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ABSTRACT 
 

A method is presented which permits the geometrically nonlinear analysis of structures   
undergoing arbitrarily large displacements, rotations and strains. This method is based on 
the general nonlinear theory of elasticity and can be applied consistently to different types of 
structural elements such as beams and plates. The method has so far been implemented for 
two-dimensional trusses and frames. For several examples of structures with very large 
displacements and rotations as well as snap-through, the results which are obtained with the 
method are compared to exact solutions. The convergence of the method to the exact results 
is demonstrated. 
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1. INTRODUCTION  
 

The increasing size of the world population and the necessity to raise the standard of living 
in disadvantaged areas place new demands on the civil engineering profession. Since the 
available amount of material, energy and labour is limited, their use must be optimized. One 
of the strategies which may contribute to this goal is a reduction in the amount of material 
that is contained in the structural systems. This strategy reduces the self-weight of the 
structures (which is a very significant part of the total load), thus further reducing the 
amount of material that is required to support the structure. In addition, the behaviour of the 
structure during earthquakes can be improved by the reduced mass, and the amount of 
energy required for the production of building materials and for the construction of buildings 
can be reduced. 

The strategy of reducing the amount of material for a structure with given shape and 
function can require knowledge and skills which are not treated in depth in traditional civil 
engineering education and practise. As the amount of material in a structure is reduced, the 
stiffness of the structure is reduced and therefore its deformation under load increases. It is 
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no longer sufficient to compute the forces in and the displacements of the structural 
members with traditional linear theories of structural analysis, which are emphasized in the 
traditional professional education of civil engineers. Instead, the structural behaviour must 
be predicted with nonlinear theories which take into account the influence of the 
displacements on the forces in the structure and on its stability. These theories are 
considerably more complex than the corresponding theories for geometrically linear 
behaviour. For example, the principle of superposition for loading conditions, which is 
extensively applied in linear analysis, no longer holds in nonlinear analysis. While reliable 
computer-based methods of linear structural analysis are available, the methods for non-
linear analysis have not yet been fully generalized and are not yet supported by suitable 
software. Practising engineers have limited intuitive insight into the nonlinear behaviour of 
their structures. 

This paper reports a line of research which is intended to contribute to a unification of the 
nonlinear analysis of different types of structures. All types of structural components are to 
be treated in a similar fashion. The limitations on the range of validity of the theories will be 
reduced. Different component types are to be integrated into a single application package for 
nonlinear structural analysis. At the same time, it is hoped that the education of civil 
engineers in nonlinear analysis will become easier and more efficient, thus laying a sound 
foundation of the application of nonlinear methods of structural analysis in civil engineering 
practise. The concept is being pursued by the authors in a cluster of research projects in 
close cooperation with Professor P. Dunaiski and Dr. G. van Rooyen of Stellenbosch 
University in South Africa. 

The nonlinear analysis of structural systems differs in three main aspects from the linear 
analysis of these structures: 

• The elastic strains (deformations) of the structure are non-linear functions of the 
derivatives of their displacements.  

• The equilibrium equations must be formulated in the displaced geometric state of the 
structure, which is unknown at the start of the analysis and remains to be determined. 

• There can be plastic strains which depend on the load history. The stresses (forces) 
in the structure are no longer linear functions of the elastic strains in the structure. 

The physical nonlinearity described in the last point will be treated indirectly in this 
paper by considering tension-only bars in trusses. The emphasis of the paper is placed on the 
geometric nonlinearity of structural behaviour. 

