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ABSTRACT 
 

Application of new techniques in seismic design of structures is usually accompanied with 
the use of large capacity energy dissipation devices in the system. In such cases, the 
assumption of classical (proportional) damping is not usually valid and non-classical 
features prevail in the system. Non-classical behavior is a known subject in dynamics of 
structures and the required mathematical basis to address different aspects of such systems is 
readily available in the literature. In the context of system characteristics, however, the role 
and the significance of each mode in total response of these structure, subjected to 
earthquake excitation, has not yet been properly communicated among the researchers. This 
study offers an intuitive adaptation for mass participation factor of non-classical systems to 
signify the modal contribution role of non-classical mass isolated buildings. The proposed 
factor is useful in determining the importance of isolated modes of such systems and 
speculating on the general behavior of these structures. A spectrum analysis technique for 
non-classical systems is also projected in this study. Reliability of the definition for mass 
participation factor in this study is verified through some numerical examples. A 
supplementary conclusion suggests limiting the use of classical analytical tools in analysis 
of mass isolated systems to the structures with low damping ratios. 

 
Keywords: mass isolation, mass participation factor, non-classical systems 

 
 

1. INTRODUCTION 
 

Most of the new techniques in seismic design of structures are based on changing the 
dynamic characteristics of buildings to receive less earthquake input force and energy and to 
dissipate the energy with lower damage and deformation in structural components of the 
system. These techniques usually transfer the first natural period of the structure to the zone 
of low input energy and force of earthquake spectrum by increasing the flexibility of the 
system. This, in turn, improves the energy dissipation potential of the system by providing 
larger relative deformations in the structure. 
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Most of these techniques are using viscous devices to dissipate earthquake input energy 
in the system and to reduce seismic effects on structural components of building. Among 
them, Base Isolation is a well known technique due to its phenomenal potential in reducing 
earthquake effects in buildings. This technique elongates the natural period of the first mode 
of the system and increases its damping ratio and mass participation factor [1]. In spite of 
some similarities with base isolation, other approaches are known, mostly, as damping 
enhancement techniques for structures subjected to earthquakes. 

Mass isolation is a notion that has been proposed to clarify the concept of vibration 
isolation in the case of seismic excitation [2, 3]. Using this viewpoint, the efficiency of a 
majority of new techniques in vibration isolation can be evaluated based on the shift in 
natural period, damping ratio and mass participation factor of first few modes of the system. 
According to this concept, base isolation is a superior approach, not only because of its 
ability to shift the natural period of the system but due to its remarkable potential in shifting 
the mass participation factor of the first mode of the structure (this factor in base isolation is 
shifted close to 100% for highly-flexible, low-damp linear-isolators [4,1]).  

Existence of high capacity viscous devices in Multi-degrees of freedom systems may 
cause the assumption of proportionality of damping matrix with mass and stiffness matrices 
to be unacceptable. In this case such systems should be categorized as non-classical 
structures and their un-damped dynamic characteristics (derived based on mass and stiffness 
matrices) can not be trusted as the true characteristics of the system (e.g. natural periods, 
modal shapes, and mass participation factors). In mass isolation viewpoint, using such 
unreliable characteristics may cause improper efficiency evaluation for mass isolation and it 
was recommended to use damped characteristics of the system in appraising isolation 
efficiency of such structures [3]. 

Although mathematical basis for determining natural periods, modal shapes and damping 
ratios of non-classical systems is readily available [5, 6], there is hardly any clue in the 
literature, addressing a technique to calculate mass participation factor for non-classical 
systems. 

Due to the importance of mass participation factor in evaluation of mass isolated systems, 
the focus of the current study is to find a method in estimation of mass participation factor 
for non-classical systems. Besides, it is also attempted to expand a spectrum analysis 
technique for non-classical systems to be able to have a simple approach in determination of 
response of such structures. Furthermore, it is also intended to investigate the accuracy of 
classical techniques in analysis of non-classical systems and to come up to some preliminary 
perception in limiting the application of such techniques in mass isolated buildings. 

 
 

2. NON-CLASSICAL SYSTEMS AND MASS ISOLATION 
 

In general, if descriptive matrices of a multi degrees of freedom system do not represent the 
property shown in the following relationship; the structure is known, theoretically, as a non-
classical system [7]. 
 
 [ ] [ ] [ ] [ ] [ ] [ ]CMKKMC 11 −− =  (1) 
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In which [C], [M] and [K] are damping, mass and stiffness matrices, respectively. 

Definition of classical systems based on proportionality of damping matrix with stiffness 
and/or mass matrices can be inferred from the above relationship. 

If damping capacity of a non-classical system is small, the assumption of classical 
behavior is usually acceptable. In reality, this is the case for most of the ordinary structures 
with small damping ratios. In the case of large damping capacity, well distribution of this 
capacity in the structure may cause a kind of ad hoc proportionality of damping matrix with 
mass or stiffness matrices, providing the chance of using the assumption of classical 
behavior without accepting large inaccuracies. This issue will be addressed later in this 
study. However, when large damping capacity in the form of few concentrated viscous 
dashpots exists in the structure, the assumption of classical behavior may no longer be valid. 
This would be the case, particularly, if distribution of damping capacity presents no (or 
little) similarities with mass and stiffness distribution across the system. Mass Isolation 
techniques are mostly fit into this group of structures. Figure 1 shows some of these 
techniques (see, Ref. [3]). Methods b, c and e shown in figure are set to have large damping 
capacity in the form of few concentrated viscous devices, causing explicit non-classical 
characteristics for each class of these structural systems. 

 

(a) - Local isolation (b) - Vertical Isolation

Isolator

Shear
wall

Reaction
column

(e) - Restrained isolation

(c) - Group isolation

+ =

(d) - Transparent  isolation

IsolatorMass

Isolator

 

Figure 1. Methods of Mass Isolation 

In non-classical systems, characteristic equations incorporates damping matrix besides 
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the usual mass and stiffness matrices in classical systems. Solving this set of equations 
results in natural frequencies, modal shapes and damping ratios of all modes of the system. 
Having a mathematical representation for damping ratio of all modes is an important feature 
of non-classical modal analysis of structures (in classical modal analysis, except 
approximation, there is no mathematical basis for calculation of damping ratios). Another 
important aspect of non-classical modal analysis is the modal shapes of the structure that, in 
contrast with classical systems, are consisted of real and imaginary components (see, for 
example, [5] and [6]). 

