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ABSTRACT 
 

The aim of the present work is two fold. In one hand it shows to mathematicians how the 
apparently pure mathematical concepts can be applied to the efficient solution of problems 
in structural mechanics. In the other hand it illustrates to engineers the important role of 
mathematical concepts for the solution of engineering problems. 

In this paper a number of applications of graph theory in structural mechanics are 
presented. These applications simplify the analysis of structures and make their optimal 
analysis feasible. For each case, the main problem is stated and then the formulation together 
with illustrative examples is presented. 

 
Keywords: optimal structural analysis, drawing, graph theory, degree of statical 
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1.  INTRODUCTION 
 

Euler began his paper on graphs by discussing a puzzle, the so-called Königsberg Bridge 
Problem as early as 1736, Ref.  [1]. The various parts of the city were connected by seven 
bridges. The problem arose: Is it possible to plan a tour in such a manner that starting from 
home, one can return there after having crossed each river bridge just once? 

Euler constructed a graph for this problem and showed that this graph cannot be traversed 
completely in a single circular path; in other words, no matter at which vertex one begins, 
one cannot cover the graph and come back to the starting point without retracing one’s steps. 
Such a path would have to enter each vertex as many times as it departs from it; hence it 
requires an even number of edges at each vertex, and this condition is not fulfilled in the 
graph representing the map of Königsberg. In this historical problem the incidence of 
different parts of a city is considered with edges representing the bridges, i.e. even the first 
graph model has been such a general one and has not been confined to points and edges as 
imagined by some users. 

It took a hundred years before the second important contribution of Kirchhoff [2] had 
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been made for the analysis of electrical networks. Cayley [3] and Sylvester [4] discovered 
several properties of special types of graphs known as trees. Poincaré [5] defined in 
principle what is known nowadays as the incidence matrix of a graph. It took another 
century before the first book was published by König [6]. After the second world war, 
further books appeared on graph theory, Ore [7], Behzad and Chartrand [8], Tutte [9], Berge 
[10], Harary [11], Gould [12], Wilson and Watkins [13], and West [14], among many others. 

Graph Theory has found many applications in engineering and science, such as chemical, 
civil, electrical and mechanical engineering, architecture, management and control, 
communication, operational research, sparse matrix technology, combinatorial optimisation, 
and computer science.  

Though graph theory had been used implicitly in the work of pioneers of structural 
analysis like Müller Breslau [15] and Henneberg [16], however, explicit applications can be 
found in the work of Kron [17], Langefors [18,19], Henderson [20,21], Russopoulos [22], 
Samuelsson [23], Dimaggio [24], Fenves [25], Spillers [26], Cassell et al. [27], Henderson 
and Maunder [28], Wiberg [29], Kaveh [30-36]. Theory of graphs is also applied indirectly 
in structural mechanics. Such applications consist of using graphs for structuring the 
structural matrices and partitioning for parallel computing. 

Recent advances in structural technology require greater accuracy, efficiency and speed 
in the analysis of structural systems, referred to as Optimal Structural Analysis. It is 
therefore not surprising that new methods have been developed for the analysis of the 
structures with complex configurations. 

The requirement of accuracy in analysis has been brought about by need for 
demonstrating structural safety. Consequently, accurate methods of analysis had to be 
developed since conventional methods, although perfectly satisfactory, when used on simple 
structures, have been found inadequate when applied to complex and large-scale structures. 
Another reason why greater accuracy is required results from the need to achieve efficient 
and optimal use of the material, i.e. optimal design. 

The methods of analysis that meet the requirements mentioned above, employ matrix 
algebra and graph theory, which are ideally suited for modern computational mechanics. 
Although this paper deals primarily with analysis of structural engineering systems, it 
should be recognized that these methods are also applicable to other types of structures. The 
concepts presented in here are not only applicable to skeletal structures, but can equally be 
used for the analysis of other systems such as hydraulic and electrical networks. These 
concepts can easily be extended to finite element methods. 