 
 

2.  STATE OF THE ART 
 

The future significance of nonlinear structural analysis was clearly recognized in the 1970’s, 
as is shown by a large number of  ground-breaking publications such as the papers by Wood 
and Zienkiewicz [1] on the geometrically nonlinear finite element analysis of beams, frames, 
arches and axisymmetric shells; Wunderlich and Beverungen [2] on a geometrically 
nonlinear theory for plane curved rods; Argyris, Dunne and Scharpf  [3] on large 
displacement – small strain analysis of structures; Bathe and Polourch [4] on large 
displacement analysis of three-dimensional beam structures. The Europe-U.S. Workshop [8] 
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at Bochum in 1980 was devoted to “Nonlinear Finite Element Analysis in Structural 
Mechanics” and treated topics such as the general formulations, geometrically nonlinear 
rods and shells, physically nonlinear structures, nonlinear dynamics, methods of solution 
and computational algorithms. A total of 63 authors presented 38 papers. 

In 1981, the German Research Association installed a Schwerpunktprogramm (focal 
program) “Nonlinear Computations in Structural Engineering” with Professor E. Stein as 
coordinator. Most of the German technical universities participated with research projects. 
Experiences were exchanged at five colloquia. At the colloquium which concluded the Focal 
Program in 1989, a total of 72 authors presented 30 papers [9] which summarize substantial 
research efforts extending over many years. The main areas of research presented were the 
geometri-cally and physically nonlinear behaviour of frames and of thin-walled surface 
structures as well as the physically nonlinear behaviour of concrete structures.  

Since that time, a steady sequence of papers and books has been published, dealing with 
geometrical and physical nonlinearities in the analysis of many types of structural 
components and presenting a wealth of different approaches to the problem [10] to [21]. 
Software products such as [22] to [25] offer nonlinear analysis capabilities.    

In view of the substantial volume and high quality of the research which was performed 
in the past, the question arises whether additional research in the coming years is likely to 
achieve significant progress in nonlinear structural analysis. In our opinion, this progress can 
be expected, since research in the past was not able to resolve two issues which stand in the 
way of a broad and beneficial application of nonlinear analysis in everyday engineering by 
normally trained and experienced professionals: the limitations on the range of validity of 
the nonlinear theories and the lack of a unified treatment of all types of structural 
components.  

The limitations on the range of validity of the nonlinear theories stem primarily from 
approximations in the strain-displacement relations, particularly the replacement of 
trigonometric functions of angles of rotation by series approximations and the neglect of 
displacement derivatives which are small under specific circumstances. It is difficult for the 
practising engineer to judge reliably whether the behaviour of his specific structure satisfies 
the limitations of a specific theory. Another limitation is the inability of many algorithms to 
follow the displacement - load curve through points of singularity of the system stiffness 
matrix. This precludes the reliable identification of snap-through effects.   

The Focal Progrmam [9] demonstrated the difficulties encountered in a unified treatment 
of nonlinear structural analysis. It contained a substantial effort to create DFGBIB, a 
Fortran-based Software-Library for nonlinear structural analysis. DFGBIB consists of a 
basic library and a general library. The basic library contains programs for finite element 
topology and geometry, matrix algebra and parsing of alphanumeric input. It is intended to 
be used by all components of the general library. The general library contains many different 
types of finite elements, subroutines for different types of material behaviour as well as 
alphanumeric pre- and postprocessors for finite element models. It was decided, against 
advice to the contrary, not to use a unified data base and an integrated interactive graphic 
user interface. A set of benchmarks was created for testing of the finite elements. 

In spite of the high level research effort that created DFGBIB, the library did not have the 
desired effect in engineering practise. From the perspective of today, it is evident that this 
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can be attributed to the problems described above. The theoretical approach of the different 
contributors to DFGBIB was not unified. In addition, coherence and generalisation in the 
data structure, the algorithms and the user interfaces are prerequisites for the success of any 
computer-assisted engineering application. The DFGBIB did not meet this requirement.  

It may be argued that the software with nonlinear capabilities for structural analysis, 
which is available on the market, provides the desired capabilities. Yet this commercial 
software has black-box structure, so that it is very difficult for an engineer who carries the 
responsibility for a design to form an independent opinion of the suitability of the provided 
algorithms for his specific task. Since the reliability of the results frequently depends on the 
tuning of the algorithm with suitable step sizes and error bounds, the degree of allowable 
automation of the computations is considerably less than for linear analyses, and insight is 
essential. 