Having all these, participation potential of mode shapes in response of the system 
(subjected to earthquake excitation) is still unclear. In classical systems there is an indication 
for such issue that is called Mass Participation Factor (hereinafter MPF) [8]: 

 

 
j

2
jj

C M
L

M
1
⋅=α  (2) 

 
In which, M is total mass of the system, Mj is generalized modal mass for the jth mode 

and Lj is modal earthquake participation factor. Mass participation factor j
Cα , can be 

interpreted as the ratio of total mass that acts in mode j and generates the share of that mode 
from total base shear, i.e. 

 

 )t(VP).M()t(VP).M()t(vs jj
j
C

n

1j
jj

n

1j

j
C ∑∑

==

== α  (3) 

 
In this equation, vs(t) is total base shear (time history), Pj is natural frequency of each 

mode and Vj(t) is earthquake response integral for each particular mode. The later is known, 
usually, as the instantaneous pseudo velocity function. Parameter jj

j
C MLM 2=  is the 

allocated mass for the jth mode (subscript C stands for classical systems) and it is called the 
effective modal mass.  

Mass participation factor, may not be considered as a dependable measure for 
representing the importance of each mode. This is due to the fact that, frequency contents of 
input earthquakes could cause any particular mode to have an unexpected level of 
contribution in response of the system (base shear is governed by both )(tVP jj  and Mj

Cα  
terms). In mass isolated systems, however, MPF has a conceptual significance. In such 
systems the level of isolation realization can be simply measured by the potential of each 
isolation technique in removing higher mode effects from the response of the system (higher 
modes are positioned in the high energy zone of earthquake spectrum and requiring large 
force and deformations in the structural components). For example, in a base isolated 
system, ideally, there is only one isolated mode (in the low energy zone of earthquake 
spectrum) and higher modes are supposedly eliminated (theoretically .11 ≅Cα  

and .02 ≅⋅⋅⋅ n
CC αα ). Accordingly, in mass isolated systems MPF is a parameter that shows if 

a major part of the mass of building has been actually isolated and if a significant 
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contribution of higher modes in response of the structure would be expected. 
 
 

3. MASS PARTICIPATION FACTOR FOR NON-CLASSICAL SYSTEMS 
 
To put forward the concept of mass participation factor for non-classical systems, the same 
approach used for MPF derivation in classical systems is basically followed [8]. The process 
starts with calculation of elastic forces using modal displacement vector.  
 
 { } [ ]{ })()( txKtf =  (4) 

 
In which { })(tx  is time history displacement vector of the system. In non-classical 

structures displacement vector { })(tx  can be written as: 
 

 { } { }[ ]tjr
0jj

n

1j
evBRe2)t(x Ψ= ∑

=

 (5) 

 
In which n is the number of modes and Bj is modal participation factor for the velocity 

change v0. jΨ  and jr  are characteristic vector and characteristic value of non-classical 
systems. The above relationship is directly quoted from the work of Veletsos et al. [9]. To be 
consistent with the literature and to improve the readability of the text, the same notations 
and derivation techniques introduced in the above mentioned work are used in development 
of the current subject. Substitution of Eq. (5) into Eq. (4) results in the following 
relationship.  

 { } [ ]{ }[ ]tjr
0jj

n

1j
evBKRe2)t(f Ψ= ∑

=

 (6) 

 
Similar to the process used in classical systems, modal characteristic equation, shown 

below, is used to replace the stiffness matrix in the above equation. 
 

 [ ]{ } [ ]{ } [ ]{ }jjjjj CrMrK Ψ−Ψ−=Ψ 2  (7) 
 
Considering,  
 
 )1(PP̂andP̂iPr 2

jjjjjjj ξξ −=+−=  

 
Where, jξ , jP  and jP̂  are damping ratio, natural frequency and damped frequency of 

each mode, respectively. Characteristic equation is further expanded and substitute in Eq. (6) 
as follows. 
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Furthermore, the following complex vector partitioning, proposed by Veletsos et al [9], is 

used to simplify the above formula. 
 

 { } { } { }v
j

v
jjj iB2 γβ +=Ψ     

 
By substituting the above relationship into Eq. (8) and following some algebraic 

operations (similar to those in Ref. [9]), we will have: 
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Response of a single degree of freedom damped system subjected to unit velocity change 

can be written as: 
 

 ( ) ( )


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j
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jj
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j
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Where ( )thj  and ( )thj

& are displacement and velocity time histories, respectively. Using 

the above relationships, trigonometric terms in Eq. (9) are replaced with ( )th j  and ( )th j
& . 
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In which, 
 

 { } { } { } { } { } { }v
j

2
j

v
jj

v
j

v
j

2
j

v
jj

v
j )1(    and)1( βξγξωγξβξα −+=−−=  

 
To find the time history response of the structure subjected to earthquake excitation, the 

velocity change (v0) during time increment τd  is substitute by τττ dxvv g )()(0 &&−==  in 

which )(τgx&& is base acceleration at time τ=t . The change in elastic force during this time 
increment (at τ〉t ) is written as: 

www.SID.ir



Arc
hi

ve
 o

f S
ID

MASS PARTICIPATION IN NON-CLASSICAL MASS ISOLATED ... 

 

279

 { }
[ ] [ ] [ ]( ) { } ( ) { } ( )( )

[ ] [ ] { } ( ) { } ( )( ) ( ) ττ
τγτωξξξ

τβταξξ
dx

ththPM)1(P2C)1(P

ththPCPMP2MP
df g

n

1j j
v
jjj

v
j

2
j

2
jj

2
jj

j
v
jjj

v
jjj

2
j

2
j

2
j

&&
&

&

∑
= 
















−+−




 −−−

+−+−+−
−=  (12) 

 
By integration over the time domain ( to ≤≤ τ ) elastic force at time t would be: 
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In which )(tV j  and )(tDj

& are time history functions known as instantaneous pseudo 
velocity and relative velocity response of single degree of freedom systems, respectively. 
These functions are represented by the following expressions. 

