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ABSTRACT 
 

In this paper experimental and computational modeling methods for studying multiphase 
flows in porous and fractured media are studied. Particular attention was given to the flows 
in a laboratory-scale flow cell model.  It is shown that the gas-liquid flows generate fractal 
interfaces and the viscous and capillary fingering phenomena are discussed. Experimental 
data concerning the displacement of two immiscible fluids in the lattice-like flow cell are 
presented.  The flow pattern and the residual saturation of the displaced fluid during the 
displacement are discussed.  Numerical simulations results of the experimental flow cell are 
also presented.   

The numerical simulation results for single and multiphase flows through rock fractures 
are also presented.  Fracture geometry studied was obtained from a series of CT scan of an 
actual fracture.  Computational results show that the major losses occur in the regions with 
smallest apertures.  An empirical expression for the fracture friction factor is also described. 
 Applications to CO2 sequestration in underground brine fields depleted oil reservoir 
stimulation are discussed.      

 
Keywords: Multiphase flows, flow in porous media, fractured media, immiscible flows, 
computer model, reservoir engineering 

 
 

1. INTRODUCTION 
 

Underground sequestration of CO2 in brine formations and stimulation of depleted oil and 
gas fields have attracted considerable attention in recent years.  These require injecting gases 
into liquid saturated underground reservoirs on massive scale.  The technology of injection 
of gas into liquid saturated porous media is only the latest of many that demand a better 
understanding of the fundamentals of multiphase flow through porous media. In particular, 
despite much research, viscous fingering at the interface of two immiscible fluids is not well 
understood.  In addition, geological reservoirs are commonly composed of fractured rocks.  
The flow properties in rock fractures are poorly understood.   
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In the present study, an experimental method for providing a fundamental understanding 
of fingering phenomena in geological sequestration is described.  A “two-dimensional” flow 
cell of square-lattice networks is used in the setup as the porous media.  Gas was injected at 
a constant rate into the flow cell, which was initially saturated with water.  The entire 
displacement process was recorded until a stable state is reached.  Image processing was 
used to provide the displacement flow pattern and gas saturation.   

Two different modeling approaches were used to simulate gas displacements through 
networks that are similar to those of the physical experiment. These models consider a 
network grid structures with a rather simplified geometry.  The first numerical model (is 
referred to as the network model) accounts for the effect of capillary pressure and viscous 
pressure drops in the network pores. The other numerical model was developed using the 
“volume-of-fluid” (VOF) of  FLUENTTM code.  The model solves the Navier-Stokes 
equation for both gas and the liquid phases. Here a grid of square cross-section flow 
channels with random widths and shape is generated, and the gas and liquid flows are 
numerically evaluated.  

The results of the numerical models are compared with those obtained from the 
laboratory flow cell experiments. Particular attention is given to the fingering process, the 
effects of channel size distribution, and the evaluation of fractal dimension of the gas-liquid 
interface.   

Flows through rock fractures are also studied.  The computational model for the 
geometry of the fracture is constructed using CT scan of a real fracture.  Sample simulated 
flow fields though the fractures are also presented. An empirical formula for friction factor 
for fracture flow is also discussed. 

 
 

2. EXPERIMENTAL FLOW CELL 
 

The main component of the experimental equipment is the flow cell, which was fabricated 
by sand blasting channels of random width into a glass plate, onto which a second, cover-
glass plate was sealed.  For the experiment reported in this paper, the size of the flow cell 
was 100mm×100mm, with an average channel depth of 0.3mm.  The width of channels in 
the cell is uniformly distributed between 0.2mm-0.8mm. To study the flow patterns that 
occur when CO2 is sequestered underground, the cell first is saturated with water, and then 
gas is injected until residual saturations of the two fluids are obtained.  Different injection 
rates of displacing gas are used that lead to different capillary numbers.  The mass of the 
displaced water, the pressure drop across the cell, and the flow pattern image are recorded at 
different times during each run. The diagram of the experimental setup is shown in Figure 1.  

