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ABSTRACT  
 

Design sensitivity analysis is a necessary task for optimization of structures. Methods of 
sensitivity analysis for linear systems have been developed and well documented in the 
literature; however there are a few such research works for nonlinear systems. Nonlinear 
sensitivity analysis of structures under seismic loading is very complicated. This paper 
presents an analytical sensitivity technique for Reinforcement Concrete Moment Resisting 
Frames (RCMRF) that accounts for both material and geometric nonlinearity under 
pushover analysis. The results of proposed method are compared with the results of finite 
difference method. A three-story, two bays moment frame example is used to illustrate the 
efficiency of the method. This technique can be very useful and efficient for optimal 
performance-based design of RC buildings. 

 
Keywords: sensitivity analysis, material nonlinearity, geometric nonlinearity, RCMRF, 
pushover analysis    

 
 

1. INTRODUCTION 
 

Structural optimization for linear response is a well-defined problem and a large number of 
research works have been carried out on this subject. In recent years, performance-based 
seismic design has become a necessity for design of new structures. Generally pushover 
analysis, which is a simplified static nonlinear procedure is used for performance-based 
design [1]. In the pushover analysis a predefined pattern of earthquake loads is applied 
incrementally on structure until a predefined target displacement is reached or a plastic 
collapse mechanism is occurred [2,3]. Accordingly for performance-based design structural 
optimization involves in nonlinear analysis. structural design optimization involves response 
sensitivity analysis in explicitly formulating constraint functions [4]. Considerable part of 
computational effort in an optimization problem is usually allocated to the sensitivity 
analysis. Each sensitivity coefficient defines the amount of change in a structural response 
due to a unit change in a design variable, such as sensitivity of displacement to change in  
cross-sectional dimensions or reinforcement ratio.  
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While considerable research effort has been put on developing the sensitivity analysis 
techniques, there are a few research works in the literature that has focused on the theory of 
sensitivity analysis for nonlinear structural systems. Ryu et al. [5] proposed a general 
nonlinear sensitivity analysis accounting for geometric and material nonlinearity. They used 
modified Newton-Raphson method for their nonlinear analysis and used the same procedure 
for their sensitivity analysis. They presented the formulation for a truss example. Choi and 
Santos [6] were two of researchers that developed variational formulations for nonlinear 
design sensitivity analysis. They used linearized equilibrium equations to obtain first 
variations of the governing nonlinear equilibrium equations with respect to design variables. 
Gopalakrishna and Greimann [7] differentiated the equilibrium equation in each Newton-
Raphson iteration to obtain incremental gradients and this method was used for the nonlinear 
sensitivity analysis of the plane trusses. Santos and Choi [8] presented a unified approach for 
shape sensitivity analysis of trusses and beams accounting for both geometric and material 
nonlinearities. They utilized the adjoint variable and direct differentiation methods. Ohsaki 
and Arora [9] presented an accumulative and incremental algorithm for the design sensitivity 
analysis of elastoplastic structures including geometrical nonlinearity. They performed the 
sensitivity analysis of trusses but they reported that the method is extremely time consuming 
for large structures. Lee and Arora [10] investigated the effect of discontinuity in yield 
surface on the sensitivity analysis and presented a procedure for their treatments. They 
developed design sensitivity analysis of structural systems having elastoplastic material 
behavior using the continuum formulation and illustrated the sensitivity analyses for a truss 
and a plate by this technique. Barthold and Stein [11] presented a continuum mechanical-
based formu-lation for the variational sensitivity analysis accounting for nonlinear 
hyperelastic material behavior using either the lagrangian or eulerian description. Szewczyk 
and Ahmed [12] presented a hybrid numerical/-neurocomputing strategy for evaluation of 
sensitivity coefficients of composite panels subjected to combined thermal and mechanical 
loads. They pointed out that this method reduces the number of full-system analysis. 
Yamazaki [13] suggested a direct sensitivity analysis technique for finding incremental 
sensitivities of the path-dependent nonlinear problem based on the updated lagrangian 
formulation. Employing this method they performed the sensitivity analysis of a plate. 
Bugeda and et al. [14] proposed a direct formulation for computing the structural shape 
sensitivity analysis with a nonlinear constitutive material model. It was reported that their 
proposed approach was valid for some specific nonlinear material models. Schwarz and 
Ramm [15] proposed the variational direct method for sensitivity analysis of structural 
response accounting for geometrical and material nonlinearity with Prantel-Reuss plasticity 
model. Gong et al. [16] presented a procedure for sensitivity analysis of planar steel moment 
frameworks accounting for geometric and material nonlinearity. In their work, analytical 
formulations defining the sensitivity of displacement were derived. They used the 
incremental nonlinear method for pushover analysis.  