Analysis of systems and in particular structures can be decomposed into three phases:  
1.  Approximation, followed by choosing an appropriate model. 
2.  Specifying topological properties followed by a topological analysis. 
3.  Assigning algebraic variables, followed by an algebraic analysis.  
Such a decomposition results in a considerable simplification in the analysis and leads to 

a clear understanding of the problems involved in studying the structural behaviour. 
For the optimal analysis of structures, three conditions need to be fulfilled, Kaveh [1-3]. 

The structural matrices (stiffness or flexibility) should be sparse, properly structured (e.g. 
banded) and well-conditioned. The latter property is not purely topological and is treated 
elsewhere, Kaveh [37], thus only problems relevant to sparsity and proper structuring is 
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studied in this article. 
Pattern equivalence of structural matrices and matrices associated with graph theory 

simplifies structural problems and allows advances made in this field to be transferred to 
structural mechanics. As an example, for rigid-jointed frames the sparsity of flexibility 
matrices can be provided by construction of sparse cycle adjacency matrices. Similarly, 
using sparse cut set bases, the formation of sparse stiffness matrices become feasible. Proper 
structuring of the flexibility and stiffness matrices of a structure can also be accomplished 
by structuring the pattern of cycle and cut set adjacency matrices of its model, respectively. 

This paper is devoted to presenting methods involved in optimal structural analysis which 
use graph theory to simplify the analysis. 

Some of the mathematical definitions used in this paper are presented in the next section. For 
further concepts and definitions the reader may refer to the author's recent book, Kaveh [36]. 

 
 

2. DEFINITIONS FROM GRAPH THEORY 
 

In order to describe the concepts and methods of this paper in a self-contained manner, a 
number of definitions are presented in the following: 

A graph S consists of a set of elements called nodes (vertices) and a set of elements 
called members (edges), together with a relation of incidence, which associates two distinct 
nodes with each member. A graph is called a topological graph if its nodes are identified by 
points, and its members are taken as arcs or lines. A graph is called connected if every pair 
of its nodes is joined together by a path. A subgraph of S is a graph having all its nodes and 
members in S. Two nodes of S are called adjacent if these nodes are the end nodes of a 
member. A member is incident to a node if the node is an end node of the member. 

A path is a finite sequence of alternately distinct nodes and members of the graph. A path 
becomes a cycle if the first node and the last node of the path coincide. A cut set is a set of 
members of S such that the removal of these members from S results in a disconnected graph. 

A maximal set of independent cycles (cut sets) is known as a cycle (cut set) basis of S. 
The cardinality of a cycle basis is the same as the first Betti number b1(S) = M(S) − N(S) + 
b0(S) of S, where M(S), N(S) and b0(S) are the number of members, nodes and components 
of S, respectively. A cycle adjacency matrix is a b1(S)×b1(S) matrix consisting of 0 and 1 
entries. An entry is 1 if the corresponding cycles have at least a member in common and 0 
otherwise. A cut set adjacency matrix has N(S) - b0(S) columns and rows, and is defined 
analogously. 

A graph is called planar if it can be embedded in the plane with no members crossing 
each other. A bipartite graph consists of two sets of nodes A and B such that only the nodes 
of A are joined to the nodes of B by members of the graph. A graph is called clique if all of 
its nodes are connected to each other. 

As mentioned before, in a topological graph the nodes are shown by points and the edges 
are usually identified by arcs or lines. However, an abstract graph can model a much more 
general set of object and relations. The following problem shows this general aspect even in 
the earliest application. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. Kaveh 396 

3.  DEGREE OF STATIC INDETERMINACY OF SPACE STRUCTURES 
 
The first step in the analysis of a structure by means of the force method consists of 
determining its degree of indeterminacy (DSI). Efficient methods for this purpose are 
developed by Kaveh [35,38]. For space structures, an efficient approach can be developed 
by drawing the structural model on the plane, using two simple theorems presented in the 
following: 

 
Definitions: A more general concept than that of an embedding is that of  “drawing”, where 
the restriction that the members be disjoint is removed. A drawing Sp  of S is a mapping of S 
into a surface. The nodes of S go into distinct nodes of Sp . A member and its incidence 
nodes map into a homeomorphic image of the closed interval [0,1] with the relevant nodes. 
A good drawing is one in which no two members are incident with a common point, and no 
two members have more than one point in common. A common point of two members is a 
crossing. An optimal drawing in a given surface is the one exhibiting the least possible 
crossings. The number of crossing points of S after drawing on a plane or a sphere, Sp , is 
denoted by ν(Sp ). For cases where the drawing is optimal, ν(Sp ) becomes the crossing 
number c(Sp ) of the graph S. 

