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ABSTRACT 
 

Graph theoretical force methods are highly efficient for the generation of sparse and banded 
null bases and flexibility matrices, however, these methods require special considerations 
when the support conditions are indeterminate. These considerations with special methods 
are presented in this paper which lead to efficient utilization of graph theoretical force 
method for indeterminate support conditions with no substantial decrease in sparsity. 
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1. INTRODUCTION 
 

The force method of structural analysis, in which the redundant forces are used as 
unknowns, is appealing to engineers, since the properties of members of a structure most 
often depend on the member forces rather than joint displacements. This method was used 
extensively until 1960. After this, the advent of the digital computer and the amenability of 
the displacement method for computation attracted most researchers. As a result, the force 
method and some of the advantages it offers in non-linear analysis and optimization has 
been neglected. 

Four different approaches are adopted for the force method of structural analysis, which 
are classified as: 

 
1. Topological force methods, 
2. Algebraic force methods, 
3. Mixed algebraic-combinatorial force methods, 
4. Integrated force method. 
 
Topological methods have been developed by Henderson [1], Maunder [2] and 

Henderson and Maunder [3] for rigid-jointed skeletal structures using manual selection of 
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the cycle bases of their graph models. Methods suitable for computer programming are due 
to Kaveh [4-6]. These topological methods are generalized to cover different types of 
skeletal structures, such as rigid-jointed frames, pin-jointed planar trusses and ball-jointed 
space trusses [7,8]. 

Algebraic methods have been developed by Denke [9], Robinson [10], Topçu [11], 
Kaneko et al. [12], Soyer and Topçu [13] and mixed algebraic-topological methods have 
been used by Gilbert et al. [14], Coleman and Pothen [15-16], and Pothen [17]. The 
integrated force method has been developed by Patnaik [18-19], in which member forces are 
used as variables, the equilibrium equations and the compatibility conditions are satisfied 
simultaneously in terms of these variables. 

Graph theoretical methods for the formation of sparse and banded null basis for the 
model consisting of triangular plane stress and strain elements and rectangular plate bending 
and tetrahedron elements are developed by Kaveh et al. [20-22]. Graph theory is also used 
for a flexibility analysis of thin plated structures, Maunder [23]. 

In this paper, two methods are presented for the inclusion of the support conditions in 
such manner that the sparsity of the flexibility matrices is not substantially altered. 

 
 

2. ALGEBRAIC FORCE METHODS 
 

Consider a discrete or discretized structure S, which is assumed to be statically 
indeterminate. Let r denote the m-dimensional vector of generalized independent element 
(member) forces, and p the n-vector of nodal loads. The equilibrium conditions of the 
structure can then be expressed as, 

 
 Hr = p, (1)
 

where H is an n×m equilibrium matrix. The structure is assumed to be geometrically stable 
(rigid), and therefore H has a full rank, i.e. t = m − n > 0 and rank H = n. 

The member forces can be written as 
 
 r = B0p + B1q, (2)
 

where B0 is an m×n matrix such that HB0 is an n×n identity matrix, and B1 is an m×t matrix 
such that HB1 is an n×t zero matrix. B0 and B1 always exist for a structure, and in fact many 
of them can be found for a structure. B1 is called a self-stress matrix as well as null basis 
matrix. Each column of B1 is known as a null vector. Notice that the null space, null basis 
and null vectors correspond to complementary solution space, statical basis and self stress 
systems, respectively, when S is taken as a general structure. 

Minimizing the complementary potential energy requires that r minimize the quadratic 
form, 

 

 ,m
t

2
1 rFr  (3)
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subject to the constraint as in Eq. (1). Fm is an m×m block diagonal element flexibility 
matrix. Using Eq. (2), it can be seen that q must satisfy the following equation, 

 
 ( t

1B FmB1)q =  − t
1B FmB0p, (4)

 
where GBFB =1m

t
1  is the overall flexibility matrix of the structure. Computing the 

redundant forces q from Eq. (4), r can be found using Eq. (2). The structure of G, is again 
important, and its sparsity, bandwidth and conditioning govern the efficiency of the force 
method. For the sparsity of G one can search for a sparse B1 matrix, which is often referred 
to as the sparse null basis problem. 