 
 

3. NETWORK MODEL 
 

The network model of two-phase flow in porous media is intended to incorporate, as 
realistically as possible, the capillary pressure that tends to block the invasion of narrow 
throats and the viscous pressure drop in a flowing fluid. A two-dimensional porous medium 
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is modeled as a diamond lattice, consisting of pore-bodies of volume, l 3, at the lattice sites, 
connected by throats of length, l , with a randomly chosen cross-sectional area between 0 
and b l 2.  This model is more general and perhaps more flexible than the other recently 
developed network models because both the throats and the pore-bodies have finite volume. 
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Figure 1. Experimental flow system 

 
Throats in the model have elliptical cross-sections with a constant ratio, b, of the width of 

the ellipse to the height of the ellipse.  This ratio is easily varied to incorporate both circular 
cross-sections used in many comparable models and more oblong throats found in these 
experimental models, such as those described in this paper. When an interface enters one of 
the throats, the pressure drop across the meniscus is fixed by contact angle, θ, the depth of 
the throat, h, and the surface tension, σ:  That is 

 

 





 +θσ=

bh
1

h
1cosPcap  (1) 

 
where bh is the width of the elliptical throat. The flow velocity is given by the throat 
conductance times the total pressure drop across the throat, 

 
 q = gthroat  (Pnw - Pw - Pcap), (2) 

 
where Pnw and Pw are the pressures in the non-wetting and wetting fluids, respectively.  

The transmissibility (conductance) of the throat is obtained by solving the Navier-Stokes 

Archive of SID

www.SID.ir



G. Ahmadi 324 

equation for steady state flow through a tube of constant elliptical cross-section. i.e., 
 

 gthroat = 
)M)x1(x)(1b(4

bA
2

w

2
throat

−++πµ l
, (3) 

 
where Athroat is the cross-sectional area of the throat, x is the fraction of the throat of length 
l  which is filled with defending fluid,  and M = µnw/µw, the ratio of the non-wetting, 
invading fluid's viscosity to that of the wetting, defending fluid.  When b=1, Equation (3) 
reduces to the Poiseuille equation used for throats with circular cross-section.  From 
Equation (2) it follows that the non-wetting fluid advances if the pressure difference 
between the pore filled with non-wetting fluid and the pore filled with wetting fluid exceeds 
the capillary pressure.  Otherwise the non-wetting fluid will retreat.   

Naive use of Equation (1) causes numerical difficulties because of the blocking that can 
occur if the non-wetting fluid is at the entrance to a throat, when the sum of the pressures 
found in Equation (2) is small.  In such cases, a very small time step may be required.  To 
solve this problem, we assume a sinusoidal increase in Pcap from zero at each throat inlet to 
the value in Equation (1) at the throat’s center.  

Volume conservation of the incompressible fluid dictates that the net volume flow, q, out 
of any pore-body, j, must be zero.  Application of volume conservation to the situations at a 
particular pore leads to 

 

 ( ) ( )∑∑∑ +=








i
iii

i
iij

i
i PgfPgPg  (4) 

 
where the factor f is either zero, +1, or –1 if there is i) no meniscus in the throat, ii) the pore-
body, j, is filled with non-wetting fluid and the connecting pore-body, i, is filled with 
wetting fluid, or iii) the pore-body is filled with wetting fluid and the connecting pore-body 
is filled with non-wetting fluid, respectively.   

Once the location of the interface is known, the program iterates Equation (4), updating 
the pressure field until convergence is achieved to within a small residual.  Then, the 
interface is advanced through a time chosen to be small enough to avoid spurious local 
oscillations without unnecessarily long program run-times. Having determined the interface 
and chosen the time step, we have attempted to make the flow rules as non-restrictive as 
possible.  A full description of the network model and the model flow rules are given by 
Ferer et al. (2001). 