 

 ∫ ∫ −−=−−=
t
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Equation 13 after simplification is written as: 
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Where [ ]A

jMC  and [ ]B
jMC are summation of matrices in the first and the second terms 

of Eq. (13). Further simplification results in the following relationship. 
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The subsequent expressions are used in the above simplification. 
 

 [ ] { } { }j
MC

v
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A
jMC αα =×  

 [ ] { } { }j
MC

v
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B
jMC ωω =×  

 [ ] { } { }j
MC

v
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A
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 [ ] { } { }j
MC

v
j

B
jMC γγ =×  

 
The next step is to calculate the base shear by adding together lateral forces along the 

height. This is accomplished by pre-multiplication of a unit vector in Eq. (16). 
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In which: 
 

 { }j
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j
MC 1 αα =  

 { }j
MC

j
MC 1 ωω =  

 { }j
MC

j
MC 1 ββ = { }j

MC
j
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Now Eq. (17) can be rewritten as: 
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n
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j
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j
MC )t(DP)()t(VP)()t(vs &βγαω  (18) 

Where, 
 j

MC
j
MC

j
MC

j
MC

j
MC

j
MC   and  γββγωααω +=+=  

 
A similarity between the above equation and Eq. (3) can be distinguished. In contrast 

with classical systems, base shear in non-classical structures consists of two different 
components. The first one is similar to the base shear definition in classical system Eq. (3) 
and is composed of a factor ( j

MCαω ) with dimension of mass and a time varying function  
( )(tVP jj ) with the dimension of acceleration. The second component resembles the first one 

but, instead of pseudo-velocity ( )(tV j ) it contains the relative velocity ( )(tD j
& ) term. Both 

j
MCαω  and j

MCβγ  factors have the dimension of mass and, apparently, MPF should be a 
combination of them. This conclusion suggests a relationship between )(tV j and 

)(tD j
& functions to be found. However, since mass participation factor is considered a 

system characteristic, it should not be dependable on earthquake excitation parameters such 
as pseudo-velocity and relative velocity relationship. Ironically, it seems, without such 
relationship MPF for non-classical systems does not exist. 

After all, the main challenge in finding MPF for non-classical systems seems to be the 
dilemma that puzzled many researchers so far. Finding a relationship between pseudo-
velocity and relative velocity in the time domain might have not been the case since 

)(tV j and )(tD j
& are functions with asymmetrical characteristics. Nevertheless, literature 

shows distinct viewpoints in finding relationships between maximum values of these 
functions (in dealing with spectral analysis of non-classical systems). Following these 
footsteps, in this work at first a relationship between maximum values of the above time 
functions (applicable to a wide range of earthquakes) is introduced. Later, using this 
relationship in a spectral approach, relative velocity is replaced with the pseudo-velocity 
term. At last, the assumption of stationary process is used and two unsynchronized terms are 
put together and an approximation for MPF in non-classical systems is obtained. 
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3.1 Pseudo-velocity versus relative velocity 
Using two spectrums for pseudo-velocity and relative velocity in spectral analysis of non-
classical systems is not desirable and different approaches have been proposed to simplify 
this procedure (see, for example, Gupta [10] and Igusa et al. [11]). It seems that the first step 
for a rational approach in this case is to know how the two spectrums relate to each other. 
One of the recent works in this area is reported by Pekan et al. [12], where some 
relationships based on natural frequency and damping ratios are proposed to correlate the 
maximum values of the two velocity functions. In this study, to ease the correlation 
procedure, the relationships proposed by Pekan et al. are condensed out, after broad 
simplification, into the following compact formula. 
 
 T4.0T17.06.00.8)T,(f ξξξη ++−==   where,    ( )

MaxMax
)t(VtD η=&   (19) 

 
In which η  is the correlation coefficient, T is period (in Sec.) and ξ is damping ratio. 
Figure. 2 compares the correlation coefficient obtained from the above formula with those of 
the Pekan’s relationships in two different levels of damping ratios. As shown in figure, the 
proposed formula is in close agreement with the Pekan’s relationships. It should be noted 
that, the above formula (as well as the Pekan’s relationships) is checked only for damping 
ratios less or around 0.5 (i.e. 5.0≤ξ ) but this limitation is not followed in here and the same 
formula is applied for higher damping ratios (till 9.0≤ξ ). 
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Figure 2. Relative Velocity vs. Pseudo Velocity 

www.SID.ir



Arc
hi

ve
 o

f S
ID

M. Ziyaeifar and  Sh. Tavousi 282 

3.2 Mass participation factor in terms of maximum value of base shear 
Using Eq. (18), the share of each mode from total base shear is written as: 
 )t(DP)()t(VP)()t(vs jj

j
MCjj

j
MCj

&βγαω +=  (20) 
 
Based on the assumption of stationary random process, maximum value of the above 

formula can be obtained using the SRSS1 approach (see, Der Kiureghian [13]).  
 

 ( ) ( ) 2

Maxjj
j
MC

2

Maxjj
j
MCMaxj )t(DP)()t(VP)()t(vs &βγαω +=  (21) 

 
By using Eq. (19) we will have: 
 

 
Maxjj

2j
MC

2
j

2j
MCMaxj )t(VP)()()t(vs βγηαω +=  (22) 

 
The square root term in the above equation is called, hereinafter, Effective Modal Mass 

for non-classical systems, i.e.  
 
 

Maxjj
j
NCMaxj )t(VPM)t(vs =   where     2j

MC
2
j

2j
MC

j
NC )()(M βγηαω +=  (23) 

 
Thus, mass participation factor for non-classical systems is defined as:  
 

 
NC

j
NCj

NC M
M

=α      in which     ∑
=

=
n

1j

j
NCNC MM  (24) 

 
NCM  in the above equation is total effective mass of the system that, in contrast with 

classical systems, may not be equivalent to the real mass of the structure ( M ). Furthermore, 
total Maximum base shear using SRSS approach would be as follows.  