While many researches have been carried out for nonlinear sensitivity analysis of trusses, 
single beams, single plates and shells, study of literature reveals two point. First, there are a 
few researches on nonlinear sensitivity analysis of structures under variable loading such as 
seismic loading. Secondly, there are a few researches about nonlinear sensitivity analysis of 
frameworks; and there is no research work on nonlinear sensitivity analysis of reinforced 
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concrete frameworks. The objective of this study is to develop a formulation for sensitivity 
analysis of planar RCMRF accounting for both material and geometric nonlinearity under 
pushover analysis using Newton-Raphson iterations. The proposed procedure can be 
efficiently used for optimal performance-based design of RC frameworks. A three-story 
RCMRF has been used as an example to illustrate the applicability and efficiency of the 
developed sensitivity formulations. 

 
 

2. PUSHOVER ANALYSIS OF RCMRF 
 

The first step in design optimization is the calculation of sensitivity analysis that in turn 
depends on the method of structural analysis. The simplest recommended method for 
nonlinear static analysis is Pushover method. This method of analysis that is recommended 
by FEMA273 [2] and ATC40 [3] is a popular tool for evaluation of seismic performance of 
existing and new structures. Many researchers such as Saiidi and Sozen [17], Bracci and et 
al. [18], Kilar and Fajfar [19], Gupta and Krawinkler [20], Mwafy and Elnashai [21], Hassan 
and et al. [22] and Chopra and Goel [23] have used this analysis method. In the pushover 
analysis, it is necessary to specify a proper material behavior model for elements. This is 
explained in the next two sections.  

 
2.1 Moment curvature relation  
The moment-curvature relation of every RC structural element has a definitive effect on the 
behavior of the structure. In this research the trilinear moment curvature relation, as shown 
in Figure 1, is used for expressing the nonlinear behavior of reinforced concrete sections. 
The moment curvature relation of a structural element highly depends on its cross-section. 
In this study, the column sections are limited to rectangle and that of beams can assume 
rectangle , T or L shaped. 

 

 

Figure 1. Trilinear moment curvature curve 

 
To determine moment-curvature relation of RC members some assumptions should be 

maid that best fits with the test results. In this study, by ignoring the effect of axial force in 
moment-curvature relation, the following limitations for various states of behavior of RC 
elements are used [24,25]:  

a) Cracking state  
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 ( )yhIfM rcr −= /  (1) 
 
 ( )yhEf crcr −= /φ  (2) 
 

b) Yielding state 
 

 ( ) ( ) ( )[ ]ppchbfM tcy ′−+−−= αβηη 225.0 2  (3) 
 
 ( )( )chkyy −−= 1/05.1 εφ  (4) 
 

c) Ultimate state 
 

 ( ) yu MpM 15.024.1 −=  (5) 
 

 ])[(05.1 5.02
1 RSRuu −+= εβφ  (6) 

 
Where );7.1/())(( cysu fchfER −−′= ρερ )85.0/()(1 csu fchcES −′= βερ ; rf  is the 

modulus of rupture of concrete; cf  is the cylinder strength of concrete; yf  is the yield 

strength of steel; cE  is the modulus of elasticity of concrete; sE  is the modulus of elasticity 
of steel; uε  is the ultimate strain of concrete; yε  is the yield strain of steel; 1β  is a 
coefficient that depends on the strength of concrete; h  is the overall height of section; c is 
the cover to steel centroid; tb  is the top width of section; y  is the distance from the neutral 
axis of the section to the extreme fiber in tension/.n and is obtained from (7); I is the 
moment of inertia of the section and is obtained from (8). other parameters are defined from 
(9) to (14).  
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 ( )( ) 1)ch(1 yyy ≤β−εε−−φβ−=α  (11) 
 
 )ch(b/A);ch(b/A bsbs −′=ρ′−=ρ  (12) 
 
 6.1f/fp;f/fp cycy ≤ρ=ρ′=′  (13) 
 
 )ch/(c −=β  (14) 
 

Where scn  is the ratio of the modulus of elasticity of steel to that of concrete; 0ε is the 
strain at maximum strength of concrete; bb  is the width of the section at the bottom; t  is the 
flange thickness of T or L beam; sA  is the area of bottom bars and sA′  is the area of top 
bars. For the case of positive moment  (1) to  (14) are valid for all types of sections. For 
rectangular sections these equations can be simplified by substituting bbb tb ==  and 0=t . 
Also for the case of negative moment, these equations can be used by substituting tb , bb , 

th − , sA′  and sA  instead of bb , tb , t , sA  and sA′ , respectively. Now by having the 
moment-curvature relations, the flexural stiffness can be specified for ends of the element as 
follows: 

 
 pmcrpcrpp EIMEI ≤φ=  (15-a) 
 
 ( ) ( ) pmcrpypcrpypp EIMMEI ≤φ−φ−=  (15-b) 
 
 ( ) ( ) pmypupypupp EIMMEI ≤φ−φ−=  (15-c) 
 

Where (15-a), (15-b) and (15-c) are used for zones of 1, 2 and 3 of φ−M  curve, 
respectively. In (15) pEI  and pmEI  are the stiffness and minimum stiffness of any section; 

crpM , ypM  and upM  are the cracking, yielding and ultimate moments; and crpφ , ypφ  and 

upφ  are corresponding curvatures.  
 

