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ABSTRACT 
 

This paper is devoted to the simultaneous weight and stiffness optimization of two 
dimensional structures. The necessary optimality conditions are derived and the obtained 
optimality criterion is briefly explained. Based on the paradigm of cellular automata, a local 
rule is constructed which alleviates the well known problems of mesh dependency and 
checker-boarding in topological structural optimization. It is shown that implementation of   
this algorithm is useful in prevention of the formation of undesirable members in the 
resulting layouts. In this approach, contrary to the conventional topological structural 
optimization methods, the shape and boundaries of the two dimensional continuum are not 
fixed and can undergo considerable changes during the optimization process. Hence, This 
approach may be considered as a generalized structural optimization method. To 
demonstrate the advantages of the method a couple of examples are presented. 
 
Keywords: shape optimization, topology optimization, multi-objective, optimality criteria, 
cellular automata 

 
 

1. INTRODUCTION 
 

The goal of the topological structural optimization has conventionally been finding the 
stiffest structure with a certain given volume of materials [1-3] and the amount of material to 
be used in the optimization problem is usually chosen by the engineer’s intuition. On the 
other hand, it is obvious that a bigger stiffness is obtained by a larger amount of material. 
Hence, due to the importance of the weight of the structural material from an economical 
point of view, it would be more advantageous if one defines an optimization problem which 
aims minimizing the weight of the structure simultaneously with maximizing the stiffness. 
This will obviously be a multi-objective optimization problem, where the stiffness and 
weight are kind of conflicting global functions. In this paper, following Tovar et al [4] the 
multi-objective optimization problem is constructed which combines the weight and 
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stiffness of structure in a weighted maner. 
 

Amongst the several optimization methods there are a few which  are more suitable for 
solving a multi-objective optimization problem with a large number of design variables and 
a relatively few number of constraints, which is the case in the structural topology 
optimization problem. As some of the most common approaches, the so called 
approximation methods [5,6], the methods based on moving asymptotes such as CONLIN 
and MMA [7], and the optimality criteria methods [3,8,9,10,11] can be mentioned. Here, an 
optimality criteria approach is adopted and a resizing scheme similar to Hassani’s [3] is 
employed. 

From the out set, one of the well recognized issues amongst the structural optimization 
community, due to the inherent interaction between the shape and topology, has been the 
simultaneous optimal design of the both [2,3,12]. Beside the conventional shape 
optimization by the boundary variation method, in the last couple of decades, some other 
methods based on simulation of natural processes have been developed for continuum 
structural shape optimization. Amongst these methods, the so called simulation of the 
adaptive growth of trees [3,13] and the cellular automata can be mentioned. Due to its 
capability to be easily combined with the topology optimization process as a local rule, in 
this work the latter is employed. 

The main idea of the cellular automata approach is mimicking the fact that the evolution 
of complex biological systems is based on the adaptation to the locally surrounded 
conditions in an attempt to improve its functionality. This approach has recently been 
employed for optimal structural design [14-15]. Apart from the possibility of gradual 
optimization of the shape of a structure together with its topology, due to similarity of its 
function to the noise cleaning techniques via the convolution method [16], this approach has 
the capability to circumvent the common instabilities of structural layout optimization such 
as mesh dependency and checkerboarding [17-19].  

 
 

2. OPTIMALITY CRITERIA IN MULTI-OBJECTIVE CASE 
 

Most of the real life engineering design optimization problems are multi-criteria. For multi-
objective optimization several methods have been developed in the last few years. Amongst 
them, the utility function method, the inverted utility function method, the hierarchical 
method, the lexicographic method and fuzzy methods can be mentioned. 

A well known intuitive approach to deal with the multi-objective optimization problems 
is to use a composite objective function, which in its simplest form can be a weighted 
summation of the objectives. In this work, our goal has been the simultaneous minimization 
of the strain energy and weight of a structure. The optimization problem can be constructed 
as [4,20,24] 
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where x  is the vector of design variables, f  is the composite objective function and U and 
W are the strain energy and weight of the structure, respectively. 0U  and 0W are the 
correspondent strain energy and weight of the solid design domain. The role of the 
parameter 10 ≤≤ α  is to balance between the relative strain energy and the relative weight 
in the compound objective function.  

The design variables of the structural topology optimization are geometrical parameters 
of the assumed material model. For example, a  and b  in the material model comprising 
square cells with rectangular holes. See Figure 1. 

