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ABSTRACT 
 

Longitudinal shear strength is considered as a major constraint in the design of composite 
slab and it can be assessed by expensive and time consuming experimental techniques. The 
objective of the present work is to provide a numerical tool to minimize hurdles in the 
design process and to reduce the dependency on expensive and time-consuming 
experiments. In this article, Artificial Neural Networks model has been developed for 
finding the m and k values for determination of the horizontal shear resistance. It is 
demonstrated that, with proper training of the neural network using the ratio of pitch length 
to width of top flange and depth of profile as input values, the proposed neural network 
model can generate the values of m and k quite accurately. Inherently the Artificial Neural 
Network is computationally efficient tool and hence the developed Artificial Neural 
Network will be very useful in optimization procedures of the composite slab. 

 
Keywords: profiled deck slab, horizontal shear strength, m-k method, artificial neural 
network (ann) 

 
 

1. INTRODUCTION 
 

Steel-concrete composite slab is a structurally efficient combination of constituents as it 
exploits the tensile resistance of the steel and compressive resistance of the concrete in 
effective manner. Some of the important benefits are: it acts as slab reinforcement; offers an 
immediate working platform; saves up to 30% material; and the most important benefit from 
practical consideration is easy and fast construction (Figure 1). 
 
 

2. COMPOSITE FLOOR SYSTEM-MODES OF FAILURE 
 
The capacity of the composite slab should be sufficient to resist the factored load for the 
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ultimate limit state. In a profiled steel deck, there are three possible modes of failure; 
• Flexural failure at section 1 – 1 
• Longitudinal shear failure at section 2 – 2 
• Vertical shear failure at section 3 – 3.  

 
Figure 2(a) shows the location of failure planes. Figure 2(b) shows the three modes in a 

plot of 
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. Here Vt is the external shear force at the support section and the other 

notations are explained after the equation 1. The most usual one is the longitudinal shear 
failure. For determining the longitudinal shear failure, the Eurocode 4 [1] suggested the 
following two methods; 

• m - k test 
• Partial Interaction method  

 
In both of them, the shear resistance has to be determined by full scale slab tests.  
In the m – k method, the maximum design vertical shear V (causing longitudinal shear 

failure) for a width of slab b should not exceed the design shear resistance Vl. Rd which is 
determined from the following semi-empirical relation (EC 4, Cl. 7.6.1.3.2): 
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where:  b = width of the slab in mm 

dp = Depth of the profile in mm  

 

Figure 1. Details of composite profiled deck slab 
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Figure 2(a).  Modes of failure of composite slab 

 

 

Figure 2 (b). Three modes of failure of composite slab 

 
Ls  = Length of the shear span in mm 
Ap = Area of cross section the profile in sq. mm 
m & k = design values for the empirical factors obtained from tests carried out in 

accordance with clause 10.3.1 of EC 4, in N/mm2 [1.2] 
vsγ  =  Partial safety factor for shear connection (1.25) 

ht =  Depth of the concrete slab 
W =  Applied Load 
Normally, fabricators of steel sheeting provide engineers and builders with design tables 

for commonly used spans and thicknesses in order to facilitate the design of composite slabs. 
However, engineers who need to justify their calculations, or design slabs with non-standard 
dimensions generally will not have the necessary information required to carry out the 
calculations on which these design tables are based. This is because the information in the 
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tables is determined by using the experimental values. Similarly, a fabricator wanting to 
develop a new sheeting profile currently does not have the means necessary to predict the 
degree to which it will be able to act compositely with the cast-in- place concrete [3, 4]. 

Nagy and Szatmari [5] presented the behavior of profiled decks as well as a review of 
ongoing research approaches. A clear mention was made of the need of an alternative 
approach to get best profiled sheet cross-sectional geometries satisfying strength and 
stability constraints at the construction stage. According to the authors, questions including 
horizontal shear resistance and independence from test data are still to be answered. 
Literature review clearly indicates the need of design approaches free from the expensive 
and time-consuming experiments (Mohan Ganesh et al.[6, 7], Nagy and Szatmari [5], 
Crisinel et al. [3,4]). 