 
 

4. VOLUME OF FLUID MODEL 
 

The other numerical model uses a "volume of fluid" (VOF) method to describe the 
boundaries between two immiscible fluids in a porous media.  Here the FLUENTTM code  is 
used  in the simulation.  In this approach, a grid of square cross-section channels with 
random size and shape is generated to simulate the experimental flow cell.  In the VOF 
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approach a single set of Navier-Stokers equation given as 
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is solved throughout the domain.  In Equation (5), ρ is the averaged density of gas and water 
in cell, µ is the averaged viscosity, ui is the velocity of gas and water in each grid, Fj is the 
source term, which accounted for the surface tension between the liquid and gas.  

The volume fraction of gas and water is governed by the following continuity equation: 
 

 0
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u
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j
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+
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ε∂

 (6) 

 
where εk is the volume fraction of water or of air.  

Interface between the liquid and gas is tracked by the volume fraction of water in the 
computational cell volume.  In each grid, the slope of the gas-liquid surface is determined 
first, and then a line is constructed based on the fraction of water. A detailed description of 
the VOF method was given by Hirt and Nichols (1981).  

The VOF analyses were performed for a variety of capillary pressures and capillary 
numbers and the results are compared with the experimental data.   

 
 

5. FLOW CELL RESULTS 
 

This section presents the results and analysis of the flow patterns during the constant 
injection experiment in the flow cell.   Comparison between the experimental flow patterns 
and that of numerical simulations is also presented. In addition, the variation of the 
measured residual saturation under various conditions is discussed. 

In the experiment, two types of flow patterns were observed during the displacement of 
two immiscible fluids: i) capillary fingering, which was dominated by capillary pressure in 
the random network of throats and occurs at a very low capillary number; and ii) viscous 
fingering, which was dominated by the gas viscosity and occurs at high capillary numbers.  
Figure 2 shows typical capillary fingering and viscous fingering recorded in the experiment. 
 The capillary fingering shown in Figure 2(a) occurs when the capillary number is 7.36 × 10-

7.  It is seen that as the gas penetrates into the flow cell, it formed fingers, which reconnect 
and trap clusters of liquid (water). The size of the water clusters varies from the width of the 
channel to the order of the flow cell size.  Figure 2(b) shows a viscous fingering flow pattern 
for a capillary number of 3.25×10-5.  In this figure, the gas fingers grow in a branching, 
dendritic pattern with much fewer clusters of trapped water.  
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(a) capillary fingering            (b) viscous fingering 

Figure 2. Flow patterns observed in the experiment for different capillary numbers. 

 
Figure 3 shows infiltration patterns from the network model that correspond to both viscous 
and capillary fingering types. Figure 3(a) is for a very low velocity and thus low capillary 
number flow.  It exhibits capillary fingering similar to that of Figure 2(a), with many 
clusters of trapped water cells behind the interface.  Figure 3(b) was simulated at a much 
higher velocity and thus at a high capillary number.  This figure shows long branching 
fingers and few clusters of trapped water, similar to Figure 2(b), which is the characteristic 
of viscous fingering. 

 

             
(a)                                                           (b) 

Figure 3. Infiltration patterns of capillary and viscous fingering from the network model. 

 
Flow structures from the VOF model is shown in Figure 4.  For a low gas injection 

velocity, Figure 4(a) presents a flow pattern similar to those of Figure 2(a) and 3(a). As the 
gas injection velocity increased to a much higher value, the flow pattern developed from 
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reconnect-trap-water-clusters to dendritic fingers, which is similar to those of Figures 2(b) 
and 3(b).  