2.2. Material nonlinearity 
In this paper, a spread plasticity model that has been proposed by park et al. [24] is utilized. 
This plasticity model, that considers the cracking behavior of RC, can also account for 
material nonlinearity of RC elements with a very good approximation. It has been 
implemented in IDARC software [26]. In this model, attention is paid to the distribution of 
curvature along an element. For an element subjected to earthquake loading, the distribution 
of curvature may follow Figure 2-a. Since both flexural deformation and flexibility have 
reciprocal relation with stiffness of element there will be an analogy between flexibility of 
the section and its flexural deformation. Accordingly Figure 2-b can be considered for the 
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flexibility distribution in the RC elements. Where AEI  and BEI  are the flexural stiffness of 
the section at end ‘A’ and ‘B’, respectively, and 0EI  is the initial stiffness of the element; 

Aα  and Bα  are the yield penetration coefficients and L′  is the length of the element.  
Adopting the above Plasticity Model for RC elements, the tangent stiffness matrix of 

each element can be derived. General derivation of tangent stiffness matrix is given by Park 
et al. [26] and detail derivation is carried out by Habibi [27]. Considering a RC element with 
six degrees of freedom, with its rigid parts, as shown in Figure 3, the tangent stiffness matrix 
of element can be found as follows: 

 
 bate KKK +=  (16) 

 

 

Figure 2. (a) Curvature distribution along a RC element (b) Flexibility assumption along a RC 
element 

 

 

Figure 3. Rigid zone and ends definitions 

 
In Eq. (16), aK  and bK  are axial stiffness matrix and bending stiffness matrix 
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respectively and must be assembled in the element stiffness matrix eK . aK  can be 
determined from:  

 

 0aa AK
L

EA

11

11
K =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
=  (17) 

 
Where LEA /  is the axial stiffness of the element, A  is the area of cross section and 
0aK  is a constant matrix. bK , is obtained from following equation: 
 

 T
ESEb RKRK =  (18) 

 
Where: 

 1~~;
1/10/1
0/11/1 −′=
⎥
⎥
⎦

⎤
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⎣
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−
= LKLK

LL
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R SS
T
E  (19) 

 
Where L  is length of element and L~  can obtained from the following equation. 
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−
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LL
λλ
λλ

λλ
λλ

λλ 1
1~;

1
1

1
1~ 1  (20) 

 
Where Aλ  and Bλ  are the portions of rigid zone at the element ends. The elements of 

SK ′  in (19) are obtained from following equations: 
 

 ba11S22Sbc11S21S12SebBA011S f/fKK;f/fKKK;DfLEIEIEI12K ===′=  (21) 
 

Where: 
 

 ( ) ( )
( ) ( ) ( ) L)1(L;LfffD;2S2SS2f

46SSS4f;S46SS4f

BA
22

cbae
3
B

2
B3

3
A

2
A21c

3
B

2
BB3

3
A21b

3
B3

3
A

2
AA21a

λ−λ−=′′−=α−α−α−α−−=

α+α−α+α+=α+α+α−α+=  (22) 

 
Where BAEIEIS =1 ; ( ) BA EIEIEIS −= 02 ; and ( ) AB EIEIEIS −= 03 . The yield 

penetration parameters used in (22), specify the portion of the element where it cracks. 
When the moment of the section under consideration is less than cracking moment, Values 
of these parameters are considered to be equal to zero. For the single curvature of the 
element, when its moments are greater than cracking moment, value of the parameters are 
considered to be equal to 0.5. For other cases, assuming linear moment distribution along the 
element, these parameters can be determined from: 
 ( ) ( ){ }{ }pmBAcrppp MMMM αα ,1,minmax −−=  (23) 
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Where subscript p specifies any general point p and cr represents the cracking state under 
consideration. pmα  is the maximum yield penetration parameter, obtained in previous load 
steps. Usually, the flexural stiffness at the center of the element is equal to elastic stiffness 
and is determined from (24). For the case of single curvature if moments are greater than 
cracking moments, their values can be modified by  (25). 