By considering the above points, the researchers are motivated to find the alternative 
solutions;  

• that can reduce the number of performance tests required or replace them with 
smaller elemental tests that are less expensive.  

• In the form of the numerical model to predict the composite slab strength.  
Hence, all the above problems are put together, the objective of the present work is to 

provide an Artificial Neural Network based numerical tool that can minimize hurdles in the 
design process and reduce the dependency on expensive and time-consuming experiments.  

 
 

3. NEURAL NETWORKS 
 

Artificial neural networks have been used recently to recognize complicated patterns and 
solution of problems too complex to be modeled accurately by traditional computing 
methods. Civil engineering applications of neural networks have increased in recent years 
and continue to increase. A state of the art review of journal articles on civil engineering 
applications of neural networks is presented in a recent article by Adeli [8, 9, 10]. 

Neural Networks are simplified models of the biological nervous system and, therefore, 
have drawn their motivation from the kind of computing performed by a human brain. 
Neural Networks exhibit characteristics such as mapping capabilities or pattern association, 
generalization, robustness and high speed information processing. ANN can be trained with 
the known values from collected data or from the test data and they can recall full patterns 
from incomplete, partial, or noisy patterns. The main advantages of the Artificial Neural 
Networks are: 

• Once appropriately trained, ANN works as model free estimator and it can be 
effectively used in solving the unknown or untrained instances of the problem.  

• ANN has more fault tolerance capabilities. 
• In future, whenever more data are available, further training can be done without 

starting from scratch. 
• Okabe et al. [11] have developed the neural network to estimate the joint stiffness 

values at the beginning stage of the structure. Sirca, G.F. and Adeli [10] have used 
Artificial Neural network model for finding the uplift load capacity of Cold-formed 
Metal Roof Panels. The neural network is a very effective tool and solved a large 
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number of structural engineering problems. 
In the present work Artificial Neural Network is used in the assessment of longitudinal 

shear strength parameters m and k of composite slab. The required design values of shear 
strength parameters are interpreted from the available m and k values by the neural network. 
For this, the sectional properties of the profiled deck and the corresponding m and k values 
are collected from various leading profiled deck manufacturers [12, 13, 14, 15] and the data 
are used to train an ANN which can over-ride the present practical difficulties and 
constraints. With proper training of the neural network, the proposed neural network model 
generates the values of m and k quite accurately.  

 
 
4. DEVELOPMENT OF ANN NETWORK FOR PROFILED DECK SYSTEM 

 
Most neural network applications are based on the back-propagation paradigm, which uses 
the gradient-descent method to minimize the error function [16]. Back-propagation was 
created by generalizing the Widrow-Hoff learning rule to multiple-layer networks and 
nonlinear differentiable transfer functions. Input vectors and the corresponding target 
vectors are used to train a network until it can approximate a function, associate input 
vectors with specific output vectors or classify input vectors in an appropriate way as 
defined. Networks with biases, a sigmoid layer, and a linear output layer are capable of 
approximating any function with a finite number of discontinuities [17].  

The back-propagation neural network is given its name due to its learning rule, where 
errors at the output nodes are back-propagated through the connections to update the weights 
of the connections. The back-propagation neural network and its variants are currently the 
most widely used networks in applications. 

Properly trained back-propagation networks tend to give reasonable answers when 
presented with inputs that they have never seen. This generalization property makes it 
possible to train a network on a representative set of input and target pairs and get good 
results without training the network on all possible input and output pairs [17]. 

There are generally four steps in the training process: 
• Determination of the training set 
• ANN Architecture 
• Training of the network 
• Generalization Capabilities 
 
 

5. DETERMINATION OF THE TRAINING SET 
 

The training data of m-k values and profiled deck properties are obtained from the various 
multinational manufactures; Precision Metal Forming Ltd., Cheltenham, UK [12]; Richard 
Lee Steel Decking Ltd., Ashbourne, UK [13]; Structural Metal Decks, Ltd., Ringwood, UK 
[14] and Ward Building Components, Malton, UK [15].   

