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ABSTRACT 
 

A numerical experiment using the finite element method to show that the nondimensional 
dynamic buckling pressure of deep elastic isotropic clamped perfect spherical caps subjected 
to suddenly applied uniform pressure is represented by a function of the geometric 
parameter and the thickness to radius ratio of caps. Three definitions of geometric parameter 
are considered. The effects of material properties are also taken to consideration. 
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1. INTRODUCTION 
 

The analysis of axisymmetric dynamic snap-through of elastic clamped shallow spherical 
shells has been reported in a large number of research papers. The most important pioneers 
in this branch of study are Budiansky and Roth [1] who proposed a criterion to predict the 
dynamic buckling pressure of shallow spherical shells. Later then, the study in this topic has 
received considerable attention. Important papers are Simitses [2], Huang [3], Stephens and 
Fulton [4], Ball and Burt [5], and Stricklin and Martinez [6]. Also, experiments have been 
performed and reported by Lock et al. [7] and Humphreys et al. [8]. Reviews on the subject 
have been given by Ball [9] and Holzer [10]. 

To the authors’ knowledge, most of the researches in this topic for the case of isotropic 
shells are based on thin shell theory together with shallow shell assumptions. So the 
applicable range of the existing solution is limited by the assumptions used in shallow thin 
shell theory. In those research papers, the nondimensional dynamic buckling pressure, pcr is 
considered to be a function of the geometric parameter, λ only. However, a question arises 
here that if we use the finite element method, do two caps having the same value of λ but 
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very different geometrical aspects still have the same value of pcr? There are three objectives 
in the present study. First, to approve the suitability of considering that pcr is a function of λ 
only. Second, to study the effect of using different definitions of λ. Three definitions of λ are 
taken to consideration. Third, to study the effect of material properties on pcr. These works 
are done by doing a large number of numerical examples using the finite element method. 
Because the caps in our study have a wide range of geometrical aspects ranging from thin to 
thick and from shallow to deep, then thin shell finite element is not adopted in this study. 
Instead, we use 4-noded quadrilateral axisymmetric finite element based on large-
deformation elasticity theory.  

   To avoid programming errors, the authors choose to not invent our own finite element 
program. The world-wide used and highly reliable finite element software ANSYS is used 
throughout this study. 

 
 

2. COMPUTATIONAL PROCEDURE 
 

2.1 Problem description 
A clamped spherical cap with central height H, base radius a, semi-angle α, and uniform 
thickness h, under a suddenly applied uniform pressure q acting on its top surface as shown 
in Figure. 1 is taken to consider. Many research papers (e.g. [1], [3]) have used two 
approximations related to the geometry of caps. One is that the undeformed shape of the cap 
is described by parabolic relationship 
 
 ( )[ ]22

0 a/r1Hz −=  (1) 
 

where r is the radial coordinate. The other approximation is that the radius of the cap is 
expressed approximately as 
 
 H2/aR 2=  (2) 

 

 

Figure 1. Geometry of clamped spherical cap 
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However, in this study we do not use these approximations. Our geometrical model is 
exactly circular arc, not parabola, so R is expressed by 

 
 ( ) H2/HaR 22 +=  (3) 

 
The following dimensionless parameters are used. 
1. geometric parameter; In the present study three definitions of λ are taken to 

consideration. All of them were originally proposed in the study of static buckling of 
spherical caps. The first definition of λ is defined without using shallowness assumptions 
and here we name it λ1, 

 
 ( ) ανλ h/R1124 2

1 −=  (4) 
 
where ν is Poisson’s ratio. The second definition of λ is named λ2 and it is derived from Eq. 
(4) by using a shallowness assumption α<<1 that made Rα Ε a, then 
 
 ( )( )Rh/a1124 2

2 νλ −=  (5) 
 

And the third one named λ3 is from Eq. (5) with the assumption of Eq. (2), then 
 

 ( )( ) 2/14 2
3 h/H132 νλ −=  (6) 

 
To the authors’ knowledge, all research papers in the topic of dynamic buckling of 

spherical caps use only λ3 as the geometric parameter. λ2 is used in some papers in the topic 
of static buckling, e.g. [11]. 
2. nondimensional pressure; 

 
 0q/qp =  (7) 
 
where q0 is the classical static buckling pressure of a complete spherical shell of the same 
radius of curvature and thickness. 
 

 ( )
2

20 R
h

13

E2q 







−
=

ν
 (8) 

 
where E is Young’s modulus. 
3. nondimensional time; 

 

 
ρ

τ E
R
t

=  (9) 
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where t is time and ρ is mass per unit volume. 
 
2.2 Numerical methods 
To avoid any errors that might occur during the programming process, the authors decide to 
use ANSYS. The program contains many features to deal with geometric nonlinearity. 

1. finite element : We use the 2D 4-noded quadrilateral elements (PLANE42). The 
element is used as an axisymmetric element. 

2. transient dynamic analysis : The effect of damping is not included. Then the equation 
of motion of this analysis is 

 
 [ ]{ } [ ]{ } { }FuKuM =+&&  (10) 
 
where [M] and [K] are system mass and stiffness matrices, {u} and {F} are the nodal 
displacement and nodal applied load vectors. The Newmark method is used for time 
integration. 