Many algorithms exist for computing a null basis B1 of a matrix H. For the moment, let 
H be partitioned so that, 

 
 HP = [H1 , H2], (5)
 

where H1 is n×n and non-singular, and P is a column permutation matrix that may be 
required in order to ensure that H1 is non-singular. One can write: 

 

 .2
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1
1
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0                                                          (7) 

 
Obviously, a permutation P that yields a non-singular matrix H1, can be chosen purely 

symbolically, but this says nothing about the possible numerical conditioning of H1 and the 
resulting B1. 

In order to control the numerical conditioning, pivoting must be employed. There are 
many methods based on various matrix factorizations, including the Gauss-Jordan 
elimination, QR, LU, LQ and Turn-back method. The latter method is briefly described in 
the following: 

Turn-Back LU Decomposition Method:  Topçu developed a method, the so-called 
Turn-back LU procedure, which is based on LU factorization and often results in highly 
sparse and banded B1 matrices. Heath et al. [24] adopted this method for use with QR 
factorization. Due to the efficiency of this method, a brief description of their approach will 
be presented in the following. 

Write the matrix H = (h1,h2,...,hn) by columns. A start column is a column such that the 
ranks of (h1,h2,...,hs-1) and (h1,h2,...,hs) are equal. Equivalently, hs is a start column if it is 
linearly dependent on lower-numbered columns. The coefficients of this linear dependency 
give a null vector whose highest numbered non-zero is in position s. It is easy to see that the 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. Kaveh, K. Koohestani and N. Taghizadieh 392 

number of start columns is m − n = t, the dimension of the null space of H. 
The start column can be found by performing a QR factorization of H, using orthogonal 

transformations to annihilate the sub-diagonal non-zeros. Suppose that in carrying out the 
QR factorization we do not perform column interchanges but simply skip over any columns 
that are already zero on and below the diagonal. The result will then be a factorization of the 
form 

 

                                            (8) 
 
The start columns are those columns where the upper triangular structure jogs to the 

right; that is, hs is a start column if the highest non-zero position in column s of R is no 
larger than the highest non-zero position in earlier columns of R. 

The Turn-back method finds one null vector for each start column hs by "turning back" 
from column s to find the smallest k for which columns hs,hs-1,...,hs-k are linearly dependent. 
The null vector has a non-zero only in position s−k through s. Thus, if k is small for most of 
the start columns, then the null basis will have a small profile. Notice that the turn-back 
operates on H, and not on R. The initial QR factorization of H is used only to determine the 
start columns, and then discarded. 

The null vector that Turn-back finds from start column as may not be non-zero in position 
s. Therefore Turn-back needs to have some way to guarantee that its null vectors are linearly 
independent. This can be accomplished by forbidding the left-most column of the 
dependency for each null vector from participating in any later dependencies. Thus, if the 
null vector for start column as has its first non-zero in position s−k, every null vector for a 
start column to the right of as will be zero in position s−k. 

 
 
3. INDETERMINATE SUPPORT CONDITIONS IN THE FORCE METHOD 
 

The effect of support conditions can generally be included in two different manners in finite 
element analysis by the force method. These methods are described in this section. 

 
3.1 First method 
In this approach, the support reactions are not selected as redundant forces and thus the 
supports are present in the primary determinate structure. Using this process, all the 
redundant forces are selected from structural elements. From mathematical point of view for 
such a modeling, the rows corresponding to fixed degree of freedom of supports should be 
removed from the rectangular equilibrium matrix H. If the problem is solved using this 
process, then there will be no one to one mapping between the interface graph and the 
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associate graph and the degree of statical indeterminacy of structure, leading to inefficient 
usage of these transformations. In fact, such a modeling for applying support conditions in 
the force method is useful for algebraic methods and should not be utilized in graph 
theoretical approaches. 