 
 ( )0BEI0AEI0BEI0AEI20EI +=  (24) 

 
 ( )BABA0 EIEIEIEI2EI +=  (25)  
 
Where 0AEI  and 0BEI  are the elastic stiffness at ends ‘A’ and ‘B’, respectivesly; and AEI  
and BEI  are the inelastic stiffness at ends ‘A’ and ‘B’, respectively. For a member that yield 
penetration spreads over the whole element ( )1≥+ BAwhen αα , 0EI  is obtained from  (25). 
In this case, Aα  and Bα  and initial flexibility are modified to capture the actual flexibility 
distribution. These modifications are: 

 
 ( )( ) ( ) ( )( )B0BA0AB0BBAA ffffffff α−+α−α−+−=α′  (26-a)  
 
 AB 1 α′−=α′  (26-b) 
 
 ( ) AA0AA0 /ffff αα′−−=′  (26-c) 

                                       
Where: 

 
 00BBAA EI/1f;EI/1f;EI/1f ===  (27) 

 
2.3 Geometric nonlinearity 
When large deflections are present, the equations of force equilibrium must be formulated 
for the deformed configuration of the structure. The nonlinear terms in the strain-
displacement equations modify the element stiffness matrix [28]: 

 
 gtee KKK +=′  (28) 
 

 In (28) gK  is called geometrical stiffness matrix. This matrix for the element, as shown 
in Figure 4, is obtained by Przemieniecki [28]: 
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 ( )0
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LLLL
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⎢
⎢
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⎢
⎢

⎣

⎡

−−
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=
 (29) 

 
Where N  is the axial force of the element and 0gK  is the constant matrix. The stiffness 

matrix calculated from (28) must be transformed to global system: 
 

 ee
T
ee TKTK ′=  (30) 

 
where eT  is the transformation matrix of the element. 

 
2.4 Lateral Loading 
In the pushover analysis, the load vector must incrementally be increased. At each load step, 
the base shear increment is applied to the structure with a predefined profile over the height 
of the structure. The incremental lateral load vector can be computed as: 

 
 [ ] vb

T
ns,v2,v1,vbE C.Vccc.VP ∆=∆=∆ L  (31) 

 
Where bV∆  is the incremental base shear and vC  is the vector of lateral load distribution 

factors ( )storiesofnumbersc sv ,...,1, = , which is determined from FEMA273 [2]: 
 

 ns,...,1s,HWHWc
ns

1s

k
ss

k
sss,v =∑=

=
 (32) 

 
Where sW  is the portion of the building seismic weight at story level s ; sH  is the 

vertical distance from base of the building to story level s ; ns  is the number of stories; and 
k  is a parameter that has been recommended by FEMA273 (1997) as follows:  

 

 
⎪
⎩

⎪
⎨

⎧

≤≤+=
5.2T2

5.2T5.075.0T5.0

5.0T1

k
f

p
 (33)  

        
Where T  is the fundamental period of the building. 
 

2.5 Internal forces 
In each Newton-Raphson iteration i , considering equilibrium, the internal forces of the 
element at load step l  can be determined from (34).  
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 )1i(
e

)l(
e

)i,l(
e dKF −=∆  (34) 

 
Where )(l

eK  is the tangent stiffness matrix of the element and )1( −i
ed  is the displacement 

vector of the element at load step l  and Newton-Raphson iteration )1( −i . The internal 
forces of the element at iteration i  of load step l  must be updated by following equation: 

 
 )i,l(

e
)1l(

e
)i,l(

e FFF ∆+= −  (35) 
 

At every Newton-Raphson iteration, values of internal forces must be modified according 
to displacement vector. In order to modify the internal forces, first the increments in internal 
forces at two end joints of members are obtained from (34) and then the moments are 
transferred to the two ends of the element excluding rigid zones by (36).  

 
 )(1)( ~ ii mLM ∆=∆ −  (36) 
 

With increment of moments in hand, the curvatures of the element are calculated from 
(37). 

 
 )()()1()( / l

p
i

p
i

p
i

p EIM∆+= −φφ  (37) 
 

In Eq. (37), )1( −i
pφ  is the curvature at end ‘p’ (either A or B) of the element in previous 

iteration; )(i
pM∆  is the incremental moment at end ‘p’ of the element at current iteration i . 

With the obtained curvature, the nonlinear moment value can be obtained from the M-F 
relations: 

 
 )()()( i

p
l

p
i

p EIM φ=  (38-a) 
 
 ( ))()()()()( l

crp
i

p
l

p
l

crp
i

p EIMM φφ −+=  (38-b) 
 
 ( ))()()()()( l

yp
i

p
l

p
l

yp
i

p EIMM φφ −+=  (38-c) 
 
 )()( l

up
i

p MM =  (38-d) 
 
Where (38-a), (38-b), (38-c) and (38-d) are used for zones of 1, 2, 3 and 4 of φ−M  curve, 
respectively. In (38), )(l

crpM , )(l
ypM , )(l

upM , )(l
crpφ  and )(l

ypφ  are the moment-curvature 
characteristics at end ‘p’ of the element at load step l . In the next step moments are 
transferred back to the end joints of member using (39) to calculate the unbalanced forces at 
the end joints of member.  
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 )()( ~ ii MLm =  (39) 
 

Where )(iM  is the moment vector at two ends of the element and )(im  contains the 
moments at two joints. Modified values of shear forces of the element at joints are computed 
from  (40). 

