ratios were conservative with a mean test /code ratio of 1.327. 

The application of BS 449 to castellated beams requires a consideration of width to 
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thickness ratios so that the section can be correctly classified for local buckling. The rules 
specifically apply only to sections castellated to the profile normally adopted in the U.K, 
although many of the rules may well apply to other types of sections they have not been 
fully proved to the code writers, this is especially true with unrestrained beams [5]. 

 
 

3. ARTIFICIAL NEURAL NETWORKS 
 

Artificial Neural Network is a system that mimics the human brain and therefore a great deal 
of the terminology is borrowed from neuroscience. The most basic element of the human 
brain is a specific type of cell, which provides us with the abilities to remember, think and 
apply previous experience to our every action. These cells are known as neurons as shown in 
Figure 3, each of these neurons can connect with up to 200,000 other neurons. The power of 
brain comes from the numbers of these basic components and the multiple connections 
between them [15-22]. 
 

 

Figure 3. A biological neuron and its components 

 
All natural neurons have four basic components, which are dendrites, soma, axon, and 

synapses. Basically a biological neuron receives inputs from other sources, combines them 
in some way, performs a generally nonlinear operation on the result, and then output the 
final result [17-19]. Artificial Neural Network attempts to simulate the multiple layers of 
simple processing elements called neurons. Each neuron is linked to certain of its neighbors 
with varying coefficients of connectivity that represent the strengths of these connections. 
Learning is accomplished by adjusting these strengths to cause overall network to output 
appropriate results.  

A trained network presents some distinct advantages over the numerical computing. It 
provides a rapid mapping of a given input into the desired output quantities. The other 
important advantage of neural networks is either correct or nearly correct responses to the 
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incomplete tasks, their extraction of information from noisy or poor data and their 
production of generalized results. 

This makes neural networks a very powerful tool to solve many civil engineering 
problems, particularly in the problems which data maybe complex or in insufficient amount. 

 

 

Figure 4. A processing unit 

 
There are several important neural network models such as Hopfield net, Hamming net, 

Single-layer preceptor and Multi-layer network [20]. The most important and powerful nets 
are multi-layer networks that have been developed from single layer networks; most multi-
layer networks have a learning algorithm called back propagation. This method involves 
sending the input forward through the network and then comparing the output with the 
required training pattern output, if differences exist, a set of changes are applied to the 
weighted factors in a back propagation manner. 

The processing units in back propagation neural networks always consist of a least three 
layers; an input layer, a hidden layer, and an output layer, as illustrated in Figure 5. 

 

 

Figure 5. Topology of back propagation network with hidden layers 
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For some applications more than one hidden layer is used. The presence of these hidden 
layers allow the network to present and compute more complicated associations between 
patterns. The number of neurons in the input layer is equal to the number of inputs and each 
of these neurons receives one of the inputs. The output of the neurons in the output layer is 
the output of the network, and too few neurons in hidden layer will not allow the network to 
produce accurate maps from the input to the desired output, while too many neurons will 
result difficulties in dealing with new types of input patterns. 

In a back propagation network, no interconnections between neurons in the same layer 
are permitted. The back propagation network uses supervised learning so the input and 
output patterns must be both known. 

In feed forward phase, the input layer neurons pass the input pattern values onto the 
hidden layer. Each of the hidden layer neurons computes a weighted sum of its input, and 
passes the sum through its activation function and presents the activation value to the output 
layer. Following the computation of a weighted sum of each neuron in the output layer, the 
sum is passed through its activation function, resulting in one of the output values for the 
network. Finally the training process is successfully completed when the iterative process 
has converged. 

 
Basics of Neural Computing  
The processing element receives a set of inputs xi = 1, 2, 3, ….n. These inputs are similar to 
electro-chemical signals received by a neuron in a biological model, then these input signals 
are multiplied by the connection weight wij, and the effective input to the element is the 
weighted sum of the inputs: 
 

 .∑
=

=
n

1i
iij xwz  (6) 

 
In order to obtain an output signal, the weighted sum of inputs are processes by an 

activation function F(z). Various forms of activation functions have been proposed. The 
ones most commonly used are a simple linear function, a threshold function, and a sigmoid 
function. The sigmoid function given by the expression: 

 

 ( ) ,TZ-e1
1F(z)

++
=  (7) 

 
where Z is the weighted input and T is a bias parameter. The advantage of this function is its 
ability to handle both large and small input signals. 