 
Theorem A: For a space frame S, the degree of static indeterminacy is given by 
 
 γ(S) = 6b (S )1

p  = 6[R (S )i
p  − ν( Sp)], (1) 

 
where R (S )i

p  is the number of internal regions of  Sp, 
 
 R (S )i

p  = R(Sp) − 1 (2) 
 

Example: For a space frame depicted in Figure 1(a), a drawing may be considered as shown 
in Figure 1(b). Using Eq. (1) results in 
 
 γ(S) = 6[20 − 6] =  84. 

 

               (a) A space frame S                       (b) A drawing Sp of S 

Figure 1. A space frame with an arbitrary drawing 

www.SID.ir



Arc
hi

ve
 o

f S
ID

ADVANCES IN COMPUTATIONAL MECHANICS VIA GRAPH THEORY 

 

397

Theorem B: For a space truss S, the degree of static indeterminacy is given by 
 

 γ(S) = ν( Sp) − M (S )c
p , (3)  

 
where M (S )c

p  is the number of members required for the full triangulation of Sp. 
 

Example: A space truss S in the form of a double layer grid, supported in a statically 
determinate fashion together with a drawing Sp of S are shown in Figure 2. Employing Eq. 
(3) leads to 

 
 γ(S) = 38 − 17 = 21. 

 

 

(a) A double layer grid S              (b) A arbitrary drawing Sp of S 

Figure 2. A space truss S and an arbitrary drawing of S 

 
Simple proofs of the above two theorems may be found in Kaveh [3]. 

Obviously, it is advantageous to use optimal drawings in order to reduce the number of 
counting for calculating γ(S) of structures. An optimal drawing of a structure with zero 
crossing number has an attractive property, since the cycles bounding the finite regions of 
the drawing form a suitable cycle basis, known as the mesh basis. 

The methods of this section not only results in a simple approach for calculating the DSI 
of space structures, they also provide additional information on the distribution of the static 
indeterminacy in the entire domain of the structures. 

 
 

4. FORCE METHOD OF FRAME ANALYSIS 
 

The force method of frame analysis requires the formation of suitable statical bases 
corresponding to sparse flexibility matrices. Due to the pattern equivalence of the flexibility 
matrix of a frame and the cycle adjacency matrix of its graph model, the problem can be 
transformed into the formation of a maximal set of independent cycles, known as a cycle 
basis, Kaveh [40-42]. In order to have a sparse flexibility matrix for a frame structure whose 
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elements have the least overlaps should be selected (optimal cycle basis). The formation of 
an optimal cycle basis is not simple, however, such a basis is quite often among cycle bases 
of the least length (minimal cycle bases). There are various methods for the selection of 
subminimal cycle bases, some of which will be described in the subsequent sections. 

The follow chart in Figure 3 illustrates some of the methods available for the flexibility 
method of structural analysis. 

 

Flexibility Analysis
Skeletal Structures

Degree of Static
Indeterminacy Drawing

r=B  P+B  X0 1

Matrix B

Matrix B

0

1

An SRT

Crossing Number

CW-Complex
Embedding

Manifold
Embedding Embedding

Disk Space

Admissible
Expansion

Minimal
Cycle Basis

Optimal
Cycle Basis

Genus Thickness

AlgebraicMethods Graph Methods Topological Methods

Gauss-Jordan LU-Factorization Turn-Back

 

Figure 3.  Flow chart for the flexibility analysis of rigid-jointed skeletal structures 