 

 ∑
=

=
n

1j

2
MaxjjNC

j
NCMax ))t(VPM()t(vs α  (25) 

 
In classical systems an identical equation for maximum base shear exists, in which, 
Mj

Cα simply replaces the term NC
j

NC Mα in the above expression [8]. 

To be correct, the proposed expression for mass participation factor ( j
NCα  in Eq. (24)) is 

not literally similar to the one for classical systems ( j
Cα  in Eq. (2)).  In fact j

NCα  is obtained 

based on maximum values of base shear while j
Cα  is not related to whatever expression 

                                                   
1- Square Root of the Sum of Squares 
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used for the base shear (maximum values or time history). Also, using jη  in defining j
NCα  

means dependency of mass participation factor to the characteristics of input earthquakes 
(considering that j

Cα  is not related to any earthquake parameters). Moreover, j
NCα  is not a 

real system characteristic because jη  is a direct function of other characteristics of the 

system ( jj Tandξ ). In other words, j
NCα  is a make up figure that may not compellingly 

posses the specific features required for a system characteristic. Nevertheless, the proximity 
of j

NCα  definition to the MPF envisage in non-classical systems will be shown later in this 
study. 

 
3.3 MPF in the time domain 

j
NCα  definition in this study is considered a weak adaptation for MPF in non-classical 

systems. Hypothetically, an ideal MPF for non-classical systems (if exists) should comply 
with the following expression. 
 

 )t(VP).M()t(vs jjNC

n

1j

j
NC∑

=

= α  (26) 

 
In which j

NCα  is the speculated non-classical MPF defined in the time domain. NCM  

and )(tV j are the appropriate effective mass and velocity function for the above MPF, 
respectively. In the case of existence of such MPF, Eq. (26) would be equivalent to Eq. (18). 
Now the question is, what it takes if we use the previous MPF derived based on maximum 
values of base shear ( j

NCα  ) and its counterparts NCM  and )(tV j in the time history 

relationship Eq. (26) instead of hypothetically correct parameters j
NCα , NCM and )(tV j . To 

answer this question derivation is pursued from another viewpoint. 
Let’s start by scaling the amplitude of pseudo-velocity function (using parameter jη  in 

Eq. (19)), so that, its maximum value to be equivalent to the maximum valve of relative 
velocity function. 

 
 

Scaled.Max
)t(V)t(D jjj η≈&  (27) 

 
The two functions )(tV jjη and )(tD j

&  are equivalent only base on their maximum 
amplitudes and substitution of scaled pseudo velocity term instead of relative velocity in  
Eq. (20) would not be possible, i.e. 

 
 )()()()()( tVPtVPtvs jj

j
MCjj

j
MCj ηβγαω +≠  (28) 

 
Supposing that, SRSS technique can be applied to each time increment of the above 
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inequality (a wrong assumption, in fact) to find instantaneous time history resultant of the 
above terms. 
 )t(VPM)t(VP)()()t(vs jj

j
NCjj

2j
MC

2
j

2j
MCj =+≈ βγηαω  (29) 

 
In which j

NCM is the same effective modal mass for non-classical systems (obtained 
before in Eq. (23)). Subsequently: 

 

 ∑
=

≈
n

1j
jjNC

j
NC )t(VPM)t(vs α  (30) 

 
j

NCα is also the same mass participation factor introduced in Eq. (24). According to the 

above relationship mass participation factor based on maximum values, j
NCα , can serve as 

an approximation for j
NCα  (hypothetically exact MPF) if SRSS concept extends, 

inappropriately, to each instance of the process. Accuracy of j
NCα definition in the time 

domain (i.e. Eq. (30)) will be addressed later in this study. 
 
 

4. SPECTRAL ANALYSIS IN NON-CLASSICAL SYSTEMS 
 

Spectral methods in earthquake engineering are known for their simplicity in the analysis 
procedure. However, these techniques in non-classical systems are still unsettled and a 
rational approach bringing together the alleged simplicity with the required accuracy is yet 
to be found. 

Since response of non-classical systems usually consists of two different terms (similar to 
those in Eq. (18) for base shear), in spectral approach they are requiring two types of 
spectrums (e.g. pseudo and relative velocity spectrums). For simplicity, some researchers 
use the equivalency assumption for the two spectrums (Villaverde [14] and Sinha et al.[15]). 
Introduction of Eq. (19), however, provides the ground for a sensible approach in non-
classical spectral analysis by simplification of the relationship between the two spectrums 
without broadly compromising on the accuracy of the analysis. 

This viewpoint is shown, beforehand, in Eq. (25) which is, in fact, a spectral evaluation 
for base shear using ordinary pseudo-velocity spectrum. This equation can now be written in 
a more familiar form. 
 

 ( ) ),(psvPM)t(vs       where)t(vs)t(vs jjjNC
j
NCMaxj

n

1j

2

MaxjMax ξωα== ∑
=

 (31) 

 
In which ),( jjpsv ξω is the spectral pseudo-velocity term. The simple algebra that 

provides the relationship for base shear response of the system (in the form of Eq. (18)) can 
also be followed for other responses of non-classical systems. For example, time history 
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displacement response of such systems is known as [9]: 

 { } { } { }[ ]∑
=

+=
n

1j
j

v
jj

v
j )t(D)t(V)t(x &βα  (32) 

 
All terms in the above relationship have been previously defined (note that, dimensions 

of the vectors { }v
jα  and { }v

jβ are time per radian). Using the same procedure for base 
shear, spectral analysis for maximum modal displacements results in the following 
relationship. 

