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ABSTRACT

Design sensitivity analysis is a necessary task for optimization of structures. Methods of
sensitivity analysis for linear systems have been developed and well documented in the
literature; however there are a few such research works for nonlinear systems. Nonlinear
sensitivity analysis of structures under seismic loading is.very complicated. This paper
presents an analytical sensitivity technique for Reinforcement Concrete Moment Resisting
Frames (RCMRF) that accounts for both material and geometric nonlinearity under
pushover analysis. The results of proposed method are compared with the results of finite
difference method. A three-story, two bays moment frame example is used to illustrate the
efficiency of the method. This technique can-be very useful and efficient for optimal
performance-based design of RC buildings.

Keywords: sensitivity analysis, material nonlinearity, geometric nonlinearity, RCMRF,
pushover analysis

1. INTRODUCTION

Structural optimization for linear response is a well-defined problem and a large number of
research works ‘have been carried out on this subject. In recent years, performance-based
seismic design has become a necessity for design of new structures. Generally pushover
analysis, which 1sa simplified static nonlinear procedure is used for performance-based
design [1]. In the pushover analysis a predefined pattern of earthquake loads is applied
incrementally on structure until a predefined target displacement is reached or a plastic
collapse mechanism is occurred [2,3]. Accordingly for performance-based design structural
optimization involves in nonlinear analysis. structural design optimization involves response
sensitivity analysis in explicitly formulating constraint functions [4]. Considerable part of
computational effort in an optimization problem is usually allocated to the sensitivity
analysis. Each sensitivity coefficient defines the amount of change in a structural response
due to a unit change in a design variable, such as sensitivity of displacement to change in
cross-sectional dimensions or reinforcement ratio.
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While considerable research effort has been put on developing the sensitivity analysis
techniques, there are a few research works in the literature that has focused on the theory of
sensitivity analysis for nonlinear structural systems. Ryu et al. [5] proposed a general
nonlinear sensitivity analysis accounting for geometric and material nonlinearity. They used
modified Newton-Raphson method for their nonlinear analysis and used the same procedure
for their sensitivity analysis. They presented the formulation for a truss example. Choi and
Santos [6] were two of researchers that developed variational formulations for nonlinear
design sensitivity analysis. They used linearized equilibrium equations to obtain first
variations of the governing nonlinear equilibrium equations with respect to design variables.
Gopalakrishna and Greimann [7] differentiated the equilibrium.equation in each Newton-
Raphson iteration to obtain incremental gradients and this method was used for the nonlinear
sensitivity analysis of the plane trusses. Santos and Choi [8] presented a unified approach for
shape sensitivity analysis of trusses and beams accounting. for both geometric and material
nonlinearities. They utilized the adjoint variable and direct differentiation methods. Ohsaki
and Arora [9] presented an accumulative and incremental algorithm for the design sensitivity
analysis of elastoplastic structures including geometrical nonlinearity. They performed the
sensitivity analysis of trusses but they reported that the method is extremely time consuming
for large structures. Lee and Arora [10] investigated the effect of discontinuity in yield
surface on the sensitivity analysis and presented a procedure for their treatments. They
developed design sensitivity analysis of structural systems having elastoplastic material
behavior using the continuum formulation and.illustrated the sensitivity analyses for a truss
and a plate by this technique. Barthold and Stein [11] presented a continuum mechanical-
based formu-lation for the variational sensitivity analysis accounting for nonlinear
hyperelastic material behavior using either-the lagrangian or eulerian description. Szewczyk
and Ahmed [12] presented:a hybrid numerical/-neurocomputing strategy for evaluation of
sensitivity coefficients of composite panels subjected to combined thermal and mechanical
loads. They pointed .out that this method reduces the number of full-system analysis.
Yamazaki [13] suggested a direct sensitivity analysis technique for finding incremental
sensitivities of the path-dependent nonlinear problem based on the updated lagrangian
formulation. Employing this method they performed the sensitivity analysis of a plate.
Bugeda and et al. [14] proposed a direct formulation for computing the structural shape
sensitivity analysis:with a nonlinear constitutive material model. It was reported that their
proposed approach was valid for some specific nonlinear material models. Schwarz and
Ramm [15] proposed the variational direct method for sensitivity analysis of structural
response accounting for geometrical and material nonlinearity with Prantel-Reuss plasticity
model. Gong et al. [16] presented a procedure for sensitivity analysis of planar steel moment
frameworks accounting for geometric and material nonlinearity. In their work, analytical
formulations defining the sensitivity of displacement were derived. They used the
incremental nonlinear method for pushover analysis.

While many researches have been carried out for nonlinear sensitivity analysis of trusses,
single beams, single plates and shells, study of literature reveals two point. First, there are a
few researches on nonlinear sensitivity analysis of structures under variable loading such as
seismic loading. Secondly, there are a few researches about nonlinear sensitivity analysis of
frameworks; and there is no research work on nonlinear sensitivity analysis of reinforced
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concrete frameworks. The objective of this study is to develop a formulation for sensitivity
analysis of planar RCMRF accounting for both material and geometric nonlinearity under
pushover analysis using Newton-Raphson iterations. The proposed procedure can be
efficiently used for optimal performance-based design of RC frameworks. A three-story
RCMRF has been used as an example to illustrate the applicability and efficiency of the
developed sensitivity formulations.