The output obtained from the activation function may be treated as an input to other 
neurons in the network. The determination of the proper weighted coefficients and bias 
parameter are embodied in the network learning process which is an error minimization 
problem, the output obtained from the network is compared to the actual output, and the 
error E is computed as follows: 
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 )Y(TE iii −=  (8) 
 
Where Ti is target output of neuron i, Yi is actual output of neuron i. After obtaining the 

error Ei , the error signal is multiplied by the derivative of the activation function for the 
neuron in question to obtain the delta signal, which is employed to compute the changes for 
all the weight values according to equation (12). 

 

 i
ki,

ki, E
z
Y
∂

∂
=δ  (9) 

 

Where, the subscripts i and k denote the ith neuron in the output layer k. Note that the 
derivative of the output Yi of the sigmoid function is obtained as follows: 

 

 ( )ii
i Y1Y
z
Y

−=
∂
∂

 (10) 

 
The strength of connections between all neurons in the preceding hidden layer to the ith 

neuron in the output layer are adjusted by an amount ∆wpi,k as follows:  
 

 pjki,kpi, Yδη∆w =  (12) 

 
Where, Ypj denotes the output of neuron p in the hidden layer j immediately before the 

output layer, ∆wpi,k is the change in value of the weight between neuron p in the hidden layer 
to neuron i in the output layer k, and η denotes a learning rate coefficient (typically selected 
between 0.01 and 0.9). 

Rumelhart and McClelland [20] presented a modification to the approach by including a 
“momentum” term as follows: 

 
 t

kpi,jp,ki,
1t
kpi, ∆wαYδη∆w +=+  (13) 

 
Where, superscript t denotes the cycle of weight modification. The inclusion of the α 

term, which seeks to incorporate a memory in the learning process, increases the stability of 
the scheme, and helps to a degree in preventing convergence to a local optimum. 

This basic approach described above is applicable in the modification of weights in other 
hidden layers with some changes. The output of hidden layers cannot be compared to a 
known output to obtain an error term. Hence the procedure used is as follows: The δs and ws 
are used to generate the δs for the hidden layer immediately preceding the output layer as 
follows: 

 
 ( )∑′= kpi,ki,jp,jp, wY δδ  (14) 
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Where, δp,j is the δ corresponding to the pth neuron in the hidden layer, and Y’p,j is the 
derivative of the activation function of this neuron. Once the δs corresponding to this hidden 
layer are obtained, the weight connections of the next hidden layer are modified. This 
process is repeated for all input training patterns until the desired level of error is attained.  

In general, designing a neural network consists of: 
• Arranging neurons in various layers. 
• Deciding the type of connections among neurons for different layers. 
• Deciding the way a neuron receives input and produces output.  
• Determining the strength of connection with the network. 
 
 

4. EXPERIMENTAL DATA 
 

The experimental data collected from literature include 47 castellated beam results, which 
are taken from the tests carried out by Okubo and Nethercot [11], Aglan and Redwood [2], 
Van Ostrom and Sherbourne [12], Hosain and Speirs [10], Redwood and Demirjian [9], 
Maalek and Buredin [14] and Sherbourne and Van Ostrom [6]. All beams tested are of 
standard British castellated beams with various modes of failure, under the action of, either 
central single load, uniformly distributed load or two-point loads acting symmetrically with 
respect to the center line of the span. All specimens were simply supported, laterally braced 
at load points and at reaction points.  The basic parameters that control the failure load based 
on previous research works are: 

 
• Minimum web yield stress (Fyw) 
• Span of the castellated beam (L) 
• Overall depth (hc) 
• Minimum width of the web post S = 0.25 Ds 
• Web thickness (tw) 
• Flange thickness (tf) 
• Width of flange (B) 
• Loading condition 
 
The data were grouped into two subsets, a training set of 40 data, and a testing set of 7 

data. Each set of experimental data was in a different format. After a study of the tables and 
diagrams given in the above references, the data are rearranged in a way that the basic 
parameters that control the ultimate failure load of castellated beams are listed as inputs and 
the corresponding ultimate failure load as an output value. 
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Table 1.  Experimental data for failure load of castellated beams 

Specimen
No. 