 
It can be seen that how the three well-known topological invariants of graphs, namely 

crossing number, thickness and genus of the graphs can play important role in an efficient 
analysis of frame structures by the force method.  
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5. GENERALIZED CYCLE BASES; INTERCHANGE GRAPH 
 

For a general skeletal structure, a statical basis can be formed on a maximal set of subgraphs 
defined as a generalized cycle basis (GCB) of S, Kaveh [30,32]. Such a basis has been 
defined as the consequence of generalizing the first Betti number b (S)1  = M(S) − N(S) + 
b (S)0  to (S)1γ  = aM(S) + bN(S) + c (S)0γ . The formation of a generalized cycle basis can 
be time consuming, however, for planar trusses the problem can be simplified by using a 
special graph, known as the interchange graph. An interchange graph I(S) of S is a graph 
whose vertices are in a one-to-one correspondence with the triangular regions of S (when S 
is embedded in the plane) and two nodes are connected by an edge if the corresponding 
triangles have a common member. 

In order to form a generalized cycle basis of S, one can generate a cycle basis of I(S), and 
with a back transformation the elements of the generalized cycle basis can then be obtained, 
Kaveh [35]. 

 
Example: A planar truss as shown in Figure 4(a) is considered. The interchange graph of S 
is formed as depicted in bold lines in Figure 4(b). A cycle basis of I(S) consists of 11 
regional cycles leading to 18 subgraphs forming a GCB of S. On each subgraph one self-
equilibrating stress system (S.E.Ss) can be constructed, corresponding to a suitable statical 
basis. Typical elements of the selected GCB are shown in Figure 8(c). 

 

 

(a) A planar truss                          (b) The interchange graph 

 

(c) Typical elements of the GCB 

Figure 4. A planar truss and typical elements of the selected GCB 

 
The regions of S after being embedded in the plane do not need to be all triangulated. For 

such models, however, different types of cycles for I(S) should be employed, Kaveh [35]. 
Recently this method is generalized finite element analysis. 
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6. CYCLE AND GENERALIZED CYCLE BASIS ORDERING 
 

In order to reduce the bandwidth of the flexibility matrix of a structure, the bandwidth of its 
generalized cycle basis adjacency matrix can be reduced. For this purpose the associate 
graph of the selected basis should be constructed. Such a graph has its vertices in a 1-to-1 
correspondence with the elements of the selected basis, and two vertices are connected by an 
edge if they have a member in common. This graph can also be used for ordering the 
elements of a null basis employed in algebraic force method, Kaneko et al. [43]. 

 
Example:  Let S be a planar graph as shown in Figure 5(a). Using the author's cycle 
selection algorithm [35], 23 cycles of length four and 2 cycles of length ten, forming a mesh 
basis are selected.  

The associate graph of this basis is depicted in Figure 5(b). Using a nodal ordering 
algorithm (see for example Kaveh [44]) the node of A(C), hence the order of the cycles is 
obtained. Forming three S.E.Ss on each cycle yields a statical basis corresponding to a 
banded flexibility matrix. It should be noted that the selected cycles of a graph need not be 
regional cycles (mesh basis), and the associate graph can easily be considered for any other 
type of cycle basis. 

 

 

(a) A simple graph S         (b) The associate graph of the cycle basis 

Figure 5. Graph S and the associate graph of the selected cycle basis 

 
 

7.  GRAPH MODELS OF FINITE ELEMENT MESHES 
 

In order to transform the nodal numbering of a finite element mesh into the graph nodal 
ordering, two different type of graph models consisting of ten graphs are presented in this 
section, Refs. [36,45-46]. 

 
7.1 Model for One-step Ordering 
The element clique graph S of a FEM, shown in Figure 6(a) is a graph whose nodes are the 
same as those of the FEM and two nodes ni and nj of S are connected with a member if ni 
and nj belong to the same element in the FEM, Figure 6(b).  

The 1-skeleton graph (skeleton graph) S of an FEM, is a graph whose nodes are the same 
as those of the FEM, and its members are the edges of the elements of the FEM, Figure 6(c).  