2. PUSHOVER ANALYSIS OF RCMRF

The first step in design optimization is the calculation of sensitivity analysis that in turn
depends on the method of structural analysis. The simplest. recommended method for
nonlinear static analysis is Pushover method. This method of analysis that is recommended
by FEMA273 [2] and ATC40 [3] is a popular tool for.evaluation of seismic performance of
existing and new structures. Many researchers such as Saiidi and Sozen [17], Bracci and et
al. [18], Kilar and Fajfar [19], Gupta and Krawinkler [20], Mwafy and Elnashai [21], Hassan
and et al. [22] and Chopra and Goel [23] have used thistanalysis method. In the pushover
analysis, it is necessary to specify a proper material behavior model for elements. This is
explained in the next two sections.

2.1 Moment curvature relation

The moment-curvature relation of every RC structural element has a definitive effect on the
behavior of the structure. In this research the trilinear moment curvature relation, as shown
in Figure 1, is used for expressing the nonlinear behavior of reinforced concrete sections.
The moment curvature relation“of.a structural element highly depends on its cross-section.
In this study, the column sections are limited to rectangle and that of beams can assume
rectangle , T or L shaped.

M

f |_.4

B

b

Figure 1. Trilinear moment curvature curve

To determine moment-curvature relation of RC members some assumptions should be
maid that best fits with the test results. In this study, by ignoring the effect of axial force in
moment-curvature relation, the following limitations for various states of behavior of RC
elements are used [24,25]:

a) Cracking state
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M, = f.1/(h-y) 1)
¢, = T 1E.(h-y) )

b) Yielding state
M, =05fb (h—c)[(2-n)p+(7-25)op’] (3)
¢, =1.05¢, /(1-k)h—c) 4

c) Ultimate state
M, =(1.24-0.15p)M (5)
¢, =1.058,¢, [[(R*+S)*® —R] ©)

WhereR = (p's,E, — pf )(h-c)/(1.71.); S = ple,E,Bc(h—c)/(0.85F); f, is the
modulus of rupture of concrete; f_ is.the cylinder strength of concrete; f, is the yield
strength of steel; E, is the modulus of elasticity of concrete; E. is the modulus of elasticity
of steel; &,

coefficient that depends on the strength of concrete; h is the overall height of section; c is
the cover to steel centroid; b, isthe top width of section; y is the distance from the neutral
axis of the section to the extreme fiber in tension/.n and is obtained from (7); | is the

moment of inertia of the section and is obtained from (8). other parameters are defined from
(9) to (14).

is the ultimate strain of concrete; ¢, is the yield strain of steel; g, is a

y= {O.Sbttz +0.5b, (h? —t%) + (ng, ~D[ALc +A (h—c)]}/[b,t + by (h —t)+ (. ~D(A, + AL)] (7)

I =b,t3/12+b,t(y —0.5t)? + b, (h—1t)*/12+ b, (h —1)0.5h + 0.5t —y)? + (n . —1)

8

x[As(h—c—y)2+A;(Y—c)2] ®)
\/(p+p’)2/4oc2+(p+Bp’)/oc—(p+p')/2cx ,ksﬁ

k={{ne(p+p) +tlb /b, ~) /(h— ) +2n,,(p + p'B) + t2(b, / by - ©)

Nith-c)° —n (p+p)—t(b /by~ /h—c) k=

n :0.75((¢y(h—C)—s)/80)0‘7/(1+ sylso) (10)
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a=(L-BYp,(h—c)-z,)/e, ~p<1 (11)
p=A,Iby(h—c)ip’ = Al /by (h—c) (12)
p'=p'f, /f;p=pf,/f <16 (13)
B=c/(h—c) (14)

Where n, is the ratio of the modulus of elasticity of steel to that of concrete; &, is the
strain at maximum strength of concrete; b, is the width of the section at the bottom; t is the
flange thickness of T or L beam; A is the area of bottom bars and A; is the area of top
bars. For the case of positive moment (1) to (14) are valid for all types of sections. For
rectangular sections these equations can be simplified by substituting b, =b, =b and t =0.
Also for the case of negative moment, these equations can be used by substituting b, , b,
h—t, A and A, instead of b,, b, t, A.and. A, respectively. Now by having the

moment-curvature relations, the flexural stiffness can be specified for ends of the element as
follows:

Ely =M /0urp < Elp (15-a)
El, =(Myy = M, )/ 0y = 0orp )< El (15-b)
El; =(MUP_MVP)/(¢UP_q)yp)SElpm (15-c)

Where (15-a), (15-b) and (15-c) are used for zones of 1, 2 and 3 of M -4 curve,
respectively. In(15) EI' jand EI ,, are the stiffness and minimum stiffness of any section;

M, M{,and M are the cracking, yielding and ultimate moments; and ¢, ¢,, and

¢,, are corresponding curvatures.

2.2. Material nonlinearity

In this paper, a spread plasticity model that has been proposed by park et al. [24] is utilized.
This plasticity model, that considers the cracking behavior of RC, can also account for
material nonlinearity of RC elements with a very good approximation. It has been
implemented in IDARC software [26]. In this model, attention is paid to the distribution of
curvature along an element. For an element subjected to earthquake loading, the distribution
of curvature may follow Figure 2-a. Since both flexural deformation and flexibility have
reciprocal relation with stiffness of element there will be an analogy between flexibility of
the section and its flexural deformation. Accordingly Figure 2-b can be considered for the
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flexibility distribution in the RC elements. Where El, and El; are the flexural stiffness of
the section at end ‘A’ and “B’, respectively, and El, is the initial stiffness of the element;

a, and « are the yield penetration coefficients and L’ is the length of the element.