 
 LmmV i

B
i

A
i

p /)( )()()( +=  (40) 
 

Where )(i
pV  is the shear force at joint ‘p’. 

 
 

3. NONLINEAR SENSITIVITY ANALYSIS 
 

Modified Newton-Raphson iteration for obtaining the incremental displacement at a load 
step l  and iteration i  can be written from Bathe [29]: 

 
 ∑∑ =∆=−=∆ −

l

ll

i

ililil
T dDddFPdK )()()()()1()()()( ;;  (41) 

 
Where )(l

TK  is the global tangent stiffness matrix ; )(id∆  is the incremental displacement 
vector ; )(lP  is the external load vector; )1( −iF  is the internal load vector; )(ld  is the 
incremental displacement vector; and )(lD  is the total displacement vector. Differentiating  
(41) with respect to design variable jx  gives: 

 
 j

i
j

l
j

il
Tj

l
T

i dxdFdxdPdxddKdxdKd )1()()()()()( −−=∆+∆  (42)  
   

In this study, this equation is used as the basic formulation for obtaining the incremental 
displacement sensitivities. Assuming that all terms in (42) except j

i dxdd )(∆  are known, it 
will be rearranged to find: 

 
 [ ] ( )j)l(

T
)i(

j
)1i(

j
)l(1)l(

Tj
)i( dxdKddxdFdxdPKdxdd ∆−−=∆ −−

 (43-a) 
 

Summing up the sensitivity of displacement at all iterations, sensitivity of incremental 
displacement vector for corresponding load step can be computed from: 

 
 ∑ ∆=

i
j

)i(
j

)l( dxdddxdd  (43-b)  

 
Similarly the total sensitivity of displacement vector can be obtained by summing up the 

sensitivities in all load steps as follows: 
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 ∑=
i

j
)l(

j
)l( dxdddxdD  (43-c) 

 
In the coming sections, the way each sensitivity item in (43-a) should be obtained, is 

explained. 
 

3.1 Sensitivity of tangent stiffness matrix 
The tangent stiffness matrix of the structure at each load step is obtained by properly 
assembling of the tangent stiffness matrix of elements: 

 

 ∑
=

=
ne

e
e

l
T KK

1

)(  (44) 

 
Where ne is the number of structural elements and eK  is the tangent stiffness matrix of 

the element accounting for material and geometric nonlinearity. Differentiating (44) with 
respect to any generalized variable jx  sensitivity of the tangent stiffness matrix can be 
obtained from: 

 

 ∑
=

=
ne

e
jej

l
T dxdKdxdK

1

)(  (45) 

 
Sensitivity of tangent stiffness matrix of the element is obtained by differentiating (28) 

and using transformation (30). 
 

 ( ) ( ) ejg
T
eejte

T
eje TdxdKTTdxdKTdxdK +=  (46) 

 
In above equation, the first and second terms on the right are sensitivities of material and 

geometric nonlinearity, respectively. Noting that 0gK  in  (29) is a constant matrix, the 

derivative of gK  in (46), can be obtained from: 
 

 ( )j0gjg dxdNKdxdK =  (47) 
 
Where jdxdN /  in (47) is the sensitivity of axial force of the element and can be determined 
from section 3.3. It is noted that for beams, values of axial forces are usually negligible. 
Hence, gK  and its sensitivity can be ignored for beam elements. Considering that 0aK  and 

ER  in (46), do not dependent on design variables, sensitivity of teK , can be obtained by 
differentiating  (16),  (17) and  (18): 

 
 ( ) ( ) T

EjSEjajte RdxdKRdxdAKdxdK += 0  (48) 
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It is noted that the first and second terms in the right hand side of  (48) must be properly 
assembled. The first term represents the axial stiffness while the second one represents 
flexural stiffness. Assuming rigid diaphragm for floors, there will be no change in axial 
forces of beams. Accordingly the first term in the right hand side is zero. For column 
elements by defining bhA =  sensitivity of A  with respect to b  is h , and with respect to h  
is b . It is zero with respect to other variables. The derivative of SK  is determined by 
differentiating of  (19): 