 

 
{ } { }

{ } { } { }
{ } { } ),(psv)t(x

where

)t(V)t(x

jjjMaxj
2v

j
2
j

2v
jj

MaxjjMaxj

ξωλ

βηαλ

λ
=⇒










+=

=
 (33) 

 
The above approach in spectral analysis of non-classical systems presents both simplicity 

and accuracy in the analysis procedure. In non-classical systems with large coefficient for 
the relative velocity term (e.g. { }v

jβ  in Eq. (32) or j
MCβγ  in Eq. (18)) accuracy of this 

technique would be more pronounced. In addition, since high damping ratios and long 
natural periods considerably increase the value of η (see Figure.2), accuracy of the above 
spectral approach in such cases will be higher than those without a proper relationship 
between the two spectrums. 

 
 

5. VERIFICATION OF MPF FOR NON-CLASSICAL SYSTEMS 
 

A computer code has been developed to examine the dependability of the so-called mass 
participation factor for non-classical systems. Program is capable of calculating time 
history responses of shear type structures (displacement, lateral force and base shear 
using Eq. (32), 16 and 18, respectively). It also determines mass participation factor for 
non-classical systems ( j

NCα using Eq. (24)) and the spectral values for base shear (Eq. 
(25) or (31)). In addition, the program also computes another time history response for 
the base shear using Eq. (30) (approximated time history response based on MPF 
definition). 

Two examples for numerical investigation are used in this study (illustrated in Figure 
3). Both examples (St-A and St-B) are from a class of mass isolated systems that is 
called Vertical Isolation (shown in Figure.1-b). In mass isolation viewpoint, as described 
elsewhere [3], isolated structures are assumed to be consisted of two subsystems. Mass 
subsystem possesses low lateral stiffness but carries the major part of mass of the 
system. Stiffness subsystem, however, controls the deformation of the mass subsystem 
and attributes with much higher stiffness. In this study, for simplicity, stiffness 
subsystems are assumed to be rigid. Mass isolated systems are, therefore, striped down to 
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mass subsystems supported laterally on dashpots. 
 

 St-A Structure St-B Structure

 10  10

  8

  4

 

Figure 3. Simplified Mass Isolated Structures 

  
Both systems in Figure. 3 are, 10 storey structures with uniform mass and stiffness along 

the height. Shear stiffness of each storey is 56267 N/mm (inter-storey height is 3.0 meters) 
and mass of each floor is assumed to be at 200 N-Sec2/mm. A proportional damping 
capacity (proportional to the stiffness) is also implanted into these systems to provide a 
damping ratio equivalent to 1% for the first mode in both systems. The first natural period of 
the above systems are 2.5 Sec. (before installing dashpots). St-A structure is equipped with a 
single dashpot at the top and St-B system possesses three identical dashpots at 4, 8 and 10 
storey levels. Structures were analyzed subjecting to four well known earthquake records 
and spectrums (El-centro-S00E, Hachinohe-EW, Taft-EW and San-Fernando-S16). Figures. 
4 and 5 are showing the response spectra of the above earthquakes for the two level of 
damping ratios (5% and 90%, respectively). 
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Figure 4. Earthquake spectrums for 5% damping ratio 
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Figure 5. Earthquake spectrums for 90% damping ratio 

 
5.1 System characteristics 
Non-classical dynamic characteristics of the two systems (natural periods, modal shapes and 
damping ratios) for all the modes, considering different capacity of dashpots, are obtained 
using the state space approach ([5],[6] and [9]). Mass participation factors j

NCα  for all these 
cases are also computed using the proposed algorithm Eq. (24). System characteristics are 
tabulated in table 1 and 2 for St-A and St-B structures, respectively. In these tables C is the 
capacity of one dashpot alone and is determined, so as, damping ratio of the first mode of 
both structure to be adjusted to 5, 20, 40, 60 and 90 percents. 

 

 

Figure 6. Modal Shapes of  St-A structure at highest damping capacity (x1 =0.9) 
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Figure 6 represents the first 4 mode shapes of St-A structure when dashpot provides 90% 
damping ratio for the first mode of the system (C=3590 N-Sec/mm).  Since modal shapes of 
non-classical systems consist of real and imaginary components, these components are 
combined in phase angles 0, 45, 90, 135 and 180 degrees and shown in the figure (phase 
angle 0 at the right side). Phase angles 0 and 90 degrees are respectively real and imaginary 
components of the mode shapes. In figure, combined resultants of some phase angles are 
eliminated for the sake of clarity. 

According to the tables, increasing damping capacity results in decreasing the mass 
participation factor of the first mode (in the St-A structure, 1

NCα has changed from 0.848 in 
low damping ratio to 0.755 for the highest damping ratio). On the other hand, this causes a 
substantial increase on MPF of the second mode ( 2

NCα in St-A system has reached to 0.186 
from 0.091, more than twice). Comparing the characteristics of the two systems, St-B 
structure seems to be less affected by the change in damping capacity. 

From the viewpoint of system characteristics, the above observations are quite valuable. 
Reducing mass participation factor of the first mode means cutting on that part of the mass 
of system that is actually transferred to the zone of low earthquake input energy. This may 
cause the possibility of higher modes domination and ineffectiveness of mass isolation. In 
St-A example the share of higher modes from total mass are increased from 15.2% (100%-
84.8%) to 24.5%. Another point in here is the difference between St-A and St-B structures 
in system characteristics that shows the possibility of reducing non-classical features of the 
problem by distributing damping capacity along the height. 

 
5.2 System characteristics vs. structural response 
Reliability of the proposed definition for MPF can be verified through evaluation of the 
accuracy of base shear response of the structures using MPF definition in Eq. (31) or (25). 
Considering the concept of spectral approach in these relationships, at first, the role of 
system characteristics in estimation of base shear is determined. This phase of study requires 
a reference solution for the comparison purposes. In here, the same structure with classical 
characteristics is used as the bottom-line reference solution. In other words, two identical 
structures with classical and non-classical assumptions are compared in their system 
characteristics and modal base shear responses. 

