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ABSRACT 
 

Structural control against earthquakes is becoming increasingly important. The linear-
quadratic optimal control algorithm is proposed here to design active control system for 
buildings against earthquake excitations. Full-state feedback system has been adopted. 
Active Tuned Mass Damper is used as the control mechanism. The efficiency of the 
designed system has been verified against El-Centro earthquake. Active control gives 35% 
more reduction in vibration of the structure than passive control. Mass of the damper has 
appreciable effects on response parameters than its stiffness. A flexible damper proves to be 
more effective, but at the cost of actuating forces required. Performance of system is found 
to be optimum, when mass-damper is tuned to fundamental frequency of the structure. 
Stability of the structure is also enhanced by Active Control system. A SDOF building is 
presented to illustrate the study. 

 
Keywords: active control, active tuned mass damper, structural dynamics, quadratic 
optimal control theory 

 
 

1. INTRODUCTION 
 

Active Control is the most advanced technique to perform vibration control. It makes the 
passive system automatic in the manner that it supplies the forces enough to control the 
response of a structure depending upon the extent of external forces and state of the structure 
during vibrations. The direction and magnitude of the controlling forces to be applied to the 
structure are estimated by an algorithm. One such algorithm has been developed and studied 
here with application example.  

Tuned mass dampers (TMDs), first demonstrated by McNamara [1] in 1977 and then by 
Wiesner [2] (1979), are widely used for vibration control of civil engineering structures. 
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TMDs are generally prone to tuning error, which Active Tuned Mass Dampers (ATMD) [3, 
4] have been found to withstand. Various control algorithms have been developed [5, 6, 7] to 
be adopted for active control system in the past. Few other theories were presented by Soong 
and Pitarresu [8] and Hammerstorm [9] and thereby applied to vibration absorbers by 
Watanabe and Yoshida [10]. 

A procedure for design of ATMD for vibration control of tall buildings subjected to wind 
loads was given by Ankireddi and Yang [11] in 1996. Brown et al [12] presented a simple 
algorithm for multiobjective linear quadratic Gaussian control using Pareto optimal trade-off 
curves. A multistorey building was considered for illustration achieving control by active 
tendon control. Yang et al [13] investigated the feasibility of instantaneous active control 
theory for controlling the vibration of civil engineering structures. The results of this 
algorithm are compared with those obtained by the algorithm presented here.  

The active control to tall buildings has been applied recently. ATMDs have been 
successfully designed and installed in full-scale structures [7]. Using active control and a 
TMD with mass 2% of the building, a reduction of 40% in the building sway has been 
achieved in the Citicorp Center of New York City [17]. The ATMD system has been 
installed in the 11-storey Sendagaya INTES building in Tokyo in 1991 and in the 160m tall, 
34-storey Hankyu building located in Osaka, Japan in 1992 [15]. In the later, heliport at the 
rooftop is utilized as the moving mass of the AMD, which weighs 480 tons (about 3.5% of 
the mass of the tower).  

In the present paper, the active control system has been designed for a building using the 
proposed modern quadratic optimal theory and the optimum parameters of active tuned mass 
damper (ATMD) are decided based upon the performance of the building against unit-step 
excitation and El-Centro earthquake. The theory is also applied to an eight-storey building 
and efficiency of the system has been compared with that proposed by Yang [13]. The 
structure is modeled for simulating its response against ground acceleration using MATLAB 
5.3 [16]. 

 
 

2. THE ACTIVE CONTROL 
 

Basic configuration of an active structural control system is shown in Figure 1 [17]. It 
primarily consists of (i) Sensors located in the structure to measure either external 
excitations and structural response variables - displacement, velocity and acceleration, (ii) 
Devices to process the measured information and compute necessary forces needed based on 
a given control algorithm and (iii) Actuators, which are usually powered by external energy 
sources, to produce and apply the required forces in desired direction.  
 
2.1 Structural Dynamics and Control Theory  
A building modeled is n-degrees of freedom system as shown in Figure 2. The equation of 
dynamic motion of the building can be written as [18]: 
 

 (t)(t)(t)(t)(t) eact EDKxxCxM ff +=++ &&&  (1) 
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Here, M, C and K are mass, damping and stiffness matrices of the structure. Matrix D 
identifies the points of application of controlling forces. E has all its elements zeros except 
the first one, which is unity for earthquake excitations to act at bottom level only. fact is the 
control force exerted by the actuator and fe is the earthquake force acting at ground level. 