Adopting the above Plasticity Model for RC elements, the tangent stiffness matrix of
each element can be derived. General derivation of tangent stiffness matrix is given by Park
et al. [26] and detail derivation is carried out by Habibi [27]. Considering a RC element with
six degrees of freedom, with its rigid parts, as shown in Figure 3, the tangent stiffness matrix

of element can be found as follows:

Ke =K, +K,
Inelastic deformation
Elastic deformation
N - —
(a)
1'ET
1VEI
A {IJ"EI“
1/E]
: |
I I 1
1 1 " f 1 1 .
L Oy (o, TeL  Oel!
(b)

(16)

Figure 2. (a) Curvature distribution along a RC element (b) Flexibility assumption along a RC

element

T L' T
- End B of Member m -
/ End A of Member m End B of
} Member n
! P - -y -~ ol .
| Rigid Zone—y v Member m Rigid Zone—~4-)/ Rigid Zone Member [5"
ha — —
Model Joint A of Model joint B of h,
“‘--Hh_h Member m L Members m & n # -
— T

Figure 3. Rigid zone and ends definitions

In Eq. (16), K, and K, are axial stiffness matrix and bending stiffness

matrix
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respectively and must be assembled in the element stiffness matrix K,. K, can be
determined from:

1 -1
K, { ]& = AK,, (17)

Where EA/L is the axial stiffness of the element, A is the area of cross section and
K., 1s a constant matrix. K, , is obtained from following equation:

K, = R.K(R] (18)

Where:

Rf =

~1/L 1 1/L 0 .
K =LKL (19)
~1/L 0 1/l 1

Where L is length of element and L can.obtained from the following equation.

R S b SR S (20)
1-4, —Ag | Ag ~1=4, — Ay 1-2,

Where A, and A, arethe portions of rigid zone at the element ends. The elements of
K¢ in (19) are obtained from following equations:

Key =12EREILEIL'T, /D, ; Ky = Koy = Kgyif /Ty5 Ky = Kgyf, /1, (21)
Where:

f, = 8854.S, (60, 402 +03 )+ Sp03; F, =4S, +5,03 +S; (60 — 4ol + ) 22)
f, 2425, -5, (202 - o )-8, (202 — a3} D, =(f,f, ~F2)L%L = (A— 2, —2g)L
Where S, =ElEl,; S,=(El,-El,)El,; and S,=(El,-El,)El,. The yield
penetration parameters used in (22), specify the portion of the element where it cracks.
When the moment of the section under consideration is less than cracking moment, Values
of these parameters are considered to be equal to zero. For the single curvature of the
element, when its moments are greater than cracking moment, value of the parameters are
considered to be equal to 0.5. For other cases, assuming linear moment distribution along the
element, these parameters can be determined from:

a, =maxmin{(M |- M, )/(M, -M,|)1}a,, | (23)
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Where subscript p specifies any general point p and cr represents the cracking state under
consideration. « ,, is the maximum yield penetration parameter, obtained in previous load

steps. Usually, the flexural stiffness at the center of the element is equal to elastic stiffness
and is determined from (24). For the case of single curvature if moments are greater than
cracking moments, their values can be modified by (25).

El = 2E (24)

0 A0Elgo/Elpg +E!

g0/

El, = 2EI,El5 /(El, +Elg) (25)

Where El,, and El, are the elastic stiffness at ends ‘A’ .and ‘B’, respectivesly; and EI,
and El are the inelastic stiffness at ends ‘A’ and “B’; respectively. For a member that yield

penetration spreads over the whole element (when ap+ag 21), El, is obtained from (25).
In this case, , and «g and initial flexibility.are modifiedto capture the actual flexibility
distribution. These modifications are:

oy = (Fa —fo +(Fs —Fo ) og)/((Fa =Fo )/ 0ta +(F o )/0ts) (26-a)
o =1—aly (26-b)
fafa—(Fa—Toloa/on (26-c)
Where:
fo =1/El,;fy =1/Elg;f, =1/El, (27)

2.3 Geometric nonlinearity

When large deflections are present, the equations of force equilibrium must be formulated
for the deformed configuration of the structure. The nonlinear terms in the strain-
displacement equations modify the element stiffness matrix [28]:

K=K, +K, (28)

In (28) K, is called geometrical stiffness matrix. This matrix for the element, as shown
in Figure 4, is obtained by Przemieniecki [28]:
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-6/5 -L/10 0 6/5
L/10 —L?/30 0 -L/10 2L%/15]

0
0 6/5 symmetric
N|O L/10 2L2/15 (29)
¢, N (i)
9 Llo o 0 0 g
0
0

Where N is the axial force of the element and K, is the constant matrix. The stiffness
matrix calculated from (28) must be transformed to global system:

K,=TJK.T, (30)
where T, is the transformation matrix of the element.

2.4 Lateral Loading

In the pushover analysis, the load vector must incrementally be increased. At each load step,
the base shear increment is applied to the structure with a predefined profile over the height
of the structure. The incremental lateral load vector can be computed as:

AI:)E = A\/b '[Cv,l Cv,2 e Cv,ns]T = AVb 'Cv (31)

Where AV, is the incremental base shear and C, is the vector of lateral load distribution
factors Cv,s(s =1,...,number of stories), which is determined from FEMA273 [2]:

Cv,s:WsH: HZS’.IWSHE ,$=1,...,Nns (32)
S=!