Loading  
Condition 

Fyw 
(Mpa)

hc 
(mm)

B 
(mm)

tw 
(mm)

tf 
(mm)

S 
(mm)

L 
(m) 

Pexp 
(KN) 

1 3 230 280 100 10.8 5.7 40 3.33 194.1 

2 2 352.9 380.5 66.9 3.56 4.59 66.55 1.22 92.7 

3 1 352.9 380.5 66.9 3.56 4.59 66.55 1.22 100.9 

4 1 352.9 380.5 66.9 3.56 4.59 66.55 1.83 94.8 

5 1 352.9 380.5 66.9 3.56 4.59 66.55 2.44 84.4 

6 2 355 693.7 153.5 11.7 11.7 114.3 2.5 1300 

7 1 290 524.3 124.4 7.02 10.73 176 1.35 280 

8 1 290 524.3 124.6 7.04 10.7 179 2.6 275 

9 1 294.7 524.8 124.4 7.03 10.79 180 2.6 280 

10 1 294.7 524.1 124.3 7.07 10.73 177 1.35 240 

11 1 295.5 526.1 124.7 7.08 10.77 176 1.35 260 

12 1 295.5 526.7 124.7 7.08 10.68 176 2 232 

13 1 293.2 606.2 145.6 7.31 11.4 200 1.5 280 

14 1 277 605.5 145.4 7.3 11.34 203 1.6 288 

15 1 277 605.5 143.3 7.27 11.25 199 1.5 253 

16 1 293.2 603.6 143.7 7.28 11.27 196 1 226 

17 1 290.8 451.4 123.9 7.51 10.7 150 1.15 275 

18 1 297.3 450.3 123.4 7.54 10.68 150 1.15 279 

19 1 290.3 451.8 123.4 7.55 10.72 150 2.14 285 

20 1 290.8 451.6 124.1 7.62 10.66 146 2 280 

21 1 304 459.6 103 7.15 10.7 157 2.3 273 

22 1 304 460.4 103.1 7.21 10.73 143 1.1 267 

23 3 292.8 381 101.6 5.84 6.83 127 1.8 186 

24 3 292.8 381 101.6 5.84 6.83 101.6 2.4 89 

25 1 438 381 101.6 5.84 6.83 165.1 3.5 277.2 
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Specimen
No. 

Loading  
Condition 

Fyw 
(Mpa)

hc 
(mm)

B 
(mm)

tw 
(mm)

tf 
(mm)

S 
(mm)

L 
(m) 

Pexp 
(KN) 

26 3 335 381 101.6 5.84 6.83 165.1 1.75 310.3 

27 3 335 381 101.6 5.84 6.83 165.1 1.6 358.6 

28 1 335 381 101.6 5.84 6.83 127 1.6 290 

29 1 335 381 101.6 5.84 6.83 127 2.4 303.4 

30 1 320 381 101.6 5.84 6.83 44.45 3 265.5 

31 1 320 381 101.6 5.84 6.83 34.93 3 269 

32 1 395 381 101.6 5.84 6.83 28.58 3 352 

33 3 335 381 101.6 5.84 6.83 101.6 1.37 300 

34 3 335 381 101.6 5.84 6.83 89 1.3 295 

35 1 335 229 76.2 5.84 9.58 38.1 1.32 117.6 

36 3 335 229 76.2 5.84 9.58 38.1 1.32 137.2 

37 3 320 229 76.2 5.84 9.58 38.1 1.32 147 

38 3 320 229 76.2 5.84 9.58 38.1 1.15 196 

39 1 335 500 150 7.1 10.7 100 5.8 73.5 

40 1 335 440 150 7.1 10.7 70 5.8 145 

41 1 320 380 150 7.1 10.7 40 5.8 176.5 

42 3 292.8 381 101.6 5.84 6.83 88.9 2.5 89 

43 3 292.8 266.7 101.6 6.35 9.83 44.5 1.5 113.7 

44 2 292.8 381 114.3 7.62 12.83 63.5 1.6 299 

45 3 292.8 381 127 9.14 14.02 63.5 1.8 249.1 

46 3 292.8 381 203.2 10.16 19.89 63.5 1.3 310.5 

47 3 292.8 342.9 117.8 10.16 20.96 57.15 1.3 279.6 

 
Table 1 shows the experimental data for failure load of castellated beams. The first 8 

columns represent the loading condition, the minimum web yield strength, the overall depth, 
flange width, web thickness, flange thickness, minimum width of the web post, and finally 
the span. The last column is the output, which is the failure load of the castellated beams. 
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Network Data Preparation 
Preprocessing the data by scaling was carried out to improve the training of the neural 
network to avoid the slow rate of learning near the end points specifically of the output 
range due to the property of the sigmoid function, which is asymptotic to values 0 and 1. 
The input and output data were scaled between the interval 0.1 and 0.9. The linear scaling 

equation: 