The element star graph S of a FEM has two sets of nodes; namely the main set 
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containing the same nodes as those of the FEM and the virtual set consisting of the virtual 
nodes in a one-to-one correspondence with the elements of the FEM, Figure 6(d). The 
member set of S is constructed by connecting the virtual node of each element i to all nodes 
of the element i. 

The element wheel graph S of a FEM is the union of the element star graph and the 
skeleton graph of the FEM. The element wheel graph of the considered FEM is illustrated in 
Figure 6(e). The virtual nodes are depicted by bigger dots. 

The partially triangulated graph S of an FEM is a graph whose nodes are the same as 
those of the FEM and a selected node of each element i is connected to all the adjacent 
nodes of i, Figure 6(f).  

The triangulated graph S of a FEM is the union of the partially triangulated graph and 
the skeleton graph of the FEM, Figure 6(g).  

 

 

(a) A finite element model  S                   

 

   (b) The element clique graph of S       (c ) The skeleton graph of S. 

 

(d) The element star graph of S   (e) The element wheel graph of S. 

 

(f)  The partially triangulated graph of S   (g) The triangulated graph of S 

Figure 6. Models for one-step ordering 
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7.2 Models for Two-step Ordering 
Definition: The natural associate graph S of an FEM has its nodes in a one-to-one 
correspondence with the elements of the FEM, and two nodes of S are connected by a 
member if the corresponding finite elements have a common boundary. This graph is also 
known as the inner dual of S. The natural associate graph of the FEM in Figure 10(a) is 
illustrated in Figure 7(a). 

The incidence graph S of an FEM has its nodes in a one-to-one correspondence with the 
elements of the FEM, and two nodes are connected with a member if the corresponding 
elements have a common node, Figure 7(b).  

Consider the skeleton graph and select an appropriate starting node, using any algorithm 
available (e.g. an algorithm of Refs. [35-36]). The nearest corner node of each element of 
the FEM is taken as the representative node of that element. The SRsubtree of the skeleton 
graph of the FEM containing all representative nodes of the elements is called a 
representative graph S of the FEM, Figure 7(c).  

This graph is the same as the REG with additional members connecting each pair of 
nodes in the CREG if their corresponding nodes in the FEM are contained in the same 
element, Figure 7(d). 

 

 

The natural associate graph of S. (b)  The incidence graph of S. 

 

(c) The representative graph of S.    (d) The complete representative graph of S. 

Figure 7. Models for two-step ordering 

 
 

8.  ELEMENT ORDERING FOR FRONTWIDTH REDUCTION;  
A LINE GRAPH 

 
In the frontal solution the elements of a model should be ordered in place of its nodes. This 
can easily be achieved by defining a line graph of the model. A line graph L(S) of S has its 
vertices in a one-to-one correspondence with the elements of  the model and two vertices are 
connected by an edge if  the corresponding elements are incident (if the model is a graph) or 
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have a common boundary (if the model is an FE model).  
Some simple results are stated in the following: 
Let S be a graph with N nodes and M members, then it can easily be proved that 

1. L(S) has M nodes and M)}n{deg( 2
i

N

1i
2
1 −∑

=
 members. 

2. The degree of a node of L(S) corresponding to the member (ni,nj) of S is equal to 
deg(ni)+deg(nj)−2. 

3. S and L(S) have the same number of connected components if G has no isolated 
nodes. 

4. For N ≥1,  L(Pk) is isomorphic to Pk-1. 
5. For N ≥3,  L(Ck) is isomorphic to Ck. 
Nodal ordering of the line graph leads to element ordering of the original model, 

corresponding to a reasonably narrow frontwidth. 
 

Example: A planar graph S is considered as the model of a skeletal structure, Figure 8(a). 
The corresponding line graph is constructed in Figure 8(b). The nodes of L(S) are ordered. 
This gives a favourable ordering of the elements, although the corresponding frontwidth 
may differ from its minimum value by a small amount.  

 

 

(a) A planar model S                (b) The line graph of S 

Figure 8. A planar structural model and its line graph. 