3. geometric nonlinear analysis : We use the large strain analysis. The Newton-Raphson 
method is employed to solve nonlinear equations. 

4. dynamic buckling criterion : Although criteria for dynamic buckling of spherical caps 
are not well defined, the criterion suggested by Budiansky and Roth [1] is the most widely 
used. The criterion is based on plots of the peak nondimensional average displacement, ∆max, 
of the cap in time history versus the magnitude of the nondimensional load, p. This average 
displacement ∆ has been defined as follows, 

 

 ∫∫=∆
a

0
0

a

0

drrzrwdr  (11) 

 
where w(r,t) is vertical displacement. The load corresponding to a sudden jump in ∆max is 
taken as the dynamic buckling load. Instead of ∆ some of the studies use w at the apex (here 
we give + for w if it points upward and the minimum w is the largest minus w), and plots of 
minimum w at the apex versus the load predict the dynamic buckling load. In this study we 
decided to use w at the apex because after solving some problems we found that both criteria 
lead to the same buckling loads. The criterion of using w at the apex is demonstrated by a 
typical example shown in Figures. 2 and 3. Figure 2 represents the displacement at the apex 
wapex-τ curves for different values of p for a clamped spherical cap of 0.5 mm thickness, 1 m 
radius and λ3=5. A plot of the variation of minimum wapex with respect to p associated with 
Figure. 2 is shown in Figure. 3. A sharp drop at p=0.436 is clear, and according to the 
dynamic buckling criterion described above, this value of p is taken as dynamic buckling 
pressure pcr for this cap. Note that in the present study, the precision of pcr is three 
significant digits while most of other papers consider only two digits. 
 
 

3. NUMERICAL RESULTS AND DISCUSSION 
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First of all, let us set up the criteria to select the number of elements and the time step size. 
The length of calculation time τ is taken as 75 but time may be extended to allow wapex – τ 
curves to fully develop. 

 

 
Figure 2. Variations of w at the apex with time (h=0.5 mm, R=1 m, λ3=5) 

 

 

Figure 3. Decision of dynamic buckling load pcr (h=0.5 mm, R=1 m, λ3=5) 

 
1. time step size: We choose the time step size ∆τ=0.075 for the Newmark time 

integration scheme. However, in the case that caps are very thick that cause divergent in 
equation solving process, we rather use the automatic time stepping ability built in ANSYS. 
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2. number of elements: Because we have to solve a large number of problems of a wide 
range of geometrical sizes, it is the best to use automatic meshing ability. In case of ANSYS 
this can be done by using the command SMRTSIZE,n where n is an integer value from 1 
(fine mesh) to 10 (coarse mesh). In this study, in order to gain results with high accuracy, we 
use SMRTSIZE,1 throughout the study. 

To verify the validity of the numerical method, we compare our results with others for 
the case of thin shallow caps. The results are shown in Table 1. Note that all results in Table 
1 are for ν=0.3 or 1/3. 

 

Table 1. Dynamic buckling pressure pcr for various values of geometric parameter λ3 

λ3 4 5 6 7.5 10 

H/h (Eq. (6), ν=0.3) 2.42 3.78 5.45 8.51 15.13 

Present (h/R=10-4, ν=0.3) 0.439 0.437 0.580 0.440 0.355 

Ganapathi et. al. [12] 0.455 0.460 0.605 0.450 0.495 

Huang [3] 0.45 0.49 --- 0.50 0.42 

Stephens et. al. [4] --- 0.45 0.62 0.44 0.37 

 
According to Table 1, although there are some differences among the literature, the 

present values are in reasonably good agreement with those ones. 
From the results of caps of various depth and thickness, we found that caps of the same λ 

(λ1 or λ2 or λ3) and h/R always have exactly the same value of pcr. That means pcr is a 
function of both λ and h/R. The choice of definition of λ does not change this conclusion. 
Because H/a is a function of λ and h/R, then we can also state that pcr is a function of both λ 
and H/a. The expressions of H/a as a function of λ and h/R are as follows: 
 

From Eq. (4), 

( ) 













−
−

=

R
h

112

5.0
2

tan

1
a
H

4 2
1

ν

λπ
 (12) 

 

From Eqs. (3) and (5), 1DD
a
H 2 −−=  (13) 

Where 
 

 
( )

h
R112

D
2

4 2

λ
ν−

=  (14) 
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From Eqs. (3) and (6), 
( ) ( )

2/1

2
3

2

2
3

1192h/Ra
H















−−
=

λν

λ
 (15) 

 
Furthermore, using the fact that α is a function of H/a, 
 

 ( )a/Htan2 1−=α  (16) 
 
we can also conclude that pcr is a function of h/R and α. 

The results for λ3= 5 are shown in Table 2 and Figure. 4. 
 