 −
+






=

∆
x8.09.0

x
∆
8.0y max

min was used in this study for a variable limited to 

minimum (xmin) and maximum (xmax) and ∆ = xmax - xmin. 
Each specimen was classified according to the loading location, number 1 was given to 

specimens which were loaded by single central loading, number 2 for specimens which were 
loaded by two-point loads acting symmetrically with respect to the center line of the span, 
and finally number 3 for uniformly distributed loads. This classification was added to the 
inputs after scaling.   

 
 

4. NEURO SHELL PREDICTOR AND DESIGN OF THE NEURAL 
NETWORK 

 
The software used is The Neuro Shell ® predictor, which is designed to simplify the 
creation of a neural network application to solve forecasting and pattern recognition 
problems. To train the neural network using the experimental data, a three layer neural 
network was developed using the back propagation-learning algorithm. This training is done 
to adjust the weights connecting the input layer neurons, hidden layer neurons, and output 
layer neurons so that a set of inputs produces the desired outputs. Several trials were 
conducted to select the simplest, most accurate network configuration. The number of input 
neurons were fixed but hidden neurons number changed from one trial to another and the 
performance of the different configurations were compared with respect to the net 
performance, average error and net performance on testing set. After artificial neural 
simulations with varying number of hidden nodes, a neural network was selected based on 
comparison of the average error obtained. The results show three trials with different level 
of learning, average error and net performance. 
 
Neural Training Strategy Statistics 
• Best network performances: The value for network performance ranges from 0 to 1. The 
closer the value is to 1, the better the net is able to make predictions. The net is not able to 
make good predictions if the value is near 0. 
• Number of hidden neurons trained: Training the net involves adding hidden neurons 
until the net is able to make good predictions. 
• Optimal number of hidden neurons: This is the number of hidden neurons that best 
solves the prediction problem. 

 
Net Performance on Testing Set 
The Neuro Shell® predictor shows a graph that indicates the learning progress by hidden 
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Neurons. This graph shows the progress of the network training performance against an 
increasing number of hidden neurons as they are added to the network. This gives a 
statistical measure of the goodness of fit between the actual and predicted outputs. This 
measure, called R-squared (the coefficient of multiple determination) on the graph is 
performed each time a hidden neuron is added, as learning gets better and better the graph 
shows higher and higher values. 

 
4.3 Artificial Neural Network Designed by Neuro Shell Predictor 
The neural network developed by Neuro Shell® predictor which is used in predicting the 
failure load of castellated beams is shown in Figure 6. 

 

Figure 6. The best neural network model 

 
For obtaining the best experimental data arrangement nine trials were tried by swapping 

the rows shown in Table 1 once at a time and run the Neuro Shell® predictor software each 
time a swap was made. The best arrangement, however, is the one that gives the highest 
network performance of the tested data and the least average error. Arrangement and rows 
swapping is necessary because network performance is a function of how the rows are 
arranged. The performance of the best model is presented through Figures 7 to 9.  
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Figure 7. Actual scaled values of failure loads against the predicted ones  

 

 

Figure 8. Progress of the network training performance with the number of hidden neurons 

 

 

Figure 9. The significance of each input in predicting the output values of the best model 

 
As shown in Figure 6 the best performed artificial neural network model has 8 input 
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nodes, 30 hidden neurons, and one output node representing the failure load. The best 
network performance obtained is 0.9976. Actual values vs. predicted ones is shown in 
Figure 7, they are very close in all trained data rows, which is an indication of how good the 
training is. The neural network had the best performance using 30 hidden neurons, which is 
the optimum number of neurons. As shown in Figure 8 the learning progress of hidden 
neurons reached the maximum value of 1 at 21 hidden neurons.  