Where W, is the portion of the building seismic weight at story level s; H_ is the

vertical distance from base of the building to story level s; ns is the number of stories; and
k is a parameter that has been recommended by FEMA273 (1997) as follows:

1 T<05
(33)
k=<0.5T+0.75 05<T<25
2 T>25

Where T is the fundamental period of the building.

2.5 Internal forces
In each Newton-Raphson iteration i, considering equilibrium, the internal forces of the

element at load step | can be determined from (34).
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AFD = KDl (34)

Where K" is the tangent stiffness matrix of the element and d ™ is the displacement
vector of the element at load step | and Newton-Raphson iteration (i—1). The internal
forces of the element at iteration i of load step | must be updated by following equation:

FOD — F0-D | AR (35)

At every Newton-Raphson iteration, values of internal forcesimust be modified according
to displacement vector. In order to modify the internal forces, first the increments in internal
forces at two end joints of members are obtained from (34) and then the moments are
transferred to the two ends of the element excluding rigid zones by (36).

AM® = [ Am® (36)

With increment of moments in hand, the curvatures of the element are calculated from
(37).

O =gt eAM P TEID 37)

In Eq. (37), ¢1 " is the curvature at’'end ‘p (either A or B) of the element in previous

iteration; AM ,‘j) is the incremental moment at end ‘p” of the element at current iteration i.

With the obtained curvature;the nonlinear moment value can be obtained from the M-
relations:

M =10 (36-2

MO =MD +EIQ(0 - 40) (38-b)
MO =M +EID (g - 47) (38-c)
MO = MO (38-d)

Where (38-a), (38-b), (38-c) and (38-d) are used for zones of 1, 2, 3 and 4 of M —¢ curve,
respectively. In (38), M%), M{, MO, ¢ and ¢{) are the moment-curvature

characteristics at end ‘p’ of the element at load step I. In the next step moments are
transferred back to the end joints of member using (39) to calculate the unbalanced forces at
the end joints of member.
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m® =LM® (39)

Where M@ is the moment vector at two ends of the element and m" contains the
moments at two joints. Modified values of shear forces of the element at joints are computed

from (40).

VO = (m® +m®)/L (40)

Where V" is the shear force at joint ‘p’.

3. NONLINEAR SENSITIVITY ANALYSIS

Modified Newton-Raphson iteration for obtaining the incremental displacement at a load
step | and iteration i can be written from Bathe [29]:

K_lgl)Ad O _ph_ F(H); dh= ZAd (i); DM = Zd(l) (41)

Where K is the global tangent stiffness matrix ; Ad® is the incremental displacement

vector ; P" s the external load vector; F ™ is the internal load vector; d®" is the
incremental displacement vector; and D{)is the total displacement vector. Differentiating
(41) with respect to design variable. X gives:

Ad® dK Jdxg+ KO dAd @ Jdx; =dP® fdx; — dF O /dx; (42)

In this study, this equation is used as the basic formulation for obtaining the incremental
displacement sensitivities:Assuming that all terms in (42) except dAd ® /dx; are known, it

will be rearranged to find:
dad® fdx, =[K® (P fax, —dF fdx, — Ad® dk® /alx,) (43-a)

Summing up the sensitivity of displacement at all iterations, sensitivity of incremental
displacement vector for corresponding load step can be computed from:

dd®/dx; = > dAd® /dx, (43-b)

Similarly the total sensitivity of displacement vector can be obtained by summing up the
sensitivities in all load steps as follows:
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dD(')/dx ;=xdd® /dx J. (43-c)

In the coming sections, the way each sensitivity item in (43-a) should be obtained, is
explained.

3.1 Sensitivity of tangent stiffness matrix
The tangent stiffness matrix of the structure at each load step is obtained by properly
assembling of the tangent stiffness matrix of elements:

KO =YK, (44)
e=1

Where neis the number of structural elements and” K, is the tangent stiffness matrix of

the element accounting for material and geometric ‘nonlinearity. Differentiating (44) with
respect to any generalized variable x; sensitivity of the tangent stiffness matrix can be

obtained from:
dK P fdx; => dK, /dx, (45)
e=1
Sensitivity of tangent stiffness matrix of the element is obtained by differentiating (28)
and using transformation (30).
dK,/dxj= TJ (dK, /dx; )T, + T7 (K, /dx T, (46)

In above equation, the first and second terms on the right are sensitivities of material and
geometric nonlinearity, respectively. Noting that K, in (29) is a constant matrix, the

derivative of K.in (46), can be obtained from:
dK,, /dx; = Kgo(dN/dx;) (47)

Where dN /dx; in (47) is the sensitivity of axial force of the element and can be determined

from section 3.3. It is noted that for beams, values of axial forces are usually negligible.
Hence, K, and its sensitivity can be ignored for beam elements. Considering that K, and