 
 ( ) ( ) ( )j1

S
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jS
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Where: 
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In  (50), sensitivity of Aλ  with respect to Ah  is L2/1 ; also sensitivity of Bλ  with 

respect to Bh  is L2/1 . For a typical beam Ah  and Bh  have been shown in Figure (3) 
Similar definitions can be made for columns between two floor beams. In Eq. (49) 
sensitivities of matrix SK ′  to any design variable can be obtained by differentiation of its 
elements as follows: 
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Where: 
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In these equations, the derivative of 0EI  with respect to any variable X can be obtained 

by differentiating of  (24) with respect to X. This leads to (54).  
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For an element with two end moments greater than cracking moment and single curvature 

the sensitivity of EI0 with respect to X should be modified by (55). Sensitivity of 0AEI  and 

0BEI  will be obtained from (56) considering the case of crpp MM ≤ . 
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In Eq. (51) to (55), to use the sensitivity AEI  and BEI , it is sufficient to differentiate 

(15) w.r.t. X as follows:  
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Where (56-a), (56-b) and (56-c) are used for zones of 1, 2 and 3 of φ−M  curve, 
respectively.  

Since moment-curvature relations are functions of design variables their sensitivities 
should be determined from Eqs.(1 to 6). These derivatives have been reported in Appendix. 
According to section 2.2, the sensitivity of Aα  and Bα  that have been used in  (52), are zero 
provided that that moments are less than cracking moments or the element undergoes single 
curvature with end moments greater than cracking moment. For other cases the sensitivities 
can be determined by differentiating of  (23): 
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Where jp dxdM / is the sensitivity of moment at end 'p' of the element; its value will be 

presented in section 3.3. In  (57), if pα >1, its sensitivity is zero and if pα < pmα , its 

sensitivity is equal to sensitivity of pmα . When 1fBA αα + , The sensitivity of 0EI , Aα  and 

Bα  must be modified by differentiation of  (26): 
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Where: 

 
 ( )( ) ( )( ) ( )( )2

0j0x0
2
BjBBx

2
AjAAx EI1dxdEIf;EI1dxdEIf;EI1dxdEIf −=−=−=  (59) 

               
3.2 Sensitivity of external loads 
Since in the pushover analysis, load pattern depends on the natural period of the structure 
and the natural period depends on structural stiffness and building mass, any change in the 
structure stiffness causes a change in the external loads. Since gravity loads are constant, the 
sensitivity of external load vector at any load step l  comprises only sensitivity of lateral 
loads. 
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 jEj
)1l(

Ej
)l( dxPddxdPdxdP ∆+= −  (60)  

 
Where the second term in right hand side is the sensitivity of incremental pushover loads 

and is obtained from 
 

 jvbjE dxdCVdxPd ∆=∆  (61)  
 

Where the components of jv dxdC /  vector are found from following equation: 
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 In above equation, for 5.0≤T  and 5.2≥T , the sensitivity of k  is zero. For other values 

of T , derivative of  (33) gives: 
 

 jj dxdTdxdk /5.0/ =  (63) 
 

Where jdxdT /  is the sensitivity of the fundamental period of the structure. It can be 
found from Moharrami and Alavinasab [30]: 

 
 ( ) ( )φφπ dxdK8T-=dxdT j

T23
j  (64)  

 
Where φ  is the first mode shape of the structure. 
                                                                                                                    

3.3 Sensitivity of internal forces 
Sensitivity of the incremental internal forces of any typical element at load step l  and 
Newton-Raphson iteration i  can be determined from differentiating of (34): 
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The sensitivity of internal forces of the element is updated by (66). 
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 (66) 
 

After obtaining the sensitivity of moments at the two end joints of RC member, it will 
have to transferred to the design end of the element form the following equation: 
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The sensitivity of moments should be modified according to the change in curvature of 
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the element. The curvature sensitivities of the element are calculated by differentiating of 
(37): 
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Modified values of moment sensitivities of the element are computed by differentiating 
of  (38): 
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Where (69-a), (69-b), (69-c) and (69-d) are used for zones of 1, 2, 3 and 4 of φ−M  curve, 

respectively. 
By having modified moment sensitivities at ends of the element by (69), moment 

sensitivities at joints of the element are determined by differentiating of (39): 
 

 ( ) ( )j)i()i(
jj

)i( dxdML~MdxL~ddxdm +=  (70) 
 

Modified values of shear force sensitivities at joints of the element are computed by 
differentiating of (40): 

 
 L)dxdmdxdm(dxdV j

)i(
Bj

)i(
Aj

)i(
p +=  (71) 

 
3.4 Summary of Sensitivity analysis procedure 
The nonlinear sensitivity analysis of RC frames under pushover analysis that was developed 
in this study, can be carried out in following steps: 
 