 
 

3.  A NEW CONCEPT FOR NONLINEAR STRUCTURAL ANALYSIS  
 

The aim of the research reported in his paper is to reduce the complexity and to increase the 
reliability of geometrically nonlinear structural analysis, and thus to improve the attractive-
ness of the nonlinear approach for practising engineers. This effort will benefit from several 
advances that have been achieved in the past decades: 

• A thorough mathematical formulation of the mechanics of the nonlinear behaviour of 
structures can be found in the cited literature. 

• Advances and experiences in Bauinformatik provide a platform for the design of 
coherent and adaptable application software for nonlinear structural analysis.  

• The advances in computer technology provide significantly extended data storage 
capacities both at runtime and in the files, as well as processing speeds that exceed 
those of 1989 by the order of 1000. 

• The advances in software technology provide programming platforms such as Java 
which are object-oriented and contain many functions for data bases and for user 
interfaces that had to be programmed with great effort in earlier years.    

In order to achieve the desired reduction in complexity and increase in reliability, a new 
generalized concept for nonlinear structural analysis must be invented which is readily 
understandable, computationally efficient and computer-oriented. The volume of the theory 
that must be presented in engineering education for nonlinear behaviour should be reduced 
by treating all types of structural components in a common manner, which is implemented in 
a common software whose theoretical foundations the users understand.  

The authors believe that they are following a concept which has the desired 
characteristics. In this concept, the theory for each type of structural component is derived as 
a special case of the general nonlinear theory of elasticity by introducing additional 
equations, which reflect the special aspects of the behaviour of that type of component. 
These additional equations make the problem over-determined: the number of equations 
exceeds the number of unknowns, which leads to contradictions. This situation is well-
known from linear analysis, for instance in the case of plate theory, but the consequences 
may be different for linear and nonlinear behaviour. The deformation method is used for all 
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element types. As in the usual approach, the incremental solution algorithm is based on the 
finite element method and the arc length control method. The concept can be applied to 
every type of structural component for which the following conditions can be satisfied: 
• If approximate values for the displacements and reactions of the structure are known 

for given values of the prescribed displacements and loads on the structure, the error 
vector in the governing equations can be determined by an exact theory which does 
not contain any approximation as to the magnitude of the displacements, the rotations 
and the strains in the structure. 

• If the displacements, the reactions and the error vector are known for a state of the 
structure, the displacements and reactions in the next state of the structure can be 
predicted with approximate governing equations. The approximate theory and the 
displacement trial functions must be such that rigid body motions of a finite element 
do not cause forces which act on the element.  

It will be shown in this paper that the new concept can be applied to two-dimensional 
trusses and frames and leads to accurate results even if the displacements and rotations are 
very large. This suggests that there is sufficient probability that the new line of research can 
lead to sufficiently simple and reliable analyses of structures consisting of different types of 
compo-nents for arbitrarily large strains, displacements and rotations.  

 
 

4. EXAMPLES OF NONLINEAR STRUCTURAL BEHAVIOUR 
 

As an introduction to the nonlinear theory for trusses and frames, two examples of nonlinear 
behaviour are presented for which exact solutions are known. The 2-bar-truss illustrates 
snap-through behaviour, the cantilever beam is characterized by a rotation through an angle 
of 2π at its tip. Thus both examples show great differences between the linear and the 
nonlinear behaviour of the structure. These examples will be used in later sections to test the 
accuracy of the results obtained with finite element analyses following the new concept. 
They will also be used to study the sensitivity of the computational algorithms to the values 
of their control parameters, such as step size in the displacement-load diagram and error 
limits for the termination of iterations.  