The data sets like width of top flange, width of bottom flange, width of flange per pitch, 
thickness of profile, depth of profile are extracted from the design tables and manufacturers 
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manual. All the parameters of the profiled decks from the collected data are listed in Table 1 
(Figure 3) and compared with each other. The collected data are analyzed to obtain the 
minimum number of key parameters, having a substantial influence on the horizontal shear 
strength parameters of the deck. All the above data sets are critically compared with respect 
to the m and k values. Based on this, the following points are observed; 

 

Table 1. Dimensions of the collected profiled decks 

S. No. Specification b1 ‘mm’ b2 ‘mm’ b ‘mm’ b/b2 dp ‘mm’ t ‘mm’ 
1 Profile 1 130 38 152.5 4.01 51 0.9 
2 Profile 2 130 38 152.5 4.01 51 1 
3 Profile 3 130 38 152.5 4.01 51 1.1 
4 Profile 4 130 38 152.5 4.01 51 1.2 
5 Profile 5 130 40 150 3.75 51 0.9 
6 Profile 6 130 40 150 3.75 51 1 
7 Profile 7 130 40 150 3.75 51 1.2 
8 Profile 8 112.5 40 152.5 3.81 51 0.9 
9 Profile 9 112.5 40 152.5 3.81 51 1 

10 Profile 10 112.5 40 152.5 3.81 51 1.1 
11 Profile 11 112.5 40 152.5 3.81 51 1.2 
12 Profile 12 105 67 225 3.36 46 0.9 
13 Profile 13 105 67 225 3.36 46 1.2 
14 Profile 14 136 112 300 2.68 55 0.9 
15 Profile 15 136 112 300 2.68 55 1 
16 Profile 16 136 112 300 2.68 55 1.1 
17 Profile 17 136 112 300 2.68 55 1.2 
18 Profile 18 135 115 300 2.61 80 1.2 
19 Profile 19 140 120 300 2.50 50 0.9 
20 Profile 20 140 120 300 2.50 50 1 
21 Profile 21 140 120 300 2.50 50 1.1 
22 Profile 22 140 120 300 2.50 50 1.2 
23 Profile 23 119 129 300 2.33 80 0.9 
24 Profile 24 119 129 300 2.33 80 1.2 
25 Profile 25 133 140 333 2.38 60 0.9 
26 Profile 26 133 140 333 2.38 60 1 
27 Profile 27 133 140 333 2.38 60 1.2 
28 Profile 28 110 153 333 2.18 60 0.9 
29 Profile 29 110 153 333 2.18 60 1 
30 Profile 30 110 153 333 2.18 60 1.1 
31 Profile 31 110 153 333 2.18 60 1.2 
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• Contribution of k value in comparison to that of m value is less towards final 
horizontal shear resistance and is in the range of 20 % to 30 % only (Eq. 1). It is 
giving minimum effects. 

• Thickness of profiled sheet has less or no impact on the m and k values because the m 
and k values are same for all the thickness of profiled sheets (t) that varying from 
0.9mm to 1.2mm (the collected data of the 3 companies). 

• Shear stress intensity is more at the neutral axis of the deck; hence width of the top 
flange of the profiled sheet and dimples provided at this level are more effective. This 
will improve the value of frictional resistance of the profiled deck (m). 

• The depth of the profiled deck (dp) also has substantial influence on the horizontal 
shear resistance. 

 

 

 

 

 

    

b
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Figure 3. Cross section of trapezoidal profile (pitch length) 
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Figure 4.  Comparison of b2 vs m Figure 5.  Comparison of b vs m 

   
Width of top flange (b2) vs m, pitch length (b) vs m, thickness of profile (t) vs m and 

width of bottom flange (b1) vs m are plotted and is shown in Figure 4 to Figure 7. Based on 
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this, the following points are observed from the plots (Figure 4 and Figure 5) that; 
• In Figure 4 and figure 5, both the variations are similar except there is a horizontal 

shift between the two plots. It is decided that the ratio of top flange width and pitch 
length should be taken as an input parameter (I1) in the ANN in place of two variables 
b & b2.  