 
It is possible to generalize the method for the formation of interchange graphs of graphs 

in many ways. One of the simplest generalization is the following: 
Let C be a simplicial complex, and let k be a positive integer. The kth interchange graph 

Ik(C) of C has vertices which are in a biunique correspondence with the k-simplices of C, i.e. 
two vertices of IK(C) are connected by an edge if and only if the corresponding k-simplices 
of C have a common (k-1)-simplex. If C is a graph S, then I1(C) becomes the line graph L(S) 
of S.  

The scope of the definition of Ik(C) may be widened by permitting C to be an arbitrary 
cell-complex. The interest in this generalization is evident from the fact that if C is a cell-
decomposition of any 2-manifold, then I2(C) is the dual graph of the 1-skeleton of C. 

The formation of the interchange graph I(S) of a graph S may be interpreted as follows: 
We are given a family F of objects (e.g. the edges of S) and we assign to each of them a 

vertex; two of those vertices determine an edge if and only if the corresponding objects in F 
have non-empty intersection. For an arbitrary family F of objects, we may take the above 
sentence as the definition of a new graph J(F) called the intersection graph of the family F. 
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9. ORDERING FOR BANDWIDTH REDUCTION OF RECTANGULAR 
MATRICES 

 
In structural analysis, it may be desirable to reduce the bandwidth of some sparse 
rectangular matrices. As an example, the bandwidth of the coefficient matrix of the 
equilibrium equations can be reduced in the algebraic force method. Similarly the bandwidth 
of the cycle-member incidence matrix may be reduced for a compact storage, Kaveh [35-
36].    

Associate one vertex with each member and each element of the selected cycle (cutset) 
basis of S. Connect two vertices with an edge if (a) the corresponding members are incident, 
(b) the corresponding cycles (cutsets) are adjacent, and (c) the corresponding member and 
cycle (cutset) are incident. A nodal numbering of this graph leads to the simultaneous 
ordering of the members and elements of the selected basis of S. 

Let B be a rectangular matrix with m rows and n columns, whose entries are denoted by 
bij. For each row like i (except the first and the last row, where id=1 and id=n, respectively), 
the integer part of the real number i(n/m) is defined as id. Therefore, the entry of B at 
position (i,id) is considered as the ith diagonal entry. For square matrices m = n and i = id. 
The bandwidth of B is then defined as 

 
 b(B) = mr + ml + 1, (4)  
 
where 
 
 },ik  ,0bikmax{m dikdr >≠−=  
 
and 
 
 }.ik  ,0bkimax{m dikdl <≠−=  

 
If B is a symmetric square matrix, then mr = ml and b(B) reduces to the conventional 

definition of square matrices. A rectangular matrix is called banded if b(B) is small 
compared to m. 

Matrix B in block submatrix form has the same pattern as L, i.e. each nonzero entry of L 
corresponds to a η×η submatrix in B, where η is the degree of freedom of a node of the 
structure. Obviously, reduction of the bandwidth of L leads to a banded matrix B. 

For reducing the bandwidth of rectangular matrices simultaneous ordering of the 
elements of the cycle (cutset) basis and members will be required. For this purpose the K - 
total graph of a graph is defined as follows: 

Associate one vertex with each member and each element of the selected cutset basis or a 
cycle (γ-cycle) basis of S. Connect two vertices with an edge if  

(a) the corresponding members are incident, 
(b) the corresponding cutsets (cycles or γ-cycles) are adjacent, 
(c) the corresponding member and cutset (cycle  or γ-cycle) are incident. 
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In the above definition the terms "nodes" and "members" have been used for a graph S, 
and now we use "vertices" and "edges" for the elements of a K-total graph which is defined 
as follows: 

When a cutset or cycle is changed to a node of S, then the K-total graph becomes a total 
graph as defined in graph theory (see Behzad [47]). 

Examples of K−T(S) are shown in Figures 9(a) and 9(b), when the cocycle basis and 
cycle basis are considered, respectively. In these figures small squares are used to represent 
members and circles are employed to show the elements of the considered basis. 