 
2.2 Modification of System Matrices 
After active control is applied, the property matrices of the structure are modified. The 
controlling force is defined as a function of state of system and external excitations. Thus,  
fact can be expressed as [19], 

 
 eact ExKxC ff 111 (t) ++= &  (2) 
 

From the equations (1) and (2), 
 

 eDEE(x)DKK(x)DCC(xM )f
111

(t)(t) +=−+−+ &&&  (3.1) 
 

which can be written as, 
 

 eExKxCxM faaa =++ (t)(t) &&&  (3.2) 
 
where, C and K matrices have been modified to Ca and Ka respectively, revealing that the 
active control modifies the structural parameters to obtain a favorable and expected 
response.  

 
2.3 State Space Modeling 
The original differential equations are reduced to lower order equations in matrix form by 
state space modeling, as shown below: 

The matrix z of order 2(n+1) ×1 may be written as, 
 

 
⎭
⎬
⎫

⎩
⎨
⎧

=
x
x

z
&

  and 
⎭
⎬
⎫

⎩
⎨
⎧

=
x
x

z
&&

&
&  (4) 

 
Combining the equations (1) and (4), 
 

 eact HfBfAzz ++=&  (5) 
 
Where, A, B and H are the system matrix, control vector and location matrix 

respectively. 
The equation (5) yields actively controlled response, if modified matrices Ca, Ka and Ea 

are used to obtain A, B and H.  The response of the building is expressed as: 
 

 R R ex C z D f= +  (6) 
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CR and DR are the output vector of order 1×2(n+1) and the direct transition matrix of 
same order as fe(t). Equation (5) is dynamical state equation and Eq. (6) is output equation. 
The storey drift of the building being the desired response parameter, CR has to have its nth 
element unity and DR zero since earthquake has no direct application to top storey of the 
building.  

 
2.4 Modern Quadratic Optimal Control Theory 
In linear quadratic optimal theory [20], state of the system, z is determined at any instant by 
means of sensors located in the structure. The objective is to determine the controlling force 
fact which has been defined as a linear function of the state of the system z. in Eq. (2). 

For a closed-loop mode of active control, fact is expressed as: 
 

 Tt tactf G z( ) = ( )  (7) 
 

2.5 Derivation of the Gain Matrix, GT 
GT is obtained by minimizing the performance index J (Liapunov’s cost-function) [21]: 
 

 
iT

0
t dtactJ z f, ,φ= ( )∫  (8) 

 
(0, Ti) is an appropriate time interval over which, response of the actively controlled 
structure is to be found out. The concept behind this approach is that of minimization of sum 
of potential energy and kinetic energy of the system as a whole. In quadratic optimal control 
theory [21], φ  was proposed to be: 
 

 T Ttφ
1

( ) = ( + )
2

, ,act act actz f z Qz f Rf  (9) 

 
The matrices Q and R are weighting matrices, whose magnitudes are assigned according 

to the relative importance, attached to the state variables and to the control forces in the 
minimization procedure. Assigning large values to Q indicates that response reduction is 
given priority over the control forces required. The opposite is true when the elements of R 
are large in comparison with those of Q. Hence, by varying the relative magnitudes of Q and 
R, one can synthesize the controllers to achieve a proper trade off between control 
effectiveness and control energy consumption. 

For Ti → ∞, it follows from modern control theory that the optimal linear feedback 
control law for fact(t) is given by,  

 

 T 11
t t

2
−( ) = − ( )actf B PR z  (10) 

 
z(t) is known through measurement using sensors, B  is already described; P is an unknown 
real symmetric matrix and is to be determined from the equation, 
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 T + = −A P PA Q  (11) 
 
Further, P has been also found to satisfy the Matrix-Ricatti equation, 
 

 T -1 T1
2

2
+ + − =A P PA Q PBR B P O  (12) 

 
Where, O is the null matrix. In the present paper, equations (11) and (12) have been 

solved to obtain P. 
From the Eqs. (7) and (10) one gets,  
 

 T T -11
2

= −G B PR  (13) 

 
The feedback gain matrix GT is computed using P and known B and R matrices. Then, 

the control force fact is obtained, which is optimal in the sense that it is the best function of 
z(t) for minimizing the performance index function defined by equation (8).  

 
2.6 Evaluation of Response of the Structure  
Having obtained GT of the controller, the equations (5) and (7) are solved to obtain reduced 
response. Equation (5) can be modified to  

 
 eHfzBGAz ++= (t))((t) T&  (14) 

 
Response of the structure is calculated from equations (6) and (14) using MATLAB 5.3 

software [19].  
 

2.7 Stability of the Designed Control System 
In the quadratic optimal control theory, Liapunov’s cost function is intended to get 
minimized as time approaches infinity which means, the control system designed by optimal 
control theory should achieve a steady state after certain time and be stable. In the present 
paper, the stability of the designed control system is verified by Bode’s method [21]. 