• In figure 6 and Figure 7, the points in the plots are not having systematic patterns and 
hence are not included in the as input in ANN model.  
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Figure 6.  Comparison of t vs m Figure 7.  Comparison of b1 vs m 

 
This curtailment in the number of ineffective input nodes of ANN leads to a smaller size 

network, which can be trained easily and effectively with the help of less number of training 
data and accurate output values can be predicted. In addition, training time is reduced 
considerably. Hence, ‘the ratio of top flange width to pitch length (I1)’ and ‘the depth of the 
profiled deck (I2)’ are identified as the most critical parameters and hence included in the 
input layer (I1, I2)  of the neural network, having two output nodes (O1, O2) giving m and k 
values for the deck (Figure 8). 

 
 

6. ANN ARCHTECTURE 
6.1 Network Size 
As discussed above the network has 2 inputs and 2 outputs, the neural network architecture 
is developed based on the trial and error method in the Matlab programming language. For 
this, various sizes of networks have been tried out from 2–2–2 to 2–8–2 and finally 2–4–2 
size networks is adopted and the performance value of the network is 0.130912. All the 
other networks gave less performance value than this 2–4–2 network and shown in figure 7. 
In this the following symbols are used to denote the various weights between the nodes; 
W1hi–Weight between Hidden & Input layer; W2oh–Weight between Output & Hidden 
layer; W13i , W25h–Bias Node in the Input,  Hidden Layer respectively (Not shown in Figure 
8). Figure 11 shows the performance function and convergence details.  
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i-Input Layer       h-Hidden Layer     o-Output Layer 

Figure 8. Architecture of neural network  

                    
6.2 Transfer Functions 
The transfer function in the first layer of neural network is tan-sigmoid and defined as [17], 

 

 ( ) ne1
1xf −+

=  (2) 

 
This transfer function maps the input to the interval (-1, 1) and the general plot is shown 

in Figure 9. The output layer transfer function is linear and plot is shown in figure 10. 
 

6.3 Method of Training - Scaled Conjugate Gradient Algorithm 
The conjugate gradient algorithm is chosen as the method of training the network because of 
the relative ease of implementation and quick learning convergence. Each of the conjugate 
gradient algorithms that has own methodology of a line search at each iterations. This line 
search is computationally expensive, since it requires that the network response to all 
training inputs be computed several times for each search. The scaled conjugate gradient 
algorithm (SCG), is designed to avoid the time-consuming line search developed by Moller. 
The basic idea of this algorithm is to combine the model-trust region approach (used in the 
Levenberg-Marquardt algorithm) with the conjugate gradient approach  [17]. 

 
6.4 Performance Function - Mean Square Error 
Mean square error (LMS) algorithm is a network performance function. It measures the 
network's performance according to the mean of squared errors. The least mean square error 
(LMS) algorithm is an example of supervised training, in which the learning rule is provided 

W1 W2 
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with a set of examples (Eq.3) of desired network behavior: 
 

  

Figure 9. Sigmoid transfer function Figure 10. Linear transfer function 

 
 {p1, t1}, {p2, t2},…, {pQ, tQ} (3) 

 
Here pQ is an input to the network, and tQ is the corresponding target output. As each 

input is applied to the network, the network output is compared to the target. The error is 
calculated as the difference between the target output and the network output (Eq. 4).  

 

 ∑∑
==

−==
Q

1k

2
Q

1k

2 ))k(a)k(t(
Q
1)k(e

Q
1mse  (4) 

 
The LMS algorithm adjusts the weights and biases of the network so as to minimize this 

mean square error. 
 