 

 

Figure 1. Unit cell with rectangular hole in microscopic coordinates 

 
By using the Lagrange multipliers together with the Kuhn-Tucker conditions, the 

necessary conditions for optimality in the problem (1) are obtained. Adopting the finite 
element method for the analysis, we assume that the design variables are constant 
parameters inside each finite element. Therefore, (1) for a discretized problem can be written 
as  
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where N is the number of finite elements in the discretized domain. 

The Lagrangian function l  associated with the problem above can be constructed as  
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where e

a0λ , e
a1λ , e

b0λ and e
b1λ are the Lagrange multipliers and e

is are the slack variables. 
Stationary of lwith respect to a requires that   
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Since ee ba , are constant through each finite element,  
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 from (5) into (4), it follows that  
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By some extra manipulation, the above optimal condition can be written as  
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We assume that e

aE is defined as     
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where ε  is the strain tensor  and C is the constitutive matrix. Also, we define H  as  
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From equations (9), (10) and (11) it can be followed that 
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Let us imagine that in an iteration k, the design variable e

ka  has been decreased in order 

to move towards optimum point. Therefore 1<e
ka  and the upper side limit is not active, 

which yields 01 =
e
aλ . Thus noticing that H is a positive real number and 00 ≥

e
aλ , from above 

equation it follows that HEe
a ≥ . On the other hand for increasing e

ka we will get HEe
a ≤ . So 

inspired by this argument, we calculate the value of e
aE  and compare it with H . If HEe
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In order to have a smoothly convergent algorithm, the move limit needs to be adjusted  

according to the values of the design variables in each iteration. For this purpose, the 
Hassani’s resizing scheme [3] was employed. This scheme allows having larger values for 
the move limit when the design variables are close to their constraint boundaries. For the 
problem at hand, considering one of the void parameters of a typical element e at step k, for 
example e

ka , the resizing scheme can be constructed as follows 
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The other void parameter b can be updated in a similar fashion.  
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3. CELLULAR AUTOMATA 
 

Inspired by the function of biological phenomena, the behavior of a part of a discrete space 
is only dependent on the behavior of its neighborhoods. Regarding this phenomenon, 
cellular automata (CA) was introduced as a method for describing as well as simulation of 
complex systems. This method was used as early as 1946 by Weiner and Rosenblunth to 
describe the operation of the heart muscle [22] and John Von Neumann made it formal at the 
end of 1940s [23].  

Cellular automata models are composed of a regular lattice of cells. The neighborhoods 
of a cell can be specified by a radius minr of action of a local rule. Some common 
neighborhood layouts are illustrated in Figure 2. The Von-Neumann layout and the Moore 
layout are used more than the others [21].   

 

(a)                  (b)                 (c)                  (d)                (e) 

Figure 2. Cellular automata neighborhoods: (a) Empty, (b) Von Neumann, (c) Moore, (d) 
MvonN, (e) Extended. 

 
As a general rule, in the cellular automata method, only the boundary cells can be 

modified. In this paper, the elements that violate the inequality (15) are regarded as 
boundary elements or cells. This condition is indeed an index of the difference between the 
average density of the neighbourhoods of a cell and the cell itself.  
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where N is the number of neighborhoods, jj ba , are design variables related to 
neighborhoods of the cell i  and ε  is a small number.  

In this method, the density of each element is changed according to information from its 
neighborhood. To achieve this, and in order to keep the stability of the solution, the relative 
strain energies of elements are modified during the optimization process [16,21]. The 
modified strain energy of element e can be defined as follows  
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Where iĤ  is 
 

 }1,...,2,1{)],([ˆ
min +∈−= NiierrVH ii  (17) 

 
and iV  is the volume of the element i  and ),( ier  is the distance between the centers of 

elements e  and i . N is the number of elements that satisfy min),( rier ≤ . 
As it was mentioned, the cellular automata technique, similar to the convolution based 

methods proposed by Sigmund [16], would be useful to alleviate the problem of mesh 
dependency and checker-boarding and to obtain more practical results [19, 25].  

 
 

4. EXAMPLES 
 

In this section, by using the developed topology optimization research code, given the name 
TOPS (Topology Optimization of Structures) [26], two examples are here presented. TOPS 
is a structural topology optimization program based on the optimaliy criteria methods which 
allows the user to have different options for using finite element types, noise cleaning 
technique and the continuation method. The TOPS code has now been further improved to 
suit for the case of multi-objective function together with the cellular automata technique 
which is the subject of this paper. 