         
(a)             (b) 

Figure 4. Flow patterns obtained form volume of Fluid model with different  
injection flow rates 

 
In some instances, flow patterns occurring during the displacement of two immiscible 

fluids have been shown to have fractal characteristics (Feder, 1988).  Our findings are 
consistent with these observations.  In this study, a box counting method is used to obtain 
the relationship between the number of boxes containing gas, which is denoted as N, and the 
widths of each box, referred to as L.  Figure 6(a) presents the results in logarithmic scale, 
which indicates that N has a power law relationship with L given as 

  
 N=L-α, (7) 

 
where α is the fractal dimension. 
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Figure 5. Box counting results of experimental data. 
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Figure 6(a) presents the variation of the fractal dimension with capillary numbers. It is 
observed that the experimentally measured fractal dimension increases from 1.6 to 1.85 with 
capillary number. This results is consistent with the fractal dimensions of Invasion 
Percolation and DLA are reported to be in the range of 1.7-1.9 (Ferer, 1991).   Note that the 
Invasion Percolation (IP) model is a quasi-static model based on the assumption that at each 
time step the displaced fluid invades the interfacial channel with the lowest capillary 
pressure.  IP is a good method of modeling the process of pure capillary fingering.  The 
diffusion-limited aggregation (DLA) model, which is based on the random walk of particles 
through a network, has been shown to be an effective model for viscous fingering process.  
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Figure 6.  Fractal Dimensions obtained from experimental data and network models for 

different capillary numbers 
 
An alternative technique is used for evaluating the fractal dimension of the network flow 

model shown and the results are shown in Figure 6(b).  This approach is based on the 
relationship between average position of the interface and time.  For steady and stable flows, 
the position of the interface is a linear function of time.  However, in cases of viscous and 
capillary fingering, the mean position of the interface exhibits a power law relationship with 
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time given as 
 

 ( )1D1 fctx −>=<  (8) 
 

where <x> is average position of the infiltrating fluid, t is time, c is some constant, and Df is 
the fractal dimension. Figure 6(b) shows a plot of fractal dimension versus capillary number 
for the network model results.  Here the fractal dimension varies between 1.65 and 1.85 that 
are consistent with the range obtained in the experiment and with theoretical results of DLA 
and IP models. 

Figure 7 shows the variation of the gas saturation at the stable state and break through 
point with capillary number. During the process of displacement, the gas penetrates the flow 
cell from the inlet manifold,  the break through point refers to the moment that the first 
branch of gas reaches the outlet manifold of the flow cell, while the stable state indicates the 
situation that the gas saturation and gas flow pattern do not vary with time any more. It is 
seen that as the capillary number increases from 10-8 to 10-3, which corresponds to the 
variation of gas injection flow rate from 5 µl/min to 100 ml/min, the stable gas saturation 
first decreases slightly to a minimum value, and then increases with the capillary number. 
However, as the stable gas saturation increases with capillary number, the gas saturation at 
the break through point keeps constant. The transition of the flow pattern from capillary 
fingering to viscous fingering can account for the decrease in the stable gas saturation at a 
very small capillary number, which needs to be proven with additional experimental data.  A 
linear increase in the stable gas saturation at a large capillary number indicates that the 
stable gas saturation is proportional to the gas injection flow rate in a certain range.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Capillary Number

G
as

 S
at

ur
at

io
n

Break through point
Stable state

 

Figure 7.  Gas saturation at the stable state and break through point with  

different capillary numbers. 
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To compare the experiment results with that of the network model, Figure 8 shows the 
average position <x> of the infiltrating gas with time in a logathrimic scale. Here the <x> is 
the first moment of mass, which is defined as (Ferer, 1991) 

 

 
∫
∫=

dx)t,x(S

dx)t,x(xS
x  (9) 

 
It is seen that for different gas injection flow rates, <x> increases with time until it 

reaches a constant. According to Equation (8), the fraction dimension Df  calculated from 
Figure 8 varies from 1.69 to 1.75, which corresponds to the results in Figure 6.  
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Figure 8. Time variation of average position with different gas injection flow rates. 