R in (46), do not dependent on design variables, sensitivity of K., can be obtained by
differentiating (16), (17) and (18):

dK,, /dx, = K o (dA/dx, )+ Re (dK /dx; RE (48)
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It is noted that the first and second terms in the right hand side of (48) must be properly
assembled. The first term represents the axial stiffness while the second one represents
flexural stiffness. Assuming rigid diaphragm for floors, there will be no change in axial
forces of beams. Accordingly the first term in the right hand side is zero. For column
elements by defining A =bh sensitivity of A with respectto b is h, and with respect to h
is b. It is zero with respect to other variables. The derivative of K is determined by

differentiating of (19):
dK /dx; = (dL/dx KoL + LKy /o )0t + LK g (LY /dx, ) (49)

Where:

1[4, [{dﬂs/d% - A/d%] [ d@/dﬂ 50
dx  1-A,—A [l dx dx —d%/dx  dA,/dx |’ dx di/dx  dg/dx

In (50), sensitivity of 4, with respect to h, is 1/2L; also sensitivity of A; with
respect to hy is 1/2L. For a typical beam~h, and h, have been shown in Figure (3)

Similar definitions can be made for columns between two floor beams. In Eq. (49)
sensitivities of matrix K to any design variable can be obtained by differentiation of its

elements as follows:

dEl, dElg

dKg, _126,L'[ dEl, i B, +

ELEl, +
dx; D, | dx ax; ax;

12EI0EIAEIB(dﬁJL,+dL'f _dp, L'fb] (51-a)

b
D dx;  dx; dx; D,

EIAEI0]+
]

e

—Cop e tsu Fb e MS1 (51-b)

- —a y “la TNsit b TaiNsin (51-c)

Where:
df, /dx; =S, (6(xA —4a’ +ai)+ SSaazs(docB/dxj) (52-a)
+8, (680, +302 [dot, /dx, )+ Syl +48;

+8,(6—80.g +302 [dag fdx; J+ Syal, +4S;
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df; /dx; :—S'Z(ZOLZA —ai)—82(40cA —30ciXd(xA/dxj)

(52-c)

—S'3(20cé —(x?é)—Ss(4ocB —BQZBXdaB/de>—281
D, /dx, = (f, df, /dx, + f, df, /dx, — 2, df_ /dx, )L +2(f, f, — f2)L"dL'/dx, (52-4)
dL'/dx, =—(d4, /dx; +d2, /dx; L (52-¢)

Where:

S; = Elg dEl, /dx; +El , dEl /dx;
S,, = (dE1, /dx; — dEl , /dx; JElg + (El, — Elg )dEl /dx; (53)
S, = (dEIO/dxj —dEIB/dxj)EIA +(Elg—Ely )dEl, /dx;

In these equations, the derivative of EIl; with respect to-any variable X can be obtained
by differentiating of (24) with respect to X. This leads to (54).

dEl, 2 [dEIAO 1+ 9o EIAOJ— 2E1,Elgy [dEIAO N dEIB(,] (54)

dx; Ely +Elg | dx; dx; (Elpo +Elge)? dx; — dx;

For an element with two end moments greater than cracking moment and single curvature
the sensitivity of El, with respect to X should be modified by (55). Sensitivity of EI,, and

El, Will be obtained from (56).considering the case of M <™, .

dEl, 2 [dEIAEIBerEIBEIAJ_ 2EIEl, (dEIAerEIBJ (55)
J

dx, El,+Elg| dx, dx, (El,+El)"| dx,  dx

In Eq. (51) to (85), to use the sensitivity El, and El, it is sufficient to differentiate
(15) w.r.t. X as follows:

dEI, /dx, =(U/d,,, M, /dx; ) (M, /#2, Ndd, /d, ) (56-a)
del, 1 (dMyp CdMy, ) My, -M, (déy,  dd, (56-5)
de ¢yp _¢crp de de (¢yp _¢crp)2 de de
del, 1 (dMup CdM, ) M, -M,, {d% ) d¢pr (56.0)
dXJ ¢up _¢yp de de (¢up _¢yp)2 de de
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Where (56-a), (56-b) and (56-c) are used for zones of 1, 2 and 3 of M —¢ curve,
respectively.

Since moment-curvature relations are functions of design variables their sensitivities
should be determined from Egs.(1 to 6). These derivatives have been reported in Appendix.
According to section 2.2, the sensitivity of «, and«y that have been used in (52), are zero
provided that that moments are less than cracking moments or the element undergoes single
curvature with end moments greater than cracking moment. For other cases the sensitivities
can be determined by differentiating of (23):

dap_ 1 de Mp _ndrp _|Mp|_Mcrp dMA_dMB (57)
dx; [M,—Mgl||| dx, |M dx. (M, =Myl dx; = dx,

j P | j j

Where dM | /dx; is the sensitivity of moment at end 'p’ of the element; its value will be
presented in section 3.3. In (57), if «,>1, its sensitivity/is zero and if «,<a,,, its

sensitivity is equal to sensitivity of « . When a; +a; -1, The sensitivity of El,, o, and
oz must be modified by differentiation of (26):

dou “lf _f +fo_f0x _danB_foJ (fA_f0+fB_f0J_
AX Bx 2
dx; Og dx; fog O Og (58-a)
2
Fax —fox _da’A fA_f0+fo_f0X %fs_fo Fo_f +fB_f0 fA_f0+fB_f0
Op dx; o’ Og dx; al AE Og Op Og
da da),
B —_—A (58-b)
dx; dx;
%:f _ Fax = Ty al —(f, - f) 1 daj, a, da, (58-c)
dx > AORAD dx, «a? dx
j A A i A i