Assuming classical behavior, some of the system characteristics (periods and mass 
participation factors) will be equivalent to those of the original system with low damping 
capacity. Therefore, classical characteristics of the system are assumed to be similar to those 
reported in Table 1 (or Table 2) for the lowest damping ratio (5% for the first mode). Since 
in classical modal analysis damping ratios can not be mathematically obtained, in spectral 
analyses for the referenced classical system damping ratios originated from non-classical 
modal analyses (tabulated in Tables 1 and 2) are used to calculate the classical spectral base 
shear. Therefore, non-classical values of MPFs, periods and damping ratios are put into  
Eq. (31) to obtain non-classical spectral base shear (for each mode) and classical values of 
periods and MPFs along with non-classical damping ratios are used to calculate classical 
maximum modal base shear. Results of such comparisons between classical and non-
classical systems are given, only, for St-A structure because of the domination of non-
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classical behavior in this system. 

Table 2. Non-Classical characteristics of St-B structure in terms of damping capacity of each 
dashpot 

Damping capacity  (N-Sec/mm)    

C=100 C=460 C=935 C=1400 C=2050 Mode 

ξ T(Sec)  αNC ξ T(Sec)  αNC ξ T(Sec) αNC ξ T(Sec) αNC ξ T(Sec)  αNC 

1 0.05 2.51 0.848 0.20 2.50 0.847 0.40 2.48 0.846 0.60 2.45 0.841 0.90 2.38 0.831 

2 0.046 0.84 0.091 0.095 0.84 0.091 0.158 0.84 0.092 0.22 0.84 0.095 0.31 0.85 0.102 

3 0.058 0.51 0.031 0.07 0.51 0.032 0.089 0.51 0.033 0.10 0.51 0.035 0.12 0.51 0.038 

4 0.081 0.37 0.014 0.10 0.37 0.014 0.136 0.37 0.014 0.17 0.37 0.013 0.22 0.37 0.013 
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Figure 7. Non-classical to Classical ratios for the first mode of St-A structure 

 
Figure 7 illustrates the ratio of non-classical to classical spectral base shear for the first 

mode of the system in terms of damping capacity in St-A structure. This ratio is based on 
average response of the system for all four earthquakes. The figure also shows the ratio of 
mass participation factor and natural period of the first mode of non-classical system to 
those of the classical one in terms of damping capacity. Moreover, the figure also represents 
the rate of change of damping ratio for the first mode of the structure with respect to 
damping capacity in the system (in right-side vertical axis). Similarly, Figures 8, 9 and 10 
are showing the same type of relations for modes No. 2, 3 and 4, respectively. 
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Figure 8. Non-classical to Classical ratios for the second mode of St-A structure 
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Figure 9. Non-classical to Classical ratios for the third mode of St-A structure 
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As shown in figures, damping ratios are not linearly related to damping capacity in the 
system. In addition, figures also representing high ratios of non-classical base shear to the 
classical one (around 2 in highest damping capacities for most of the modes). This means the 
assumption of classical behavior for non-classical systems can be grossly misleading. 

According to Figure 7, increasing damping capacity reduces the MPF but, unexpectedly, 
causes a substantial increase on the base shear ratio (i.e. lower MPF should cause lower base 
shear). However, increasing the base shear response in this case is attributed to the 
considerable change in the period of the first mode (from 2.5 Sec. down to 1.8 Sec.) that 
positioned the mode in high acceleration zone of the earthquakes spectrum. Nevertheless, as 
shown in Figures 8, 9 and 10, base shear in other modes is clearly affected by the rate of 
change of MPFs (considering unnoticeable changes in periods of these modes).  

The above results indicate the importance of non-classical appraisal of system 
characteristics in determining spectral base shear for non-classical systems. More 
importantly, the results also indicate that, MPF definition in this study has a perceptible 
influence on base shear response of non-classical systems. 

 
5.3 Spectral Modal base shear and MPF  
Accuracy of the MPF definition for non-classical systems is still ambiguous. As described 
before, this ambiguity can be removed by evaluating the accuracy of spectral base shear 
response of the system. The reference solution in this verification is maximum value of the 
time history modal base shear (exact solution based on Eq. (20)). To have a bottom-line 
measure in determining the accuracy of non-classical spectral approach, again, spectral 
analyses for base shear using classical characteristics are performed. 
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Figure 10. Non-classical to Classical ratios for the fourth mode of St-A structure 
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Figure 11. Max. modal base shear of the first mode in St-A structure 

 
Figure11 compares maximum base shear response of the first mode of the system, based 

on spectral (classical and non-classical) and time history analyses (in terms of damping ratio 
of the mode). The results are given for the St-A structure in the case of Hachinohe 
earthquake. Figures 12, 13 and 14 are illustrating the same features for modes No. 2, 3 and 
4, respectively. To be able to compare the results of all modes, horizontal axes of these 
figures are scaled in terms of damping ratio of the first mode (the axes can be scaled back to 
damping ratio of each mode or dashpot capacity, C, using Table 1). 

 

Table 1. Non-Classical characteristics of St-A structure in terms of damping capacity of dashpot 

Damping capacity (N-Sec/mm)     

C=206 C=1000 C=1965 C=2782 C=3590 

 

 

Mode 

ξ T(Sec) αNC ξ T(Sec)  αNC ξ T(Sec)  αNC ξ T(Sec) αNC ξ T(Sec)  αNC 

1 0.05 2.51 0.848 0.20 2.47 0.847 0.40 2.36 0.84 
0.6
0 2.16 0.819 0.90 1.8 0.755 

2 0.046 0.84 0.091 0.095 0.84 0.091 0.165 0.85 0.096 
0.2
4 0.87 0.116 0.33 0.95 0.186 

3 0.061 0.51 0.031 0.09 0.51 0.032 0.125 0.52 0.032 
0.1
6 0.53 0.031 0.18 0.56 0.024 
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4 0.079 0.37 0.014 0.01 0.38 0.014 0.117 0.38 0.016 
0.1
3 0.39 0.019 0.14 0.39 0.022 
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Figure 12. Max. modal base shear of the second mode in St-A structure 
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Figure 13. Base shear response of the third mode in terms of damping ratio 
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Figure 14. Base shear response of the fourth mode in terms of damping ratio 

 
As shown in Figures. 11-14, there is a good agreement between non-classical spectral 

values of base shear and maximum values of time history response of the structure in all 
modes and in all range of damping ratios. However, classical spectral values for base shear are 
representing a trend that progressively underestimates base shear in all modes of the structure. 