 
 

5. FRCTURE FLOW ANALYSIS RESULTS 
 

Four sections of the fracture that are analyzed in this study are shown in Figure 2.  The 
length of the fracture is 10 cm and the fracture aperture varies from a minimum of 240 µm to 
a maximum of 1.5 mm. There are also very few regions with larger height and there are 
several areas where the fracture is closed.  In the sections shown in Figure 2, which are 
selected for flow analysis, the minimum height is 240 µm.  These sections do not have 
completely obstructed regions and are selected so that the two-dimensional flow simulation 
could be performed.   
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For a range of flow rates (per unit width) from 0.03 mm2/s to 3 mm2/s, flows in various 
fracture sections are simulated. Computational grids of 15,000 to 17,000 cells are generated 
using GAMBIT™ preprocessor for different fracture sections.  FLUENT™ code is used for 
the flow simulation analysis. Single-phase flows of air are studied.  For air, a density of 
1.225 kg/m3 and a viscosity of kg/m.s 101.8 -5× are assumed.   

 

 

Figure 9. Several sections of the induced fracture 

 

 

Figure 10. Pressure contours across section (a) of the fracture for various flow rates for airflow 
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Figure 10 shows the contour plot for variations of static pressure in fracture section (a) 
for several airflow rates in the range of 0.03 mm2/s to 3 mm2/s.  This figure shows a roughly 
linear variation of the pressure along the fracture.  The results for fracture sections (b)-(d) 
are qualitatively similar to the one shown in Figure 10 and therefore are not shown here.  It 
is seen that the amount of pressure drop increases in direct proportion to the flow rate. 

The velocity vector fields for airflow in section (a) and for a flow rate of 21.6 mm2/s is 
plotted in Figure 11, where the computational grid is also shown.  It is seen that the flow is 
channeled into one main high-speed stream with many dead zones of very low velocities.  
The maximum velocity is about 16 cm/s for airflow. 

 

 

Figure 11. Velocity vectors and the grid schematics in a segment of fracture section (a) for flow 
rate of 21.6 mm2/s for air 

 

 

Figure 12. Computed variation of pressure-drop with fracture flow rate for different  
sections for airflow 
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The computed variations of pressure drop across the fracture for sections (a)-(d) for a 
range of flow rates for air are shown in Figure 12. The pressure drop varies from 0.01 to 20 
Pa when the flow rate changes from 0.03 mm2/s to 3 mm2/s (Reynolds numbers varies from 
0.002 to 0.209).  It is seen that the pressure drop increases linearly with the flow rate for all 
four sections.  While the pressure drop values are comparable, the highest pressure drop 
occurs in section (b), the lowest in section (a), and order in different sections are given as, 

adcb PPPP ∆>∆>∆>∆ .   
Additional simulation results show that the highest pressure drops occur in regions with 

lowest aperture, and the smallest aperture regions are responsible for more than 60% to 70% 
of the fracture pressure drops.   Based on the simulation results for a wide range of flow 
rates, a semi-empirical expression for the friction coefficient was derived.   That is, 

 

 ( ) 100Re                               , Re25.01
Re
144f HH

H

687.0 ≤+= . (10) 

 
Where H  us the mean minus one standard deviation of the aperture height, and the 

Reynolds number is given as, 
 

 
ν

=
QReH  (11) 

 
Equation (10) preserves the inverse dependence of the friction factor with the Re at small 

Reynolds numbers and has the conventional nonlinear dependence on Re due to laminar 
inertial effects at higher Reynolds numbers. 

 
 

7. CONCLUSIONS 
 

Experimental and computational studies of displacement of immiscible fluids in a flow cell 
are performed.  Sample computational results for flow through rock fractures are also 
presented.  The flow patterns during the displacement are analyzed.  On the basis of results 
presented, the following conclusions are drawn: 

• For the flow cell, as the capillary number increases, stable saturation of the 
displacing fluid first decreases when the capillary number is small, then increases 
with further increase of the capillary number. 

• For the flow cell, the break through saturation does not vary appreciably with the 
increase of the capillary number. 

• Fractal dimension of the flow pattern at stable state increases with the capillary 
number. 

• For the fracture, the bulk of the flow paths through the central channel. 
• Major fraction of the pressure drop occurs in the region with smallest aperture. 
• Friction factor for the fracture may be used for pressure drop evaluation. 
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