 
2.8 Application Example 
To illustrate the application of modern quadratic optimal control theory, a single-storey 
building is considered for active control design, Figure 3. Three response quantities of 
interest- percentage reduction in peak displacement of the top floor, settling time (Ts) of the 
building and magnitude of controlling forces (fact) to be generated by the actuator are 
observed for a wide range of certain ATMD parameters. Stability of the controlled system is 
also verified by Bode’s method.  

The ATMD parameters considered for studying the variation in response are: 
(i) Mass ratio, α (Ratio of mass of ATMD to that of the building) 
(ii) ATMD’s stiffness, kd  
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Figure 1. Schematic diagram of active control (Soon [15]) 

 

 

Figure 2. Shear Frame model of an n-storey building with ATMD 
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Figure 3. Idealized system for the single-storey building with ATMD on the top 
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Figure 4.  Accelerogram-ns component of El-Centro earthquake (May 18, 1940) (PGA=0.33g) 

 
The optimum combination of the ATMD parameters for both the buildings has been 

decided separately from the response data collected. The effectiveness of the designed 
system has further been visualized by plotting the response of the buildings against El-
Centro earthquake. 

The structural parameters of this building are mass 100 tons, lateral stiffness 100kN/m 
and damping 100 t/sec. Mass of the ATMD has been varied from 0.1% to 5% of mass of the 
building and its stiffness from 6 to 30 kN/m, keeping its damping coefficient constant and 
equal to 1.0 t/sec. The weighting matrices are selected to be [19]: 
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3. ANALYSIS OF RESULTS 
 

A number of plots showing variation in response quantities of the structures are shown here, 
followed by a discussion of the results. 

 
3.1 Effect of Mass Ratio (α) on Response Quantities 
The response quantities i.e. percentage response reduction (RR), settling time (Ts) and 
magnitude of controlling forces (fact) are found to vary appreciably with α as described 
below: 

 
(a)  Effect of mass ratio, α on RR (Figures 5 and 6) 
As the mass of damper is increased, an appreciable increase in RR is observed, but after 
certain value of α, reduction in response ceases. RR is seen to become almost invariable at 
higher masses. This can be attributed to the inertia effect of heavy mass dampers on the 
response of the building. 
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Figure 5. 3D surface plot showing effect of damper’s mass and its stiffness on response 
reduction (single-storey building) 
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Figure 6. Variation in response reduction of SDOF building with Frequency Ratio (β) and mass 
ratio (α) for different values of kd 

 
(b) Effect of α on fact (Figure 7) 
Here a decrease in amount of controlling forces, fact is observed with increase in mass ratio, 
which is abrupt for low values of α, but very little for α beyond 1.8%. As the cost of ATMD 
depends largely upon the amount of forces to be generated by the actuator, it is feasible to 
choose the case for which fact required is less. 
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Figure 7. Plot between fact and kd for different values of mass ratio (α) 
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Figure 8. 3D plot of variation in settling time of controlled system with kd and mass ratio (α) 

 
(c) Effect of α on Settling time, Ts of the Controlled structure (Figure 8) 
It is desired that the structure should return to its mean position in a little time, after it is 
disturbed. Figure 8 has been plotted to study the effect of mass ratio on settling time. It is 
evident that as the mass of damper is increased, settling time of actively controlled system 
approaches settling time of uncontrolled structure. Thus the settling time puts restriction 
over adoption of larger mass for more reduction, as more settling time means exposure of 
the structure to reversal of stresses for a longer duration. 

 
3.2 Effect of ATMD Stiffness, kd on Response Quantities 
The stiffness of damper, kd has been varied over a wide range to study its effect on response 
quantities, which are discussed below. 

 
(a) Effect of kd on RR (Figures 5 and 6) 
It is clear from Figure 5 that stiffness of the damper shows little influence on the RR. When 
the mass damper has its frequency close to the fundamental frequency of the main structure, 
response reduction (Figure 6) is near maximum. At this stage, the mass damper is said to be 
Tuned Mass Damper (TMD). RR is more for less values of kd, indicating that flexible mass-
dampers would be more effective. 
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(b) Effect of kd on fact (Figure 7) 
From the Figure 7, it is clear that kd affects the amount of actuating forces required to a very 
small extent. Actuating force required is less for higher values of damper’s stiffness. 

Based on the analysis above, the optimum mass-ratio and stiffness of ATMD have been 
decided to be 1.5% and 14 kN/m respectively. Response of the building with optimum 
ATMD placed on its top, to unit-step excitation and El-Centro earthquake are plotted using 
MATLAB and shown in Figs. 9 and 10 respectively.   