The same type of analysis has been carried out for other earthquake records (and 
spectrums) with basically the same results. Similarity of spectral non-classical modal base 
shear responses with those obtained by the time history analysis is a solid indication for 
accuracy of the proposed non-classical MPF (based on maximum values). 

 
5.4 Time history response 
As explained earlier, definition of Mass participation factor (MPF) in a classical system is 
not pending on maximum values and it comes directly from the time history relationship (i.e. 
Eq. (3)). Defining MPF based on maximum values would be more convincing if it shows its 
proximity to the time history definition. Eq. (30) presents the time history base shear response of 
the structure using the proposed MPF. This equation can not be a substitute for exact time 
history response of the system; however, it might be intriguing to see how it relates to the real 
time history base shear response of the structure. 

A series of time history analyses using Eq. (18) and 30 for both St-A and St-B structures 
have been carried out. Damping capacities of structures are chosen the highest in this study 
(damping ratio of the first modes are 90%). Figure. 15 and 16 are showing time history base 
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shear responses of St-A structure subjected to two different earthquakes (El-Centro and 
Hachinohe). Note that, St-A structure with large damping capacity has the highest level of non-
classical characteristics among all the examples (see Table 1). 
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Figure 15. Time history total base shear for El-Centro earthquake 
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Figure 16. Time history total base shear for Hachinohe earthquake 

As shown in figures, analyses based on Eq. (18) and 30 are not analogous responses in 
the time domain. However, Figure. 15 and 16 are representing plausible resemblance 
between the two relationships in depiction of time history base shear responses of the 
structure. Consequently, using the name Mass Participation Factor (MPF) for the parameter 

j
NCα , derived based on maximum values, might be considered a viable designation. 
It should be noted that, using MPF as a system characteristic in identification of mass 

isolation effectiveness requires less affinity to the concept of time history MPF due to the 
qualitative nature of system identification. 

 
 

6. SPECTRAL ANALYSIS AND MODAL SUPERPOSITION  
 

While the previous section was primarily dedicated to MPF verification, it was also 
contributed in supporting the proposed spectral analysis approach for maximum modal 
responses. However, reliability of the relationships for total responses (e.g. total base shear 
as indicated by Eq. (31)) may still need some more scrutiny due to the role of SRSS 
technique in modal superposition concept (see, Gupta [10] and Sinha et al. [15]). 
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Figure 17. Max. Base shear in St-A structure subjected to San-Fernando earthquake 

 
Figures. 17 and 18 are illustrating maximum total base shear response of the St-A 

structure subjected to San-Fernando and Hachinohe earthquakes. In these figures five 
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different approaches are shown in calculation of maximum base shear. The first one is based 
on time history analysis using all 10 modes of the system Eq. (18). This is considered the exact 
maximum value for total base shear. The second approach is to use time history analysis for all 
ten modes separately Eq. (20) and calculate the maximum total base shear using SRSS 
approach. The third analysis is the same as the second one but with the first four modes of the 
system (instead of 10 modes). The 4th approach uses Eq. (31) to find the maximum total base 
shear considering first four modes of the system (using the proposed MPF). The last technique 
is the so called classical spectral analysis (classical periods and mass participation factors but 
non-classical damping ratios) using first four modes of the system. As before, this analysis is 
provided for our bottom-line accuracy evaluation. Again, horizontal axes in these two figures 
are based on damping ratio of the first mode of the system. 
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Figure 18. Max. Base shear in St-A structure subjected to Hachinohe Earthquake 

 
As shown in figures, non-classical spectral approach (the 4th one) is quite accurate if it 

compares with the SRSS techniques for maximum modal time history responses (2nd and 3rd 
approaches). The classical spectral technique (5th method), however, is quite off the path in 
large damping ratios. Similarity between 3rd and 4th methods verifies the accuracy of our 
non-classical spectral approach and the MPF definition. Moreover, similarity between 2nd 
and 3rd methods indicates the marginal contribution of higher modes in total base shear 
response of the system. 

Comparing all SRSS methods (2nd, 3rd and 4th except 5th) with the exact solution (1st 
approach) reveals the fact that, in San-Fernando earthquake SRSS technique is not accurate 
in providing a proper account for maximum total base shear (see, Figure. 17). On the 
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contrary, the same comparison for the case of Hachinohe earthquake represents indisputable 
accuracy of SRSS technique in estimating maximum base shear in all range of damping 
ratios (shown in Figure. 18). In other words, suitability of SRSS technique is not dependant 
on system characteristics alone and frequency content of earthquakes affects its accuracy. 
Moreover, since system characteristics in non-classical systems (natural periods and MPF) are 
dependent on the magnitude of damping capacity, accuracy of SRSS approach in such systems 
is not uniform across a wide range of change in damping ratios (as shown in Figure. 17). 
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Figure 19. Average ratios of exact base shear to SRSS approachs for all Earthquakes 

 
Figure 19 shows average (four earthquakes) ratio of exact maximum base shear of the St-

A structure (1st approach) to its SRSS appraisal of non-classical spectral counterpart (4th 
approach). The figure also shows the average ratio of SRSS evaluation of base shear using 
exact maximum modal values (3rd approach) to that of the SRSS spectral method (4th 
approach, again). Curves No. 1 and 2 are respectively depicting these parameters in terms of 
damping ratio of the fist mode. The same ratios in terms of classical spectral analysis (5th 
approach instead of 4th) are also shown in the figure (curves 3 and 4) to compare the 
consistency of MPF definition in classical and non-classical approaches.  