Example 1. The problem definition is illustrated in Figure 3. To discretize the design 
domain 3200 linear finite elements with sizes of ,01.001.0 × are used. The modulus of 
elesticity and the poisson’s ratio are chosen to be 7.9E10 and 0.30, respectively. The initial 
solid material fraction is %70=VVsolid . It is assumed that initially the material is 
distributed uniformly. The weight parameter α  is considered to be 0.05. 

 

 

Figure 3. Design domain, natural and essential boundary conditions of  
example 1 (Michel-Type structure) 
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By using the isotropic material model and the contiuation method with the penalty 

exponent varying from ,53 to=µ without using the cellular automata local rule, the 
obtained optimum result is illustrated in Figure 4.a. The parameter determining the 
minimum allowable size was taken 021.0min =r . For the sake of comparison, this problem 
was also solved by using the algorithm based on cellular automata. The obtained result is 
depicted in Figure 4.b. In this example, the MvonN neighborhoods were employed, and for 
the recognition of the boundary elements Equation (15) was used with .1 4−= eε  The other 
optimization parameters are exactly similar to those of Figure 4.a.  

 

  

(a) (b) 

Figure 4. Optimal topologies by considering 05.0=α  (a) without using cellular automata, (b) by 
using cellular automata with MvonN neighborhoods 

 
The amount of  the consumed volume of material in Figures 4.a and 4.b are 35 and 34 

percent of total volume of design domain, respectively. As it is noticed, the weigths of the 
obtained structures are almost the same and by using the cellular automata approach only 
about 3% weight reduction is gained. However, the effect of the implementaion of the CA 
method on the material distribution, i.e. the topology as well as the shape of the resulted 
layout, can be easily noticed. The variation of the strain energies during the optimization 
process is shown in Figure 5. The fluctuation of the strain enrgies in the CA method, is 
related to balance between the relative strain energy and the relative weight in the compound 
objective function during the iterations of optimization algorithm.  
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Figure 5. Variation of strain energy during the optimization process 

 
It seems that, in this example, the optimal layout obtained by employing the cellular 

automata technique is of a more practical nature. The resulted topology and shape may be 
interpreted as Figure 6 for a CAD model.  

 

Figure 6. CAD model of optimum layout by using the cellular automata technique 

 
Example 2. In the second example, topological optimization of a cantilever beam, 

illustrated in Figure 7, is considered. The design domain dimensions, the finite element mesh 
and the material properties are assumed similar to example 1. The initial solid material 
fraction is %80=VVsolid . It is assumed that initially the material is distributed uniformly. 
The weight parameter α  is considered to be 0.1. 

 

 

Figure 7. Problem definition of cantilever beam of Example 2. 
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The optimum layouts obtained without and with using cellular automata, both with 

,021.0min =r are shown in Figures 8.a and 8.b, respectively. 

 

 

(a)                                          (b) 

Figure 8. Optimum layouts (a) without using cellular automata but with noise cleaning, (b) by 
using cellular automata with MvonN neighborhoods 

In this example, the weight of the structure of Figure 8.b is about 14% more than that of 
the structure obtained without using cellular automata. It is also noticed that the topology 
and shape of the resulted layouts are totally different. The resulting layout of the integrated 
topology and shape optimization approach may be simulated by CAD software as illustrated 
in Figure 9.  

 

 

Figure 9. CAD model of the obtained optimum layout by using cellular automata technique 

 
 

5. CONCLUSIONS 
 

The effect of the implementation of the cellular automata technique together with the 
optimality criteria, which was derived from a generalized formulation of a multi-objective 
function, on the optimum layout was investigated. Regarding the fact that by employing the 
cellular automata as a local rule, alongside with the topology, shape of the structure can also 
vary during the optimization process, a relatively good improvement in the obtained layouts 
is expected. In the carried out experiences, in spite of using an improved resizing scheme, 
this didn’t occur all the time. However, in most of the cases, the current method resulted in 
layouts of a more practical nature which obviously has its importance and attraction in the 
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industrial community. From a theoretical point of view, this problem returns to the question 
of the relationship between the optimum layouts obtained from the minimization of the 
strain energy and weight and the reason for their similarities which is open to further 
research. 
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