 

Figure 4. Variation of pcr for λ�=5 with h/R 

 

Table 2. Dynamic buckling pressure pcr for λ3=5 (ν=0.3) 

h/R (corresponding H/a) pcr h/R (corresponding H/a) pcr 

0.0001 (0.014) 

0.001 (0.044) 

0.01 (0.139) 

0.02 (0.198) 

0.03 (0.245) 

0.04 (0.286) 

0.437 

0.438 

0.445 

0.454 

0.455 

0.446 

0.05 (0.323) 

0.06 (0.358) 

0.07 (0.391) 

0.08 (0.422) 

0.09 (0.453) 

0.450 

0.459 

0.470 

0.503 

0.508 

www.SID.ir



Arc
hi

ve
 o

f S
ID

S. Taeprasartsit 310 

The definition of thin shells is h/R < 0.05 and according to Reissner [13], a spherical shell 
is called “shallow” if H/a ≤ 1/6 (=0.167). Then the first three rows (of the first two columns) 
of Table 2 are for shallow thin caps, the next three rows are for deep thin caps, and the 
remaining rows are for deep thick caps. 

 

 

Figure 5. Variations of pcr for λ = 5 with h/R 

 

 

Figure 6. Variations of semi-angle α for λ =4 and 5 with h/R 

 
Figure 5 shows the results for three definitions of λ = 5. The results for λ2 case are 

evidently apart from the results for the other two cases. This can be explained by 
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considering Figure. 6 as we can see the difference of depth between λ2 case and the other 
two cases. And it should be noted that while λ3 uses more approximation than λ2, its 
corresponding geometry of caps is closer to the one for λ1. As we can see from Figure. 5, for 
λ=5 the choice of λ is almost immaterial in the range of shallow caps, but it becomes 
significant when caps are very deep. In the case of shallow thin caps, the way that all papers 
in the past consider pcr as a function of λ3 only is undoubtedly suitable. However, if we need 
an exact value of pcr for a specific geometry of caps, we should consider pcr as a function of 
both λ and h/R (or H/a). 

 

 

Figure 7. Dynamic response of λ3=3.5 caps (h=0.1 mm, R=1 m) under p=0.43 

 

 

Figure 8. Dynamic response of λ3=3.5 caps (h=0.1 mm, R=1 m) under p=10 
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Next, let us consider the case of λ = 4. As well known, for small values of λ, say λ<4, the 
vibrating behavior of caps is close to circular plate. Figures 7 and 8 show the wapex-τ graphs 
for λ3=3.5 under moderate and very large pressure, respectively. From those figures, we can 
conclude that the sudden drop of the minimum wapex does not occur for those caps of small 
values of λ. Under very large pressure, caps only vibrate at higher amplitude and frequency. 
In case of λ3 = 4 caps, see Figures. 9 and 10, we find that their behavior is between the two 
in Figures. 2 and 7. That is although the sharp drop of the minimum wapex in a time interval 
still occurs, it is quite not clear, especially in Figure. 10. This causes difficulty in using the 
Budiansky-Roth criterion. This behavior occurs for all λ1, λ2 and λ3=4 caps, no matter h/R is. 
Figure 11 shows the results of pcr for three definitions of λ = 4. Again, the results for λ2 case 
are apart from the results for the other two cases. 

 

 

Figure 9. Dynamic response of λ3=4 caps (h=0.1 mm, R=1 m) 

 

 

Figure 10. Dynamic response of λ3=4 caps (h=60 mm, R=1 m) 
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Figure 11. Variations of pcr for λ = 4 with h/R 

 

 

Figure 12. Variations of pcr with respect to ν 

 
Finally, we do some calculation to investigate the effect of material properties on pcr. The 

material properties related in this study are E, ρ and ν. We found that E and ρ do not affect 
pcr whereas ν greatly affects pcr. Note that all results presented above are for E=193 GPa, 
ρ=8000 kg/m3, ν=0.3. The relation between pcr and ν is nearly linear in the range 0.2≤ν≤0.4 
as shown in Figure. 12 for two examples of geometry of caps. 
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4. CONCLUSIONS 
 

By using the finite element method based on large-deformation elasticity theory to study the 
behavior of axisymmetric dynamic buckling of elastic clamped spherical caps, the following 
conclusions can be drawn: 

1. No matter which definition of geometric parameter λ in Eqs. (4)-(6) we use, the 
nondimensional dynamic buckling pressure pcr is truly a function of λ and the thickness to 
radius ratio h/R (or the central height to base radius ratio H/a). To avoid using λ, we can also 
state that pcr is a function of h/R and semi-angle α. 

2. At given values of λ and h/R, using different definitions of λ gives us caps of different 
depth. Although λ3 uses more approximation than λ2, its corresponding geometry of caps is 
closer to the geometry of caps of λ1. Consequently, pcr for λ1 and λ3 are close to each other, 
while pcr for λ2 is quite apart from those of the other two λ’s. 

3. For λ=4, the sharp drop of the minimum wapex in a time interval is relatively not clear 
comparing with λ=5 case. And the clarity of sharp drop depends primarily on λ only. 

4. Among the material properties Young’s modulus E, density ρ and Poisson’s ratio ν, we 
find that ν is the only one that affect pcr and the relation between pcr and ν is nearly linear in 
the range 0.2≤ν≤0.4. 
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