 
3.2. Second method 
In this method all the support reactions except the forces which are required for a 
determinate supports, are selected as redundant forces and thus will not be present in the 
primary determinate structure. It should be noted that the number of such supports depends 
on the type of problem. In this case, the degree of statical indeterminacy is divided to 
internal DSI and external (support) DSI. Now all the topological transformations and their 
relations to the DSI which have been introduced previously in references [20-22] will be 
valid. This will lead to an efficient usage of graph theoretical force methods. However, for 
efficient utilization of this method, some considerations should be taken into account for the 
formation of the rectangular equilibrium H and the flexibility matrices G , which can also be 
stated in two different manners. 

In the first case, in the equilibrium matrix the columns related to the support conditions 
are located between columns which are related to the elements. As an example, if such a 
style is employed, then the element forces of a triangular finite element with element 
number i , will not be { }ii FF 323 ,...,−  anymore. Then the effect of this variation in all part of 
analysis including, making the equilibrium, null space, and flexibility matrices as well as the 
report of element forces, should be considered. 

In the second case, these columns are positioned at the end of columns which are related 
to the elements. 

The first case is complicated and does not lead to localized self stress systems. Though 
the second case does not lead to localized self stress systems, however, it is better than the 
former one, because it is simpler and does not change the order of elements, and also it 
results in flexibility matrices which have more suitable pattern. The latter case is 
comprehensively studied in the following. 

 
 
4. A COMBINED ALGEBRAIC AND GRAPH THEORETICAL METHOD 

 
A triangular finite element model with indeterminate support conditions is shown in Figure 
1(a), and the corresponding interface graph is illustrated in Figure 1(b). Each support 
reaction force is modeled as a simple graph member. Thus a simple support and a roller 
support are modeled using two and one simple graph member, respectively. These members 
should be numbered and used in the formation of the equilibrium matrix. It is obvious that, 
for each of these members, a column is added to the equilibrium matrix from right-hand 
side. In fact, these columns are vectors with all of their entries being zero except the entries 
in the rows corresponding to the freedom restraints, which have unit values in their entries. 
In this case, all the nodes of structure are considered as free nodes and there is no need for 
removal of rows. 
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                                     (a)                                                               (b) 

Figure 1. (a) A finite element mesh with indeterminate support condition; (b) Interface graph of 
the model 

 
It is important to note that, in the present approach the end nodes of added members, 

which are artificially connected to the ground, should not be considered as structural nodes 
and should ultimately be excluded from nodal numbering and ordering. As an example, the 
equilibrium matrix for the structure shown in Figure 1(a), has 19 rows and 36 columns, 
having DSI=17, while this matrix for Figure 1(b) has 24 rows and 41 columns having 
DSI=17. 

Using such a modeling approach, the DSI of structure shown in Figure 1(b), is internally 
15 and externally 2. If an algebraic procedure is used for calculating the null basis, columns 
37 to 39 will be selected as independent columns and columns 40 and 41 will be taken as 
dependent ones. Despite of this, the selection of a statically determinate support condition 
for any type of structures is very simple and needs no additional procedures. This simple 
example shows that the selection of dependent and independent columns from equilibrium 
matrix is straightforward. Using the above procedure, generally, dependent columns are 
made from all internal dependent columns (these columns are corresponding to the 
generators of self stress systems) and all the added columns, except the columns related to a 
statical determinate support condition. However it seems that, the definition of special 
graphs with respect to the type of problems and supports conditions for the calculation of 
sparse null vectors (related to supports) is possible but not simple. This means that, an 
algebraic procedure for finding this type of null vectors can be more suitable. 