 
4.1 Snap-Through of a 2-Bar-Truss 
Figure 1 shows a symmetric 2-bar-truss CAD which carries a vertical load P at its apex A. 
The dimensions of the truss are shown in the figure. The supports C and D are fixed. Let the 
area of the cross-section of each bar be A and its modulus of elasticity E. If the coordinates 
of the displacement of the apex A to point B under load P are specified in global space x, the 
displacement is denoted by u. If the coordinates of the displacement are specified in the 
local space y, the vector is denoted by v. The value of the load P is to be determined as a 
function of the displacement u.   
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Figure 1. Nonlinear analysis of a 2-bar-truss   

 
Consider the base vectors in the direction of the axis of a bar in the reference and in the 

instant configuration under load P. Then the axial strain ε in the bar is given by the strain 
tensor of Green:                     

 

 1

1,1 2,1
1

( )

d
dy
d v v

dy

=

+
= = + +

1

1 1 1 2

ye

y vg e e e
 

 

 2 2 2
1 1 1 1 1,1 2,1

0

1 1 1( ) ((1 ) ( ) 1) (( ) 1)
2 2 2

T T Lv v
L

ε = − = + + − = −g g e e  

 
The equilibrium at the apex A in the instant configuration yields the physical stress σ̂  

and the corresponding 2.Piola-Kirchhoff stress σ in the bar: 
 

 
0 0 0ˆ

2 2
L P L L PL
L A h L Ah

σ σ= = − = −
 

 
The stress-strain relationship σ = E ε and the geometrical relationship h = 2oh u−  yield:  
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Equilibrium at node C leads to the horizontal component 1R of the reaction at C: 

 

 

20 2 2
1

0 0 0 0

( ) ( )( )(2 )
2

AE h a u uR
L L h h

= −
 

 
Define the normalized displacement s, load p and reaction r as follows: 
 

 

3 22 0 1 0 0

0 0 0

: : ( ) : ( ) ( )u P L R L Ls p r
h AE h AE h a

= = =
 

 
The function p(s) is shown in Figure 2. The load p reaches local extrema of p=±0.384900 

for the displacements s = 0.422650 and s = 1.577350. The truss has three equilibrium 
configurations for load p = 0, corresponding to displacements s = 0.00, s = 1.00 and s = 
2.00. In the range between the local extrema, the load decreases with increasing 
displacement. The transition at constant load from a displacement state a in this range to a 
displacement state b, where the load increases with increasing displacement, is called snap-
through. 

 

1.5 2.5 2.01.00.50.0-0.5

s

p

0.0

0.1

0.2

0.3

 0.4

- 0.4

- 0.3

- 0.2

- 0.1

a b

 

Figure 2. Displacement - load diagram of a 2-bar-truss with snap-through a-b s: normalised 
displacement p:  normalised load  
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The function r(s) is shown in Figure 3. The value of the reaction for the displacements 
under the extreme loads p = ±0.384900 is r = 0.333333. The maximum value of the reaction 
is r = 0.50. It is reached for s = 1.00 and p = 0.00.   

  

 

Figure 3. Horizontal reaction – load diagram of a 2-bar-truss r:  normalised reaction  
p:  normalised load  

 
4.2 Large Rotations of a Cantilever Beam with End Moment 
Figure 4 shows a cantilever beam with span L and modulus of elasticity E, whose cross-
section has area A and moment of inertia I. The displacements due to an end moment M 
acting at the tip of the cantilever are to be determined as a function of the end moment.  

Consider a point P with coordinate s on the axis of the reference configuration of the 
beam. Let the displacement vector of point P for an instant configuration of the beam be 
denoted by u(s) if its coordinates are referred to global space. Let the rotation of the axis of 
the beam at point P in the instant configuration be ω. The change in the angle ω with the 
distance s on the axis of the beam is determined with the Kirchhoff hypothesis. Integration 
with respect to s and the boundary condition ω = 0 at s = 0 lead to: 
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The differential equations for the displacement coordinates follow from the triangle at P̂ . 