Figure 9 shows the relative importance of each input parameter. It is noticed that the 
importance of inputs is distributed such that each input contributes significantly in the 
prediction of the output, which agrees with the design methods of castellated beams.  

 
 

5. ANALYSIS OF RESULTS 
 

There are number of design approaches that can be used in predicting the failure load of 
castellated beams such as Blodgett’s approach, BS code approach, Roberts and Markovic 
approach, elastic analysis for plate elements approach, in elastic analysis for plate elements 
approach and Rotherdam tests [3-6]. Among these approaches Blodgett’s and BS code were 
selected to perform a comparative study. Other methods are not selected due to the fact that 
either they require additional information that was not available in the experimental data or 
they are very sensitive to patch length or they were very conservative.  

The results obtained from the Blodgett’s approach, the BS code and the Neural Network 
developed by using the Neuro Shell predictor are shown in Figures 10, 11 and 12. It is clear 
from the results that both the BS code and Blodgett’s approach are quite conservative in 
predicting the actual failure load. The average ratio of actual failure load to predicted failure 
load of all specimens is 1.33 in the British Standards Code method, 2.2 in Blodgett’s 
approach and 0.99 in the Neural Network. 
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Figure 10.  Comparison of ultimate failure loads of castellated beams obtained by BS Code 
method 
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Figure 11. Comparison of ultimate failure loads of castellated beams obtained by Blodgett’s 
approach 

0

100

200

300

400

500

0 100 200 300 400 500
Predicted Failure Load in KN

A
ct

ua
l F

ai
lu

re
 L

oa
d 

in
 K

N

 

Figure 12. Comparison of ultimate failure loads of castellated beams obtained by neural network 

 
The neural network developed is used together with Blodgett’s method and BS code 

method to obtain the failure loads of seven castellated beams reserved for testing that are not 
employed in training. The results obtained are given in Table 2.  The average ratio of actual 
failure load to predicted failure load in this set of data is 1.35 for the BS code, 1.8 for 
Blodgett’s approach and 0.99 for the Neural Network. These values clearly show that the 
Neural Network performs much better than the methods selected in this study.   
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Table 2.  Performance of Selected Methods for Predicting Ultimate Failure  
Load of 7 castellated Beams 

 Actual Failure  Load/Predicted Failure Load 

Specimen 
number 

BS method Blodgestt’s 
Approach 

Neural Network 

45 1.40 1.5 1.10 

46 1.40 0.93 1.27 

47 1.39 2.2 0.90 

1 1.33 2.0 0.65 

2 1.33 2.3 0.75 

3 1.32 2.1 1.10 

4 1.30 1.5 1.15 

Average 1.35 1.8 0.99 

 
 

6. CONCLUSIONS 
 

It has been shown that artificial neural networks can effectively be used to predict the failure 
loads of castellated beams. It has also been shown that the network designed predicted the 
outputs with acceptable accuracy, covering the range from shallow to larger depth of 
castellated beams. It should be noted that once the network was trained, the time required to 
output results for a given set of inputs was instantaneous. This indicates the potential of 
neural networks for solving time-consuming problems. Furthermore,  artificial neural 
networks directly use the experimental results in training, there is no need to make any 
assumptions on material parameters particularly in problems that have more than one 
existing calculation method, or the one based on only empirical approximations. 

For selecting the best configuration of the networks, there are no special guidelines, and 
trial and error approach should be employed that takes into consideration the best network 
performance, average error and the best network performance for the testing data. Among 
the number of configurations tried it is found that a network with a  network performance of 
0.9976 and an average error of 0.018 is the best. 

In the comparative study it is found that the failure load values obtained from the 
artificial neural network are much more accurate than those determined from British 
Standards Code or the Blodgett’s approach. Although the average value of the ratio of actual 
failure load to the predicted failure load was 1.33 in the BS code 2.2 in the Blodgett’s 
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approach it was only 0.99 in the Neural Network. These average ratios change to 1.35, 1.81 
and 0.989 respectively, when the methods are employed for seven castellated beams that are 
not used in training the network. These results clearly demonstrate the accuracy and 
efficiency of the trained neural network in predicting the failure load of castellated beams 
over the other two methods. 

Artificial neural networks give better results if the number of the training data is large. 
However, collecting this data for castellated beams is difficult because little experimental 
study exists in the literature. Therefore, the present artificial neural networks model can 
further be improved using more experimental dataset. 
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