The equilibrium matrix H is schematically shown in Figure 2, in its general form, in 
which 1h  is the related submatrix of internally determinate structure, e1h  corresponds to the 
submatrix of determinate support conditions, 2h  is related submatrix of internal redundant 
forces and e2h  is the submatrix corresponding to the external redundant forces. Then  

 
[ ]21 HHH =                                                           (9) 

In which 
[ ]e111 hhH =    ,   [ ]e222 hhH =                                      (10) 
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Figure 2. Schematic view of a partitioned rectangular equilibrium matrix 

 
It should be noted that, though identifying the determinate support condition is simple 

and can separately be performed, however, if the matrix [ ]e1 hh  (submatrix 
[ ]e2e1e hhh =  includes all columns which are related to support conditions) enters in an 

LU-decomposition, all independent columns can automatically be selected. It is 1h  plus α 
columns (α being 3 for planar and 6 for three dimensional cases) which will be identified 
out of the columns of eh . By this decomposition performed on H, the corresponding null 
space can be generated using the following procedure: 

Substituting 2H  from Eq. (10) into Eq. (6) leads to: 
 

 [ ]e1i1
2

1
1

1 BB
I

HHPB =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−=
−

 (11) 

In which 
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In Refs. [20-22], efficient graph theoretical methods are presented for the calculation of 

highly sparse and banded i1B  matrix for three different types of elements. Then in Eq. (11) 
this part can be substituted using the null vectors which are calculated using these methods. 
Thus 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
b

B g1
i1                                                           (13) 
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where g1b  is the computed null space by the graph theoretical methods. It is obvious that 

for matching the size of matrices, some rows with zero entries should be added to g1b  

matrix. The number of these rows is equal to the number of added members for modeling of 
the support conditions. Such zero rows and columns should be added to unassembled 
flexibility matrix because fixed supports have infinite stiffness and zero flexibility. Now the 
second part of null space matrix, e1B , which is related to the external redundant forces is 
studied. This part can be calculated using two different approaches as follows: 
 

1. The formation of B0 matrix is necessary for the finite element analysis using the force 
method. This matrix can be calculated using Eq. (7), thus the inverse of H1 is required 
for finding B0. On the other hand e1B  can be calculated employing Eq. (12), however, 

in practice there is no need for the calculation of e2
1

1 hH−−  , since the special 
characteristic of e2h , it is sufficient to select columns related to constrained degrees of 
freedom and add zero and unit matrices of appropriate sizes, and exchanging the rows. 
Thus the null vectors corresponding to redundant support forces which are not 
necessarily sparse can simply be calculated. 

2. The submatrix e1B  can directly be calculated without using the inverse of 1H . This 
can be done using Turn-Back method. Since the submatrix e2h  is determined, thus 
from each of its columns and to the left, LU decomposition can be performed. Using 
this process for each column, a minimum dependency set is found and the submatrix 

e1B  is directly obtained. It should be noted that, the numbering of elements which are 
related to support conditions is performed at the end of the numbering process of finite 
elements. Therefore, using the Turn-Back method will not usually leads to sparse null 
vectors and it is possible to require more computational time than first process. 

 

 
                                                  (a)                                          (b) 

Figure 3. Matrix patterns (a) Null basis B1    (b) Flexibility matrix G 
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However each of above processes for the calculation of e1B , leads to general null basis 
B1 and flexibility matrix G, where their patterns are depicted in Figure 3. 

The pattern of the flexibility matrix which is shown in Figure 3(b) is a well-known 
Doubly Bordered Banded Form but in the real models the degree of external indeterminacy 
is considerably less than the degree of internal indeterminacy. Then the width of non-sparse 
part of the null basis and the flexibility matrix ( e ) will be insignificant. This pattern can 
effectively be stored using Skyline data structure. Also another effective approach is the 
usage of partitioned form of the flexibility matrix as shown in the following: 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

22
t
12

1211
gg
gg

G                                                     (14) 

 
In this form the submatrix g11 is highly sparse and banded and effective solutions can be 

performed on it. 
The combination of these two approaches will lead to an efficient usage of graph 

theoretical force methods for the generation of sparse and banded null basis and flexibility 
matrices. Three examples of triangular plane stress, rectangular plate bending and 
tetrahedron finite elements with indeterminate support conditions are presented in the 
following section. 