 

7. TRAINING OF THE NETWORK 
 

The training status is displayed for every 1000 iterations of the algorithm. The training of 
network is stopped if the number of iterations exceeded epochs, else if the performance 
function dropped below the goal, else if the magnitude of the gradient is less than the 
minimum gradient. But in most of the trials, the neural network has trained around 13000 
epochs to 15000 epochs (Figure 9) and after that the minimum amount of training only takes 
place or even further training is stopped in some cases. In this the following parameters are 
selected; 
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Figure 11. Convergenceof training data with goal 

 
• The parameter – iteration or show is set to 1,000. 
• The parameter – total iteration or epoch is set to 25,000.   
• The value of the training parameter - goal is 0.01. 
 After the training of the neural network, all the weights of the nodes from input layer 

(I1 & I2) to hidden layer (H1 to H4) including the bias in the input layer (BI) are listed in the 
following matrix form;  

 

 


















−−
−
−−

−

=



















0482.4070935.096507.1
75129.228074.051867.6

977.12577255.09327.22
4635.29235535.055916.4

1W1W1W
1W1W1W
1W1W1W
1W1W1W

342414

332313

322212

312111

 

 
All the weights of the nodes from the hidden layer (H1 to H4) to output layer (O1 & O2) 

including the bias in the hidden layer (BHL) are listed in the following matrix form; 
 

 







−

−
=








0520.00206.00090.00443.00257.0
1730.500156.706493.658280.766588.84

2W2W2W2W2W
2W2W2W2W2W

5242322212

5141312111  
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The feed-forward neural network is created and finally the whole network set is 
converted into simulink block set. Hence all the neural network details with input nodes; 
output nodes; bias nodes and the weights of each network connections from input layer to 
the hidden layer as well as the hidden layer to output layers including bias values are 
embedded in the simulink block set and simulink interface model diagram is shown Figure 
12. From this simulink model, the input values are directly feed in the Input Block set and 
required m and k values are obtained in the output block by simulating the network very 
easily. 

  

Figure 12. Simulink interface model 

 
 

8. GENERALIZATION CAPABILITIES 
 

The validation of ANN is done by cross checking its output with the available target data. 
Here all the m values are exactly matched without error and k values are also matched with 
errors. Due to the minimum number of data, one data is not considered for the training 
purpose and that data is used as a raw test data. A sample match on the one raw and one 
training data is shown in Table 2. The comparisons of the actual target output values and 
output from the neural network are given in Table 2.   
 

Table 2. The comparison of target output & actual output values 

Target Output Output from NN 
S.No Profile 

m k m k 

1. 

2. 

Profile 1-training data 

Profile 2-raw test data 

204.4 

121.3 

0.1562 

0.01254 

204.4 

120.05 

0.107 

0.041 

 
In the first case, the first output value m is perfectly matched with the target output data 

sets and second output value k is having 0.68 times of the target output value. For all other 
training sets also m values are exactly matched and k values are having some amount of 
errors. In comparison to the m value, the contribution of k value towards horizontal shear 

y {1} 

 p {1}    y {1}

P {1} 
 

Neural Network Output Block  Input Block 
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resistance is less (Eq. 1) and hence amount of error in the prediction of horizontal shear 
resistance will reduce. Hence, the total percentage of error in the neural network value is less 
than 10 % only.  

In the second case, additionally to check the general interpolation ability of the neural 
network, the value of raw test data is given to the input block and the output is obtained and 
is shown in the Table 2. 

However, because of the limited number of experimental values currently available, the 
neural network model needs to be further trained and validated with newly available data 
that can improve the performance of the network [18]. A trained network with additional 
training cases can be readily updated by means of adaptive training methods. 

 
 

9. CONCLUSIONS 
 

This study demonstrates the feasibility of using multilayer feed forward neural networks to 
learn the complicated nonlinear mapping between the input parameters associated with 
profiled deck and the output parameters m and k associated with horizontal shear resistance 
of the composite deck. The main observations of present study are as follows;  

• With the aim to reduce the size of ANN and based on the available data, two 
parameters b/b2 and depth of profiled deck are identified as the most critical 
parameter for the assessment of horizontal shear resistance. 

• With the constraints of less training data, 2–4–2 ANN architecture is found 
appropriate for the problem.  

• The developed ANN is computationally efficient as well as it produces reasonably 
accurate results. 

• Lack of training data is realized. By adding some more new data of profiled decks, 
the range and accuracy of the present network can be improved.  

The neural network model can be useful in checking preliminary as well as routine designs 
because it provides reasonable results without demanding much computational effort. 
Preliminary studies using a limited data set of experimental tests showed promising results. 
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