 
(c) Effect of kd on Settling time, Ts of the controlled structure (Figure 8) 
It is observed from the plots given in Figure 8 for SDOF system that the settling time of the 
building does not exceed that of the uncontrolled structure. Settling time is large for smaller 
values of kd, when mass ratio was taking the values less than 0.8 % or more than 3%. In 
between, kd showed little effect on settling time. The suitable zone for design in Figure 8 
seems to be for kd between 10 to 15 kN/m and mass ratio between 1% to 2% of the building 
mass. 
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Figure 9. Variation of roof displacement (y1) with time against unit step excitation  
for kd = 14 kN/m and α = 1.5% 
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Figure 10. Variation in roof displacement with time against El-Centro earthquake  
(α = 1.5%; kd = 14kN/m) 

 
3.3 Comparison of Response Reduction with Yang et al [13] 
Table 1 shows the response reduction achieved herein and that obtained by Yang et al [13] 
for an eight-storey building using instantaneous control theory. Each storey mass has been 
taken to be 345.6 tons, lateral stiffness 3.404×105 kN/m and damping 2.937×103 t/sec [13]. 
The building was subjected to an arbitrary ground motion with PGA of 0.8 m/s2. The 
percentage response reduction achieved has been chosen as the parameter to be compared. 
This comparison reveals that ATMD designed with modern control theory (quadratic 
optimal control theory) gives better response reduction (71.71%) than that obtained by 
classical instantaneous control (62.44%). Even more response reduction (73.62%) is 
observed with optimum ATMD parameters.   
 
3.4 Stability Analysis of the Controlled Structure 
The stability of the structure for all the three cases has been interpreted from Bode’s plots 
[21]. Certain evidences from Bode’s plots are discussed below. 

The Bode’s plot for the single-storey building is given in Figure 11. The plot shows that 
the gain margin and phase margin are both positive for uncontrolled, passively and actively 
controlled systems indicating that the system is stable in all the three cases. But, for no 
control and passive control conditions, kinks in the curve mean the response of the structure 
is oscillatory in some range of frequency. These kinks are flattened out after the active 
control is applied. This can be attributed to the increase in the value of damping ratio (ξ) of 
the system owing to introduction of ATMD. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

ACTIVE VIBRATION CONTROL OF STRUCTURES AGAINST EARTHQUAKES… 

 

295

-20

-10

0

10

20

30
Gm = Inf, Pm=96.245 deg. (at 1.2185 rad/sec) (Stable system)

Frequency (rad/s)

G
ai

n 
(d

ec
ib

el
s,

 d
B

)

10
-3

10
-2

10
-1

10
0

10
1

-200

-150

-100

-50

0

50

Frequency (rad/s)

P
ha

se
 (d

eg
re

es
)

No Control
Passive control
Active control

Gain margin and Phase margin, both are +ve, so system
is stable.                                           

 
Figure 11. Bode’s plots for the designed active control system and uncontrolled structure to 

check its stability (α = 1.5%; kd  = 14 kN/m) 

 

Table 1. Comparison of results for 8-storey building with those obtained by Yang et al [13] 

Parameters 

Control 
Algorithm 

md 
(tons) 

kd 
(kN/m) 

Subjected to 
(PGA) 

Peak roof 
displacement 

(Uncontrolled)  
(cm) 

Peak roof 
displacement 
(Controlled)  

(cm) 

% 
response 
reduction 

Yang et al 29.630 957.2 
Arbitrary 

ground motion 
(0.8 m/s2) 

4.10 1.54 62.44 

Present study 29.630 957.2 
El-Centro 
earthquake 
(3.33 m/s2) 

32.3 9.14 71.71 

Present study 
(Optimum) 

 

27.648 600.0 
El-Centro 
earthquake 
(3.33 m/s2) 

32.3 8.52 73.62 
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4. CONCLUSIONS 
 

The following conclusions are drawn from the present study: 
(1) The active control system provides nearly 35% more response reduction than 

passive system. 
(2) As far as the extent of response reduction and magnitude of external forces 

required are concerned, the trends of results revealed that the mass of ATMD, md 
should be large. But, simultaneously its value is restricted due to increase in 
settling time of the controlled system. Moreover, extent of response reduction is 
halted at large values of mass of the damper, indicating that use of larger mass will 
be redundant. So, the mass of ATMD is a tradeoff between response reduction and 
settling time of the controlled structure. 