1. Determine the moment-curvature relations from (1) to (6) and Compute their 
derivatives from appendix. 

2. Compute the first mode shape, first period and its sensitivity from  (64) to  (69)   
3. Calculate the matrixes L~  and 1~−L  and their derivatives for each element from  (20) 

and  (50)  
4. Compute the lateral load distribution factors and their sensitivities by  (32) and  (62) 
5. Set load step index 1=l  and apply the gravity loads only.  
6. Compute the lateral loads and their sensitivities from  (31) and  (60) 
7. Compute the flexural stiffness and yield penetration parameters and their 
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sensitivities for each element from  (15),  (23) to (27) and  (54) to (59) 
8. Compute the tangent stiffness matrix and its sensitivity for each element by  (30) and 

(46) 
9. Assemble the global tangent stiffness matrix  and its matrix of sensitivity by  (44) 

and  (45)  
10. Set Newton-Raphson iteration 1=i      
11. Solve (41) for displacements and find their incremental sensitivities from  (43) 
12. Calculate the internal forces and their sensitivities from  (34) to (40) and  (70) to (76) 
13. Set 1+= ii , if unbalance forces are zero, stop the sensitivity analysis at load step l  

and go to step 14; otherwise go to step 11 
14. Set 1+= ll , if the roof lateral displacement is greater than target displacement, stop 

the sensitivity analysis and go to step 15; otherwise go to step 6. 
15. Compute the total incremental sensitivities coefficients 
For more details about the algorithm of nonlinear sensitivity analysis refer to Habibi 

(may be 2006).   
 
 

4. NUMERICAL EXAMPLE 
 

A three-story, two-bay planar frame of Figure 4 is used to illustrate the method of proposed 
analytical nonlinear sensitivity analysis. The concrete is assumed to have a cylinder strength 
of 30 Mpa, a modulus of rupture of 3.45 Mpa, a modulus of elasticity of 27,400 Mpa, a 
strain of 0.002 at maximum strength and an ultimate strain of 0.003. The steel has a yield 
strength of 300 Mpa and a modulus of elasticity of 200,000 Mpa. A uniformly distributed 
gravity load of 12 KN/m is applied on the beams of each story. Reinforcements have the 
cover to the steel centroid of 50 mm. It is assumed that columns and beams have rectangular 
cross sections. Fourteen design variables that have been reported in Table. 1 have been 
defined in this frame. In order to allow the structure enter to the inelastic behavior, Target 
displacement of 2% has been chosen as a stop criterion for load steps of sensitivity analysis. 
Convergence tolerance of 0.1% was considered as a stop criterion for Newton-Raphson 
iterations. The pushover (capacity) curve of this frame is shown in Figure 5 and target point 
has specified on it.  

 

Figure 4. A three-story, two-bay RC frame 
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Figure 5. Capacity curve of the three-story RCMRF 

 
Nonlinear sensitivity analysis is performed on this frame by the proposed Analytical 

Method (AM) and compared to the results from central Finite Difference Method (FDM). In 
this example, as a sample, sensitivity analysis of the overall drift that may indirectly 
represent the sensitivity of internal forces to change in some design variables is considered.  
The results have been briefed in Table. 2 for two nonlinearity cases namely: (i) material 
nonlinearity only NC1, and (ii) both geometric and material nonlinearity NC2. For 
interpreting the results, for example consider the design variable No.1. The overall drift 
sensitivity shows that its value will be decreased by 0.2688% and –0.2318% for a unit 
change in design variable No.1, for nonlinearity cases (i) and (ii), respectively. Linear 
sensitivity analysis for the same variable indicates the sensitivity of –0.0113% which is 
much less than its actual value. Values of nonlinear sensitivity coefficients predict that if 
value of width of columns C1 and C3 increase from 350mm to, 360mm; overall drift of 2% 
decreases to 1.9973% and 1.9977% for NC1 and NC2, respectively. These predictions are 
very important in optimal performance-based design process. In Table 2, percentage of error 
of FDM compared to AM has evaluated from: 

 
 ( ) AMAMFDM SSSERROR /100 −=  (72) 
 

In Eq. (72), FDMS  and AMS  are the sensitivity coefficients obtained from FDM and AM 
respectively. In FDM method, the design variables perturbation has been considered to be 
1%, 0.1% and 0.01%. Comparing the AM results with FDM results, it is observed that by 
reducing perturbation values results of FDM almost all design variables converge to AM 
results; that is, the AM results are in good agreement with FDM results in very small 
perturbation cases. 

The results of sensitivity analysis by FDM shows that assuming perturbation of 1% in 
design variables this method in most cases generates inaccurate results; while this is not the 
case in the linear sensitivity analysis.  