Where:
e = —(dEL, Jox JYEIR} fo = —(dEI, dx I/ERR} f,, = —(dEL,/dx, JI/ERZ) (59

3.2 Sensitivity of external loads

Since in the pushover analysis, load pattern depends on the natural period of the structure
and the natural period depends on structural stiffness and building mass, any change in the
structure stiffness causes a change in the external loads. Since gravity loads are constant, the
sensitivity of external load vector at any load step | comprises only sensitivity of lateral
loads.
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dP® /dx; = dP{™ /dx ; + dAP /dx; (60)

Where the second term in right hand side is the sensitivity of incremental pushover loads
and is obtained from

dAPg /dx; = AV, dC, /dx; (61)
Where the components of dc, /dx, vector are found from following equation:

d ns ns ns
d‘;v,s:(wsH: ZWSH:J(InHS—ZWsH:(lnHS) ZWsHsk]dk/dxj ©2)
s=1 s=1 =t

i

In above equation, for T <0.5 and T > 2.5, the sensitivity of k is zero. For other values
of T, derivative of (33) gives:

dk /dx, = 0.5dT /dx, (63)

Where dT /dx; is the sensitivity of the fundamental period of the structure. It can be
found from Moharrami and Alavinasab [30]:

AT /d; =<(7°/8 72)¢" (dK /dx; o (64)
Where ¢ is the first mode shape of the structure.

3.3 Sensitivity of internal forces
Sensitivity of the incremental internal forces of any typical element at load step | and
Newton-Raphson iteration i can be determined from differentiating of (34):

AR fdx, =d SV (dK @ fdx, )+ KO (dd ¢ dx, ) (65)

The sensitivity of internal forces of the element is updated by (66).

AR, fdx; = dRS fdx; +dAR [dx, (66)

After obtaining the sensitivity of moments at the two end joints of RC member, it will
have to transferred to the design end of the element form the following equation:

dAM® /dx; = (di:‘l/ dx; JAm® + [_l(dAm(i)/ dx;) (67)

The sensitivity of moments should be modified according to the change in curvature of
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the element. The curvature sensitivities of the element are calculated by differentiating of
(37):

do /ax, = i Jdx, + (dAM® /dx, )/EIY — (@EIY /dx, )AM® /(E19) (68)

Modified values of moment sensitivities of the element are computed by differentiating
of (38):

MO /dx, = (19 /ax, b +EI10 (de® /dx ) (69-a)

MO fdx; =dM®, /dx; + [GEIO dx, Jol — o )+ EID (do /ax, —do, /dx,)  (69-b)
aM? fax; =AM fax + (GBI foe; o) — o) EI (0P /o ~ o fexy ) (69-c)
dM /dx; =dM{) /dx; (69-d)

Where (69-a), (69-b), (69-c) and (69-d) are'used for zones of 1, 2, 3 and 4 of M —¢ curve,
respectively.

By having modified moment sensitivities at ends of the element by (69), moment
sensitivities at joints of the element are determined by differentiating of (39):

dm®/dx; = [dT/dx, M@ + L(am® /dx ) (70)

Modified values of shear force sensitivities at joints of the element are computed by
differentiating of (40):

dv? fdx; = (dm{) /dx; +dmg /dx;) /L )

3.4 Summary of Sensitivity analysis procedure
The nonlinear sensitivity analysis of RC frames under pushover analysis that was developed
in this study, can be carried out in following steps:

1. Determine the moment-curvature relations from (1) to (6) and Compute their
derivatives from appendix.
Compute the first mode shape, first period and its sensitivity from (64) to (69)

Calculate the matrixes L and L™ and their derivatives for each element from (20)
and (50)

Compute the lateral load distribution factors and their sensitivities by (32) and (62)
Set load step index ! =1 and apply the gravity loads only.

Compute the lateral loads and their sensitivities from (31) and (60)

Compute the flexural stiffness and yield penetration parameters and their

No ok
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sensitivities for each element from (15), (23) to (27) and (54) to (59)

8. Compute the tangent stiffness matrix and its sensitivity for each element by (30) and
(46)

9. Assemble the global tangent stiffness matrix and its matrix of sensitivity by (44)
and (45)

10. Set Newton-Raphson iteration | =1

11. Solve (41) for displacements and find their incremental sensitivities from (43)

12. Calculate the internal forces and their sensitivities from (34) to (40) and (70) to (76)

13. Set i =1+1 if unbalance forces are zero, stop the sensitivity analysis at load step |
and go to step 14; otherwise go to step 11
14. Set | =1+1 if the roof lateral displacement is greater than target displacement, stop

the sensitivity analysis and go to step 15; otherwise go to step 6.
15. Compute the total incremental sensitivities coefficients
For more details about the algorithm of nonlinear sensitivity analysis refer to Habibi
(may be 2006).