(3) The stiffness of ATMD, kd influences the percentage response reduction to a more 
extent than it does to magnitude of actuating forces. Lesser values of stiffness 
show more response reduction. This study gives the impression that, a flexible 
damper is better than a stiffer one, but minimum value of kd is limited by the 
increase in settling time of the structure. 

(4) As soon as the damper’s natural frequency approaches that of the main structure, 
response reduction attains more or less its steady state value, which means the 
damper is tuned at this stage (ATMD) and performance of active control system is 
optimum when the damper is tuned to the natural frequency of the main structure.  

(5) The mass of ATMD has remarkable effects on the response quantities than its 
stiffness does.  

(6) The active control system makes the system remarkably stable as revealed by 
Bode’s diagrams. The damping properties of the structure are remarkably 
enhanced after the active control is applied as is clear from stability analysis. The 
system responds faster and amplitude of vibrations is damped out smoothly and 
quickly.  

(7) The modern quadratic optimal control algorithm shows more response reduction 
even with same ATMD parameters as used by Yang et al [13] while applying 
instantaneous optimal control theory. Further reduction in response is observed 
with lesser values of the mass and stiffness of ATMD as designed by proposed 
optimal control theory. 

The paper has presented state-space modeling of building dynamics and development of 
state feedback optimal control. Extensive analysis of the building model has been carried out 
using application of modern optimal control. This study results in some guidelines for 
selecting ATMD parameters for optimal performance.  
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NOTATION 
 
A System matrix of the building without control 
An New system matrix of the building after control is applied 
B Control vector identifying the locations at which the structure is subjected to 

actuating forces 
C Damping matrix of structure of order n × n 
C1 Control gain matrix that proportionate velocity feedback to Fact 
c1 Damping coefficient of the single storey building 
Ca Modified damping matrix of the controlled structure 
cd Damping of the mass damper 
CR Output vector of the order 1×2(n+1), which is a row matrix having its certain 

elements unity corresponding to desired response parameters only, rest of the 
elements being zeros 

D Location matrix for Fact(t) of order n × m 
DR Direct transition matrix of same order as f(t), which is used to include the  

direct effect of disturbances on the output, if any 
E Location matrix for ƒ(t) of order n × r 
E1 Control gain matrix that proportionate disturbances to Fact 
Ea Modified matrix that defines the points under the effect of earthquake forces 

on the building 
fe(t) transient force acting on the building due to earthquake 
fact(t) actuating force provided by the actuator to control the vibrations of the  

building, after the control is applied 
GT A  column vector containing gain coefficients corresponding to every element 

of state of the system 
H Location matrix in State Space for earthquake forces of order 2(n+1)×r, 

which is analogous to E in the basic dynamic equation 
I Unit matrix of the order (n+1)×(n+1) 
J Performance index (Liapunov’s cost function) 
K Stiffness matrix of structure of order n × n 
k1 Lateral stiffness of the single-storey building 
Ka Modified stiffness of the structure after the control is applied 
kd Lateral stiffness of the mass damper 
M Mass matrix of the structure of order n × n 
m Number of degrees of freedom along which controlling forces act 
m1 Mass of the single-storey building  
md Mass of the damper 
mn Mass of each storey unit in a multistorey building 
n Number of storeys in the building 
N Number of eigenvalues of [M] with positive real parts  
O Null matrix of the order (n+1)×(n+1) 
P Ricatti matrix  
Q 2(n+1)×2(n+1) positive semi-definite matrix, whose elements affect the 
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response reduction achieved 
r Number of degrees of freedom along which earthquake forces act on the 

building 
R m×m positive definite matrix, whose elements affect the amount of control 

forces generated  
TS,AC Settling time of the actively controlled structure 
TS,UN Settling time of the uncontrolled structure 
x(t) Displacement vector of order n × 1 
 )t(x&  Velocity vector of order n × 1 

)t(x&&  Acceleration vector of order n × 1 
x1 Lateral displacement of the mass m1 in single-storey building 
x1,ac Peak response of the building top with active control applied 
x1,un Peak response of the building top without control 
xd(t) Displacement of the mass damper, md with respect to the ground 
xi(t) Displacement of the ith floor of the building with respect to the ground 

(i = 1, 2, …, n) 
z State vector containing the displacement vector and velocity vector 

concatenated  
ż Vector containing the velocity vector and acceleration vector concatenated 
α Ratio of damper’s mass to that of the building expressed as percentage 
β Ratio of natural frequency of the damper to that of the building 
φ Energy function that is quadratic in z and fact 
ωb Fundamental natural frequency of the building 
ωd Natural frequency of the mass damper  
ξ Damping ratio of the structure 
β Ratio of the natural frequency of the actively controlled structure to that of 

uncontrolled structure 
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