Comparing results for two cases NC1 and NC2 shows that sensitivity coefficients of 
frame when both geometric and material nonlinearity are accounted for are smaller than the 
case where only the material nonlinearity is considered.  
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Table 1. Design variables 

Number of 
design variable Description Value 

1 Width of columns C1 and C3 350 mm 

2 Height of columns C1 and C3 350 mm 

3 Width of columns C2 450 mm 

4 Height of columns C2 450 mm 

5 Reinforcement area of columns C1 and C3 
on each face of column 942.5 mm² 

6 Reinforcement area of columns C2 on each 
face of column 1570.8 mm² 

7 Width of beams 250 mm 

8 Height of beams 350 mm 

9 

Lower reinforcement area for beams B1 at 
left hand and for beams B2 at right hand of 

beam 
(first and second stories) 

1256.6 mm² 

10 
Upper reinforcement area for beams B1 at 
left hand and for beams B2 at right hand of 

beam (first and second stories) 
942.5 mm² 

11 
Lower reinforcement area for beams B1 at 
right hand and for beams B2 at left hand of 

beam (first and second stories) 
1256.6 mm² 

12 
Upper reinforcement area for beams B1 at 
right hand and for beams B2 at left hand of 

beam (first and second stories) 
1570.8 mm² 

13 Lower reinforcement area for third story 
beams 628.3 mm² 

14 Upper reinforcement area for third story 
beams 628.3 mm² 
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Table 2. Sensitivity coefficients of overall drift at target point (%) 

Sensitivity with respect to design variable 
Method 

1 4 5 7 8 9 12 

NC1 -0.2688 -10.8864 -3284.1 -1.1499 -46.3542 -2333.1 -2183.6 
AM 

NC2 -0.2318 -10.5285 -3190.1 -0.7619 -45.0750 -2296.4 -2151.2 

NC1 -0.4757 -10.6962 -3171.2 -1.7722 -61.3068 -2140.8 -2548.7 
FDM 1% 

NC2 -0.2184 -12.2850 -3417.3 -1.9828 -61.5887 -1950.0 -2776.3 

NC1 -0.2707 -10.8195 -3284.0 -1.1491 -50.2593 -2332.8 -2183.5 FDM 
0.1% NC2 -0.2363 -12.1370 -3190.4 -0.7609 -38.4454 -2295.2 -2151.9 

NC1 -0.2688 -10.8859 -3284.1 -1.1499 -46.3487 -2332.9 -2183.3 FDM 
0.01% NC2 -0.2331 -10.5285 -3190.3 -0.7622 -45.1176 -2296.4 -2151.2 

NC1 76.95 -1.75 -3.44 54.12 32.26 -8.24 16.72 ERROR 
1% NC2 -5.80 16.68 7.11 160.24 36.64 -15.09 29.06 

NC1 0.69 -0.61 -0.004 -0.07 8.42 -0.01 -0.004 ERROR 
0.1% NC2 1.94 15.28 0.004 -0.13 -14.71 -0.05 0.04 

NC1 -0.03 -0.005 -0.001 -0.001 -0.01 -0.006 -0.01 ERROR 
0.01% NC2 0.53 -0.001 -0.001 0.03 0.09 0.0003 0.0002 

 
 

5. CONCLUSION 
 

In the present study a procedure for exact sensitivity analysis of RCMRF using pushover 
analysis was proposed. The procedure accounts for both material and geometric nonlinearity 
in the context of modified Newton-Raphson analysis technique. The proposed method does 
not face to the difficulties that the FDM method confronts.  

The proposed sensitivity analysis involves in much less computational effort compared to 
FDM. This achievement provides a powerful tool in optimal design of nonlinear structures 
and is an essential requirement in successful optimal performance-based seismic design of 
RCMRF.  

Sensitivity analysis of a three-story RC frame illustrated the capability and effectiveness 
of the derived formulations. Results of the case study for a nonlinear structure indicate that 
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sensitivity calculation via FDM method may end up to inaccurate sensitivity results 
especially if the value of perturbation is high.  

It was shown that when both material and geometric nonlinearity is accounted for, the 
sensitivity of a structural behavior, such as overall drift, is less than that when only material 
nonlinearity is accounted for. 
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APPENDIX  
 
Derivatives of moment-curvature characteristics 
a) Cracking state 
 

( ) ( ) ( )2/// yhyhIfyhIfdxdM xxrxrjcr −−−−=  
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( ) ( )2// yhEyhfdxd cxxrjcr −−−=φ  

b) Yielding state               
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c) Ultimate state                                                                                       
 

( ) jyyxju dxdMpMpdxdM /15.024.115.0/ −+−=  
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In above equations, extra parameters that have not been defined in previous sections are 

obtained from following equations: 
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In equations presented in this appendix, values of xbxtx tbb ,,  and xh  are equal to 1 for 

tbbx btj ,,=  and h , respectively. Values of these parameters for other design variables are 

equal to zero. In equation related to xα , if value of α  is greater than 1, value xα  must be 
considered zero. 
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