 

C C2

CC

2 1

34

3 4

5

* *

* *

Ground

6 2

4 5

9

8

7

1

3

 

 S and the considered cocycle basis.     K−T(S) and its nodal ordering. 

(a) Reduction of bandwidth for a cutset basis incidence matrix 

C3
8

C C10

7 4 2

1
1

369

5
2

3

1

259

13

11 7

10 612 8 4

 

S and the considered cycle basis.       K−T(S) and its nodal ordering. 

 (b) Reduction of bandwidth for a cycle basis incidence matrix 

Figure 9. Bases and their K–T(S) graphs 

 
Algorithm for Bandwidth Reduction of Rectangular Matrices 
Construct the K-total graph of S and order its vertices. The corresponding sequence leads to 

a favourable order of cutsets (nodes) and members of S, to reduce the bandwidth of L, which is 
pattern equivalent to the coefficient matrix of the equilibrium equations. A similar approach 
reduces the bandwidth of C, when cycles (γ-cycles) are considered in place of cutsets. 

 
Example:  Consider a planar frame as shown in Figure 10(a). For the selected cycle basis of 
the graph model of this structure, shown in Figure 10(b), the corresponding K-total graph 
and its nodal ordering are shown in Figure 10(c). The final member and element orderings 
are also depicted in Figure 10(b). 
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                                  (a) S and the selected cycles                 (b) K-total graph of S 

Figure 10. Member and cycle ordering of a graph 

 
 

10. GRAPH MODELS FOR MESHLESS DISCRETIZATION 
 

In this section four graphs are defined for representing the connectivity of a meshless model, 
reference [48]. Consider a domain as shown in Figure 11(a) with the meshless model 
consisting of eleven nodes with the domains of influence shown. For the sake of clarity, the 
associated graphs for this model are presented. These graphs are defined as follows: 
 

 

(a)                                                          (b) 

Figure 11. A simple meshless model with 11 nodes 

 
The Strongly Connected Associate graph (SCAG) of a meshless model is a graph whose 

nodes are the same as those of the meshless model and two nodes ni and nj of the SCAG are 
connected with a member if and only if 0ji ≠Ω∩Ω  in the meshless model. Figure 12(a) 
shows the strongly connected associate graph of the model in Figure 11(a). 

The Partially Connected Associate Graph (PCAG) of a meshless model is a graph whose 
nodes are the same as those of the meshless model and two nodes ni and nj of the PCAG are 
connected with a member if and only if ji J   or  I Ω∈Ω∈  in the meshless model. Figure 
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12(b) shows the partially connected associate graph of the model. 
The Weakly Connected Associate Graph (WCAG) of a meshless model is a graph whose 

nodes are the same as those of the meshless model and two nodes ni and nj of the PCAG are 
connected with a member if and only if ji J   nda  I Ω∈Ω∈  in the meshless model. Figure 
12(c) shows the weakly connected associate graph of the model. 

The Associate Bipartite Graph (ABG) has two sets A and B corresponding to nodes and 
influence domains, respectively. A node ni of A is connected to nj ∈B by a member if and 
only if jI Ω∈ . Figure 16(d) shows the associate bipartite graph of the model. 

It can be proven that the strongly connected associate graph is always a connected graph. 
 

 

(a) The SCAG of a meshless model. (b) The PCAG of a meshless model 

 

(c) The WCAG of a meshless model 

 

(d) Associate bipartite graph of the model 

Figure 12. Four different graph models 
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11. CONCLUDING REMARKS 
 
A collection of applications of graph theory for optimal analysis of structures is presented in 
this article. Such applications not only simplifies the problems related with structural 
mechanics but also produces a power bridge between the development in graph theory in 
one hand and the structural mechanics in the other hand. Many structures and in particular 
space structure have different types of symmetry and using this property simplifies the 
calculation to a great extent. Such models can often be generated using graph products. 
Therefore instead of considering the entire model one can use the properties of the 
generators with a drastic reduction of computational costs. 
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