Define the normalised moment α and the normalised displacement v: 
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Figure 4. Deformation of a cantilever beam subjected to end moment α   

 
Integration with respect to s and the boundary condition v=0 at s=0 yield the 

displacement of the axis of the bar: 
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The instant configurations of the bar for α = 0.25π, 0.50 π,…,2.00 π are shown in Figure 

4. The rotation at the tip of the cantilever is 2π. The displacement computed with linear 
theory for the end moment α = 0.50π is shown as a dotted line 

 
 

5. THEORY OF NONLINEAR STRUCTURAL BEHAVIOUR 
 

5.1 Nonlinear Theory of Elasticity 
The following relations of the nonlinear theory of elasticity are used in the nonlinear theory 
for trusses and frames [26-27]. Material points are identified by their location in the 
reference configuration. The coordinates of the strain tensor E of Green are computed as 
functions of the derivatives of the displacement coordinates with respect to the coordinates:  
 

 

, , , ,
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The Cauchy stress tensor T describes the state of stress in the instant configuration. Its 
coor-dinates are referred to reference space. The coordinates of the 2. Piola-Kirchhoff stress 
tensor S are related to the Cauchy stress tensor through the material deformation gradient F: 

 

 (det ) − −= 1 1S F F TF  
 

Every instant configuration of the body must satisfy the following integral form:  
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5.2 Nonlinear Theory of Trusses 
Consider a plane truss which satisfies the following hypotheses: 

• The axis of the bar in the instant configuration is a straight line. 
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• Every plane cross-section normal to the axis of the bar in the reference configuration 
remains plane and normal to the axis in the instant configuration. 

• The shape of the cross-section does not change. 
Figure 5 shows the reference location and the instant location of a bar AB of the truss, as 

well as the local coordinate system y of the bar.    
 

x 1

x 2

y 1

y 2

A

B
P

A

B
P̂

ˆ

ˆ

reference configuration

instant configuration

v

 

Figure 5. Configurations of a bar AB of a truss 

 
The displacement v depends only on the axial coordinate.  All components of strain 

except the axial strain are null. The axial strain ε at a point P of the bar follows from the 
general theory: 

 

 
2 2

1,1 1,1 2,10.5( )v v vε = + +  
 

It is assumed that the truss is loaded at its nodes. The integral form of the governing 
equation for a state s is derived from the general theory by integration over the cross-section 
of the bar: 

 

 

1

q
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q fe

e i i i i
e i C i CL
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∈ ∈
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The changes ∆v and ∆r in the displacements and reactions of the truss from state s to 

state s+1 are predicted with corresponding incremental governing equations:  
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The term δe accounts for the error in the governing equations for state s due to errors in 

the displacements and reactions of state s. The concept requires that the error term must be 
computed without approximations in the strain-displacement relations.  
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The displacements on the axis of the bar are interpolated linearly between the nodal 
values. The left hand side of the incremental governing equations yields the incremental 
matrix K for the bar, which is used in the solution algorithm as described in section 6.  
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5.3 Nonlinear Theory of Frames 
Consider a plane frame which satisfies the following hypotheses: 

• The displacement of all points on a plane cross-section of a member is the vector 
sum of the displacement of the point P on the axis and the displacement due to rigid 
body rotation of the cross-section about an axis through point P normal to the plane.  

• The angle of rotation of the cross-section is such that a fibre of the beam which is 
normal to the cross-section in the reference configuration remains normal to the 
rotated cross-section in the instant configuration. 