 
 

5. NUMERICAL RESULTS 
 

In this section three examples are studied having different types of elements and 
indeterminate support conditions. 

 
Example 1: Half of a continuous beam (because of symmetry) which is modeled using 
triangular plane stress finite elements is shown in Figure 4. The specifications of the model 
are as follows: 

Number of triangular elements = 200, Thickness = 0.05m, Elastic module = E = 
2e+8kN/m2, Poisson’s ratio= v = 0.3, Number of nodes = 126, DSI=357 (Internal DSI=351, 
External DSI=6) 

As shown in Figure 4, support conditions are indeterminate and the degree of external 
indeterminacy is 6, which is approximately 1.7% of the total DSI. Using the procedure 
presented with the combination of graph theoretical force method, the null basis and the 
flexibility matrices are calculated that their patterns are depicted in Figure 5. Her nz shows 
the number of non-zero entries of the matrices. 

As it is shown in Figure 5, the width of non-sparse part is insignificant compared to total 
width, and both matrices have suitable patterns. Since each node has only two degrees of 
freedom (displacement in x and y direction), in rectangular finite element models with 
indeterminate support conditions, the process of applying support conditions is identical to 
the triangular finite elements models. On the other hand, in the interface graph, a simple 
support and roller support will be modeled using two members and one member, 
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respectively. 

 

Figure 4. Finite element model with node and element numbering, and indeterminate  
support conditions 
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                                         (a)                                                                 (b) 

Figure 5. (a) Pattern of null basis matrix B1; (b) Pattern of flexibility matrix G 

 
Example 2: A plate is shown in Figure 6. This plate has roller supports in one end and is 
clamped in the other end. The plate is discritized using rectangular plate bending elements, 
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Figure 7. Each nodes with clamped condition (nodes 1~7) is modeled using additional three 
members, and each roller support (nodes 85~91) is modeled as a single member. The 
specifications of the model are as follows: 

Number of rectangular elements = 72, Thickness = 0.1m, Elastic modulus = E = 
2e+8kN/m2, Poisson’s ratio= v = 0.2, Number of nodes = 91, DSI=403 (Internal DSI=378, 
External DSI=25) 

 

 

Figure 6. A plate with different support conditions 

 

 

Figure 7.  The finite element mesh of a plate with node and element numberings 
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In plate bending problems, usually the number of supports and external redundant forces 
are significantly more than plane stress/strain problems. This will lead to partially large 
width of non-sparse part, however, this width is still far less than the total width (total 
degree of static indeterminacy). 

In Figure 8, the patterns of matrices which are completely identical to those shown in 
Figure 3 are depicted. 
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                                      (a)                                                               (b) 

Figure 8. (a) Pattern of null basis matrix B1 (b) Pattern of flexibility matrix G 

 
Example 3: A cantilever beam which is discretized using 96 tetrahedron elements is shown 
in Figure 9. Support conditions are also indeterminate and include five simple supports 
which are applied to nodes 1~5. The specifications of the model are as follows: 

Number of tetrahedron elements = 96 , E = 2e+7 kN/m2, v = 0.2, Number of nodes = 4, 
DSI=456 (Internal DSI=447 and External DSI=9).   
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Figure  9.  A cantilever beam and its finite element model 
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Figure 10. (a) Pattern of null basis matrix B1 (b) Pattern of flexibility matrix G 

 
Again patterns of the matrices are quite reasonable and the width of non-sparse part is 

insignificant. 
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6. CONCLUDING REMARKS 
 
The following conclusions are derived considering the results of the examples studied in this 
paper: 

 
• Using the present method, the effect of different support conditions can easily be 

included with no considerable decrease in the sparsity and computational time. This 
is performed utilizing combinations of algebraic procedures after the calculation of 
null basis of externally determinate structure. 

• The methods presented are also suitable for applying elastic support conditions. 
• The present method is completely general and can be used for any finite element 

models. 
 
 
Acknowledgement: The first author is grateful to Iran National Science Foundation for the 
support. 
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