Considering the close distance between curves 1 and 2 in Figure.19, accuracy of non-
classical spectral analysis (that uses MPF) seems to be at the same level of accuracy of SRSS 
approach in dealing with exact modal base shear. According to the figure, the same level of 
proximity between curves No. 1 and 2 also exist between curves 3 and 4. Thus, no matter what 
kind of spectral analysis (classical or non-classical) or even SRSS of exact maximum modal 
values are used; accuracy of total response is dominated, mostly, by the suitability of SRSS 
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technique in superposing modal effects. This conclusion may help to justify the 
appropriateness of non-classical spectral analysis and the MPF definition in this study. 
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Figure 20. Max. Base shear in ST-B structure subjected to San-Fernando earthquake 
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Figure 21. Max. Base shear in ST-B structure subjected to Hachinohe earthquake 

7. MASS ISOLATION AND DAMPING CAPACITY DISTRIBUTION 
 

Referring to our earlier discussion, distribution of damping capacity in structures 
substantially reduces the non-classical aspects of the system. This was shown by the system 
characteristics (periods and MPFs) of St-A and St-B structures tabulated in table 1 and 2. 
Moreover, the results of analyses for base shear response of the same structures demonstrate 
the significance of this issue in designing mass isolated systems. 

Analogous to Figures. 17 and 18 for St-A structure, maximum total base shear responses 
of St-B system subjected to San-Fernando and Hachinohe earthquakes are shown in Figure. 
20 and 21, respectively. Comparing the results, two important points in designing of such 
systems are revealed. First, in high damping ratios, distribution of damping capacity in 
structures reduces the level of structural response in the system (around 30% reduction in 
total base shear at highest damping ratio). More importantly, as shown in Figures. 20 and 21, 
the threshold of splitting classical and non-classical solutions in St-B structure starts at much 
higher damping ratios (comparing with that of St-A structure shown in Figures.17 and 18). 
According to these figures, if damping ratio of 20% in St-A structure is the threshold of non-
classical behavior for base shear response of the system, in St-B structure this ratio is around 
60%.  Note that, for other responses of the system (e.g. lateral force distribution along the 
height) these ratios could be quite different. 

Consequently, in designing mass isolated systems distribution of damping capacity along 
the height reduces the structural response of the system and provides the ground for classical 
analytical tools to be applicable in higher range of damping ratios. 

 
 

8. CONCLUSIONS 
 

Mass participation factor (MPF) as a system characteristic is an important parameter in 
identification of mass isolated systems and speculation on their effectiveness in reducing 
earthquake effects on structures. In this study a methodology for calculating mass 
participation factor for non-classical mass isolated systems is proposed. In contrast with 
classical systems, MPF definition in this approach is based on maximum value of modal 
base shear. Accuracy of the proposed MPF is verified through some numerical examples. 
According to these results increasing damping capacity in non-classical systems may reduce 
the contribution of the first mode in response of the structure in expenses of increasing the 
share of higher modes in the system. Afterward, by expanding the same approach in 
deriving MPF, a spectral analysis technique for non-classical system is proposed that 
possesses both simplicity and accuracy in the analysis procedure. Applicability of classical 
analytical tools in determining the behavior of mass isolated systems is also examined. It is 
shown that, distribution of damping capacity in the structure will reduce the non-classical 
features of the problem and extends the possibility of using classical analytical tools in 
studying the behavior of such systems. 
 
Acknowledgments: This work has been financially sponsored, in parts, by the ZIYA 

www.SID.ir



Arc
hi

ve
 o

f S
ID

MASS PARTICIPATION IN NON-CLASSICAL MASS ISOLATED ... 

 

301

foundation for scientific excellence. This support is gratefully acknowledged. The first 
author wishes to express his deep appreciation to Ms. A. L. Familgan for her valuable help 
on preparation of this manuscript. 

 
 

REFERENCES 
 

1. Skinner, R.I., Robinson, W.H. and McVerry G.H. An Introduction to Seismic Isolation. 
John Wiley & Sons: New York, 1993. 

2. Ziyaeifar, M. and Noguchi, H. Partial Mass Isolation in tall buildings. Journal of 
Earthquake Engineering and Structural Dynamics, 27(1998) 49-65. 

3. Ziyaeifar, M. Mass isolation, concept and techniques. European Earthquake 
Engineering. 2(2002) 64-76.  

4. Naeim, F. and Kelly, J.M. Design of seismic isolated structures: from theory to 
practice. John Wiley & Sons: New York, 1999. 

5. Foss, K.A. Co-ordinates which uncouple the equations of motion of damped linear 
dynamic systems. J. Appl. Mech. ASME, 25(1958) 361-364. 

6. Argyris, J. Melejnek, H.P. Dynamics of Structures. Elsevier Science Publishers: 
Amsterdam, The Netherlands,1991. 

7. Caughey, T.K. and O'kelly M.E.J. Classical Normal Modes in Damped Linear Dynamic 
Systems. J. Appl. Mech. ASME, 32(1965) 583-588. 

8. Clough, R.W. Penzien J. Dynamics of Structures. McGraw-Hill: New York, NY, 1993. 
9. Veletsos, A.S, Ventura CE. Modal analysis of non-classical damped linear systems. 

Earthquake Eng. Struct. Dyn. 14(1986) 217-243.  
10. Gupta, A.K. Response spectrum method in seismic analysis and design of structures. 

Blackwell Scientific: Cambridge, Mass., 1990. 
11. Igusa, T. Der Kiureghian, A. and Sackman, J.L. Modal decomposition method for 

stationary response of non-classically damped systems. Earthquake Eng. Struct. Dyn. 
12(1984) 121-136.  

12. Pekcan, G. Mander, J.B. and Chen, S.S. Fundamental considerations for the design of 
non-linear viscous dampers. Earthquake Eng. Struct. Dyn. 28(1999) 1405-1425. 

13. Der Kiureghian, A. A response spectrum method for random vibration analysis of MDF 
systems. Earthquake Eng. Struct. Dyn. 9(1981) 419-435. 

14. Villaverde, R. Newmark NM. Seismic Response of light attachments to buildings. SRS 
No. 469. University of Illinois: Urbana, 1980. 

15. Sinha, R. and Igusa, T. CQC and SRSS methods for non-classically damped structures. 
Earthquake Eng. Struct. Dyn. 24(1995) 615-619. 

www.SID.ir