Figure 6 shows the reference and the instant locations of a member of the frame with 
length 2a, as well as its reference coordinate system y and instant coordinate system z. The 
angle of rotation β of the axis at a node is decomposed into a chord rotation θ of the member 
and a rotation ψ of the tangent to the axis relative to the chord. The displacement of a point 
P on the axis is the sum of a bar displacement v of the chord of the member, referred to 
reference space y, and a beam displacement w relative to the chord, referred to instant space 
z. These lead to the following derivatives with respect to the distance y on the axis, where -1 
≤ z ≤ 1 is the normalised axial coordinate: 
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The displacement of a point Q on the normal through P is the vector sum of the 

translation of point P and a rotation of point Q about point P through an angle β:  
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Figure 6. Configurations and node rotations of a member of a frame 
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The angle of rotation β is chosen so that the normal of the instant cross-section is tangent 

to the instant axis at point P: 
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v

β =
+  

 
Due to the frame hypotheses, only the axial strain ε differs from null: 
 

 
2 2

1,1 1,1 2,1 2,11 20.5( ) cosv v v w yε ψ= + + −  

www.SID.ir



Arc
hi

ve
 o

f S
ID

V. Galishnikova and P.J. Pahl 424 

The governing equations for a state s of the frame and the error vector are derived in 
analogy to the corresponding expressions for a truss. For the incremental algebraic 
equations, it is assumed that the chord rotation does not change during a step. The bar 
displacement is interpolated linearly in reference space, the beam displacement with Hermite 
polynomials in instant space. The element size should be chosen so that the relative rotation 
ψ in the instant state does not exceed 15 degrees. The incremental strain is then given by:  

 
 211,2

2
1,2

2
1,11,21,21,11,1 yw)(5.0)1( ∆ν∆ν∆ν∆νν∆νε∆ −++++=  

 
The strain increment ∆ε is used to derive a bar stiffness matrix in reference space and a 

beam stiffness matrix in instant space. Both are transformed to global space and then added. 
This leads to the following algebraic equation for the incremental step from state s to state 
s+1: 
  
 sssss rqeuK ∆∆∆ ++=  
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      ∆u1s increment of the unkonwn displacements 
       ∆u2s increment of the prescribed displacements 
       ∆r2s increment of the unknown reactions 
 

 
6. ALGORITHM FOR THE NONLINEAR ANALYSIS OF STRUCTURES 

 
The method of solution is a modification of the arc length method which accounts for a 
nearly singular stiffness matrix of the structure. Consider a displacement-load diagram with 
measure a (containing a scale factor µ) for displacement and measure p for load:  
 

 ( ) ( )T T
s s s s s sa pµ= = + +u u q r q r  

 
The increments of the loads and the prescribed displacements are assumed to be fractions 

∆λ of the total prescribed loads and displacements: 
 

 t2st1ss1 uqq λ∆∆λ∆∆ == 2su                                   
 

The solution of the incremental governing equations for these external influences yields 
the unknown displacements and reactions as functions of ∆λ: 

 

 
s2s1s122stt2s12s1s122ss2s2s2

s1
1
s111st2s12t1

1
s111ss1s1ss1

ebKb             quKaKa                      br
eKb                 )uKq(Ka                   bau

−=−+=+=
=−=+= −−

λ∆∆
λ∆∆  
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The condition that the arc length in the a-p diagram for step s equals that for step 0 leads 

to a quadratic equation for ∆λ. The root which maximizes the distance of the new state from 
the last state is chosen. This approach is not suitable if one of the following conditions is 
violated: 

• The norm of the error vector e is small compared to the norm of the load and 
reaction vector increment ∆q + ∆r in the first step. 

• The norm of the displacement correction b due to e is small compared to the norm of 
the displacement increment ∆u in the first step. 

Near singular states of the system stiffness matrix, these conditions are not satisfied. The 
arc length method is therefore modified as shown the Figure 7: 

 

 

Figure 7. Modification of the arc length method for nonlinear structural analysis  

 
 

7. ACCURACY OF THE METHOD 
 

The method which is described in the preceding sections has been implemented in the test 
bed shown in Figure 7. The results of the analysis of the 2-bar-truss in section 4.1 with 180 
load steps up to a maximum normalised displacement of s = 2.2183 are shown Table 1. All 
quantities are normalised, as defined in section 4.1. The errors in the computed 
displacements and reactions are very small and nearly independent of the magnitude of the 
displacements. 