4. NUMERICAL EXAMPLE

A three-story, two-bay planar frame of Figure 4 is'used to illustrate the method of proposed
analytical nonlinear sensitivity analysis.The concrete is assumed to have a cylinder strength
of 30 Mpa, a modulus of rupture of 3.45 Mpa, a modulus of elasticity of 27,400 Mpa, a
strain of 0.002 at maximum strength and an ultimate strain of 0.003. The steel has a yield
strength of 300 Mpa and a.modulus of elasticity of 200,000 Mpa. A uniformly distributed
gravity load of 12 KN/m is applied on the beams of each story. Reinforcements have the
cover to the steel centroid of 50 mm. It is assumed that columns and beams have rectangular
cross sections. Fourteen design variables that have been reported in Table. 1 have been
defined in this frame.-In order to allow the structure enter to the inelastic behavior, Target
displacement of 2% has been chosen as a stop criterion for load steps of sensitivity analysis.
Convergence tolerance .0f'0.1% was considered as a stop criterion for Newton-Raphson
iterations. The pushover (capacity) curve of this frame is shown in Figure 5 and target point
has specifiedon.it.

p LTI TTT]
'Hllllllﬁ
=
[Tl -
B S B2
€1 2 €3
- 2 e >

Figure 4. A three-story, two-bay RC frame
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Figure 5. Capacity curve of the three-story RCMRF

Nonlinear sensitivity analysis is performed on this-frame by the proposed Analytical
Method (AM) and compared to the results from central Finite Difference Method (FDM). In
this example, as a sample, sensitivity analysis of ‘the overall drift that may indirectly
represent the sensitivity of internal forces to change in some design variables is considered.
The results have been briefed in Table. 2 for two nonlinearity cases namely: (i) material
nonlinearity only NC1, and (ii) both geometric. and material nonlinearity NC2. For
interpreting the results, for example consider the design variable No.1. The overall drift
sensitivity shows that its value will be decreased by 0.2688% and —0.2318% for a unit
change in design variable No.1, for_nonlinearity cases (i) and (ii), respectively. Linear
sensitivity analysis for the same variable indicates the sensitivity of —0.0113% which is
much less than its actual value. Values.of nonlinear sensitivity coefficients predict that if
value of width of columns C1 and C3 increase from 350mm to, 360mm; overall drift of 2%
decreases to 1.9973% and 1.9977% for NC1 and NC2, respectively. These predictions are
very important in optimal performance-based design process. In Table 2, percentage of error
of FDM compared to AM has evaluated from:

ERROR =100(S ¢y — Saw )/ S am (72)

In Eq. (72), S.y.and S,, are the sensitivity coefficients obtained from FDM and AM
respectively. In FDM method, the design variables perturbation has been considered to be
1%, 0.1% and 0.01%. Comparing the AM results with FDM results, it is observed that by
reducing perturbation values results of FDM almost all design variables converge to AM
results; that is, the AM results are in good agreement with FDM results in very small
perturbation cases.

The results of sensitivity analysis by FDM shows that assuming perturbation of 1% in
design variables this method in most cases generates inaccurate results; while this is not the
case in the linear sensitivity analysis.

Comparing results for two cases NC1 and NC2 shows that sensitivity coefficients of
frame when both geometric and material nonlinearity are accounted for are smaller than the
case where only the material nonlinearity is considered.
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Table 1. Design variables

I\!umber_of Description Value
design variable
1 Width of columns C1 and C3 350 mm
2 Height of columns C1 and C3 350 mm
3 Width of columns C2 450 mm
4 Height of columns C2 450 mm
5 Reinforcement area of columns Cl.and C3 942 5 mm
on each face of column
6 Reinforcement area of columns C2 on each 1570.8 mm?
face of column
7 Width.of .beams 250 mm
8 Height of beams 350 mm
Lower reinforcement area for beams B1 at
9 left hand and for beams B2 at right hand of 1956.6 mm?
beam
(first and second stories)
Upper reinforcement area for beams B1 at
10 left hand and for beams B2 at right hand of 942.5 mm?
beam (first and second stories)
Lower reinforcement area for beams B1 at
11 right hand and for beams B2 at left hand of ~ 1256.6 mm?
beam (first and second stories)
Upper reinforcement area for beams B1 at
12 right hand and for beams B2 at left hand of ~ 1570.8 mm?
beam (first and second stories)
13 Lower reinforcement area for third story 628.3 mm?
beams
14 Upper reinforcement area for third story 628.3 mm?

beams
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Table 2. Sensitivity coefficients of overall drift at target point (%)

Sensitivity with respect to design variable
Method

1 4 5 7 8 9 12

NC1 -0.2688 -10.8864 -3284.1  -1.1499  -46.3542 -2333.1 -2183.6

AM
NC2 -0.2318 -10.5285 -3190.1 -0.7619  -45.0750 -2296.4  -2151.2
NC1 -0.4757 -10.6962 -3171.2 -1.7722 -61.3068. -2140.8  -2548.7
FDM 1%
NC2 -0.2184 -12.2850 -3417.3  -1.9828 -61.5887 / -1950.0 -2776.3
FDM NC1 -0.2707 -10.8195 -3284.0 -1.1491 -50.2593 -2332.8 -2183.5
0
0.1% NC2 -0.2363 -12.1370 -31904  -0.7609 -38.4454 -2295.2  -2151.9
FDM NC1 -0.2688 -10.8859  -3284.1 . -1.1499  -46.3487 -23329  -2183.3
0.01%
NC2 -0.2331 -10.5285 -3190.3. -0.7622 -451176 -2296.4  -2151.2
ERROR NC1 76.95 -1.75 -3.44 54.12 32.26 -8.24 16.72
0
1% NC2 -5.80 16.68 7411 160.24 36.64 -15.09 29.06
ERROR NC1 0.69 -0.61 -0.004 -0.07 8.42 -0.01 -0.004
0.1%
NC2 1.94 15.28 0.004 -0.13 -14.71 -0.05 0.04
ERROR NC1 -0.03 -0.005 -0.001 -0.001 -0.01 -0.006 -0.01
0.01%
NC2 0.53 -0.001 -0.001 0.03 0.09 0.0003 0.0002

5. CONCLUSION

In the present study a procedure for exact sensitivity analysis of RCMRF using pushover
analysis was proposed. The procedure accounts for both material and geometric nonlinearity
in the context of modified Newton-Raphson analysis technique. The proposed method does
not face to the difficulties that the FDM method confronts.