Table 1. Comparison of computed and exact displacements and reactions of a 2-bar-truss 
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State Displacement Load computed Load exact Reaction computed Reaction exact 

1 0.015685 0.030635 0.030635 0.015562 0.015562 

10 0.172206 0.260553 0.260554 0.157378 0.157378 

20 0.443521 0.385849 0.384155 0.345522 0.345165 

30 0.739480 0.242838 0.242839 0.466064 0.466065 

40 1.111042 -0.109673 -0.109673 0.493834 0.493835 

50 1.531531 -0.381004 -0.381360 0.358673 0.358737 

60 1.754113 -0.325259 -0.325260 0.215657 0.215657 

70 1.931760 -0.122828 -0.122828 0.065912 0.065912 

80 2.081590 0.183694 0.183694 -0.084918 -0.084918 

90 2.211980 0.568293 0.56893 -0.234448 -0.234448 

 
The results of an analysis of the cantilever beam in section 4.2 for end moments up to α = 

2π are shown in Table 2. The structural model consists of 20 members and is loaded in 200 
steps. The moments and displacements are normalised, as defined in section 4.2. The errors 
in the computed horizontal and vertical displacements of the tip of the cantilever are of the 
order of 0.1 percent and nearly independent of the magnitude of the displacements. 

 

Table 2. Comparison of computed and exact tip displacements for a cantilever beam with end 
moment 

Stat
e 

Displacemen
t Load computed Load exact Reaction computed Reaction exact 

1 0.031180 -0.000162 -0.000162 0.015586 0.015589 

20 0.623600 -0.063529 -0.063564 0.301844 0.301826 

40 1.247479 -0.239858 -0.239918 0.547078 0.546932 

60 1.871916 -0.489916 -0.489825 0.692997 0.692654 

80 2.497150 -0.759918 -0.759425 0.720989 0.720595 

100 3.123329 -0.995139 -0.994152 0.640326 0.640290 

120 3.751022 -1.153789 -1.152598 0.484368 0.485194 

140 4.380044 -1.216459 -1.215815 0.300922 0.302796 

160 5.010254 -1.190025 -1.190802 0.138535 0.141015 

180 5.641497 -1.103434 -1.106098 0.033308 0.035259 

200 6.241945 -1.002556 -1.006605 0.000022 0.000136 
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8.  CONCLUSIONS 
 

The investigation of the nonlinear behaviour of plane trusses and frames has shown that the 
concept for the analysis of the nonlinear behaviour of structures which the authors have 
adopted can be applied successfully. A truss and a frame, for which exact analyses are 
available, have been studied in a Java-based test bed. The results show in both cases that the 
magnitude of the displacements and rotations does not influence the accuracy of the results 
of the numerical analysis substantially.  

The results for the truss show that the displacements in a structure with snap-through can 
be calculated to an accuracy of 6 figures, except near points of singularity of the stiffness, 
where the accuracy can drop to 4 figures. The number of load steps of the example can be 
reduced significantly if the usual engineering accuracy of about 3 percent error is 
acceptable.  

The results for the frame show that bending action is analysed correctly even if the 
rotations are of the order of 360 degrees. In spite of the very large rotations, the error in the 
tip displacement due to a given end moment is of the order of 0.1 percent of the maximum 
displacement. For rotations below 180 degrees, the error is substantially less. It can be 
reduced further by increasing the number of elements in the cantilever.  

On the basis of these results, it has been decided to proceed with the line of investigation 
and to extend the application of the concept to other types of structural components, 
particularly three-dimension trusses and frames as well as membranes and plates. The 
implementation of the two-dimension trusses and frames has shown that the concept is very 
suited for systematic treatment of data base, algorithms and user interface in a software 
package. 
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