The proposed sensitivity analysis involves in much less computational effort compared to
FDM. This achievement provides a powerful tool in optimal design of nonlinear structures
and is an essential requirement in successful optimal performance-based seismic design of
RCMRF.

Sensitivity analysis of a three-story RC frame illustrated the capability and effectiveness
of the derived formulations. Results of the case study for a nonlinear structure indicate that



154 A. Habibi, H. Moharrami and A. Tasnimi

sensitivity calculation via FDM method may end up to inaccurate sensitivity results
especially if the value of perturbation is high.

It was shown that when both material and geometric nonlinearity is accounted for, the
sensitivity of a structural behavior, such as overall drift, is less than that when only material
nonlinearity is accounted for.
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APPENDIX

Derivatives of moment-curvature characteristics
a) Cracking state

ndr/de = frlx/(h_y)_ frl(hx_)/x)/(h_y)2



156 A. Habibi, H. Moharrami and A. Tasnimi
dg, /dx; =—f.(h, -y, )/ E,(h—y)
b) Yielding state
dM, /dx, = 0.5F (b, (h - + 2bh, (h = c)[(2=m)p + (- 2B)op']+ 056, b, (h — )P [, + (2
- 1’])px + (nx - ZBX )Otp, + (T] - ZB)(axp' + ocp;)]

dg, /dx; =-1.05z, [k, (h—c)+@L-Kk)h, }/[1-k)*(h-c)? |

c) Ultimate state

dM, /dx; =-0.15p,M , +(1.24 - 0.15p)dMy,/ dx;
dg, /dx, =-1.054,5,[0.5(2RR, +S,)(R? +8) °* <R J/|(R? +5)°* - R[’

Where:

R, =|(4&,E, — o, f,)—0) (e E, — A )h /L T75.)
S, =&,E.Adp,(h—0)+ph,]/(085f,)

In above equations, extra parameters that-have not been defined in previous sections are
obtained from following equations:

I =by t°/12+b,t°t, /12+ b, t(y=0.5t)° +b;t, (y - 0.5t)* + 2b,t(y — 0.5t)(dy/dx; —0.5t,) + by, (h—t)° /12
+b, (h—t)%(h, —t,)/4+[bg(h=t)+by(h, —t, )J0.5h+0.5t—y)* +2b, (h—t)(0.5h + 0.5t — y)(0.5h, +0.5t,
—dy/x;)+ (N ~D[Ay (0 =6 y)* +AL(y—C) J+ (1, ~Df2A, (1 —c—y)h, -y, ) + 2AL (y—c)y/ x|

O.5[(p+ p' )i 4o +(p+ﬁp’)/o:]70'5 x<[2(p+ p'Xp, + pL) e’ - (p+ p')’a, | 22° (<t
(Rt AP o o= (p+ o, T = (p, + 9, )1 20+ (p+ P, 207 h-e

0.5{nu(p + p") +t(b, /b, —1)/(h—=c)[ +2n_(p + p'B)+1t(b, /b, —1)

=02 " x {2, (o + o)+ 1, 1B, -1 Ih — )N (p, + 0} )+ (b, /b,
—b,b,, /b2)/(h—c) + (b, /b, —1)t, /(h—c)—th, /(h —C)Z)]+ 2n, (p, + p.Bo'B,) ik g
+t2(by, /b, — by, /02 )I(h—c)? + (b, /b, —1)(2tt, /(h —c)? — 2th, /(h——c)*)} ¢
-n_(p, +p.)-t, /b, —bb, /b2)/(h—c)—(b, /b, —1)ft /(h—c)—th, /(h—c)?]

7, =0525[4, (h—c)— &, °[(h—c)dg, /dx, +#,h,1/[L+ &, &)sd
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a, == lp,(h—c)—e, |l e, + - B)x|(h—c)dg, /dx;, +¢,h,|Ie, - B,
p, =A, b, (h—c)—Alb, (h—c)+bh,]/bZ(h—c)?
pl=A, Ib,(h—c)—Al[b, (h—c)+b,h ]/b?(h-c)?
p,=pf, 1T p=p f, 11,
B, =—ch, /(h—c)?
dy/dx; = (Yu Yo = Yo Y V5

Y, =050t +0.5b, (12 1)+ (n,, <1 A (h—)+ Alc)
Y, = btt +bb(h _t)+(nsc _1)(& + A.c:)

Y, = 050,12 +htt, +0.5b,, (h2 2 J+by x(hhy —tt, )+ (ny, ~1fA, (h—c)+ Ah, +Alc]
y2x = btxt+bttx +bbx(h_t)+bbhx +(nSC _1)(A5>< 4 AQX)

In equations presented in this appendix, values of b,,b,,,t, and h,  are equal to 1 for
X; =b,,b,,t and h, respectively. Values of these parameters for other design variables are

equal to zero. In equation related to e, , if value of « is greater than 1, value «, must be

considered zero.



