
Arc
hi

ve
 o

f S
ID

ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 8, NO. 6 (2007) 
PAGES 647-658 

 
 

NUMERICAL APPROACH FOR THE ANALYSIS OF 
ANISOTROPIC RECTANGULAR PLATES USING DISCRETE 

SINGULAR CONVOLUTION  
 
 

Ö. Civalek∗ and O. Kiracioglu 

Akdeniz University, Faculty of Engineering, Civil Engineering Department, Division of 
Mechanics, Antalya-Turkiye 

 
 

ABSTRACT 
 

In the present study, free vibration, deflection and buckling analyses of rectangular 
composite plates via discrete singular convolution has been presented. In the proposed 
approach, the derivatives in both the governing equations and the boundary conditions are 
discretized by the method of DSC. The obtained results are compared with those of other 
numerical methods available in the literature.  Numerical calculations showed that accurate 
results can be achieved. It has been also shown that the DSC method yields efficient and 
convergence solutions and these results are in excellent agreement with the analytical 
solutions and other sources of numerical solutions. 
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1. INTRODUCTION 
 
A variety of numerical methods are avaliable today for engineering analysis. Generally, 

there are a few numerical methods, which are finite difference, finite element, differential 
quadrature and boundary element method. These numerical approachs have been used 
extensively for solving differential equations. Discrete singular convolution (DSC) method 
is a new method that was introduced by Wei [1]. Several researchers have applied the DSC 
method to solve a variety of problems in different fields of science and engineering [3-12]. 
The pioneer work for the application of the DSC method to the general area of solid 
mechanics was carried out by Wei [6,7,8], Wei et. al. [6,7,8], Zhao et al. [11], Lim et al. 
[12,13] and Civalek [15,16,17]. New developments, such as the new way to apply the 
boundary conditions [4] to increase the solution accuracy, have been made on the DSC 
approach to make the method more attractive for engineering practice. Details on the 
development of the DSC method and its applications to structural mechanics problems may 
be found in a recent paper by Wei [6]. The unique properties of advanced composite 
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materials have resulted in extensive applications of laminated plates to aerospace, 
automobile, mechanical, shipbuding, and nuclear industries. Because of the increasingly 
wide application of composite structural elements, especially laminated plates, the analysis 
of such structures has been receiving much interest in the past [19-26]. The primary 
objective of this study is to explore the application of the DSC method to the static, 
buckling, and vibration analysis of anisotropic rectangular plates. The given results are 
verified by comparison against results available in the open literature. To the author 
knowledge, this is the first instance in which the DSC method has been adopted for free 
vibration and buckling analysis of anisotropic rectangular plates.  

 
 

2. DISCRETE SINGULAR CONVOLUTION (DSC) 
 

Accurate and efficient numerical approaches for differential equations are of great 
importance in both engineering and physical sciences. The method of discrete singular 
convolutions (DSC) has emerged as a new approach for numerical solutions of differential 
equations. This new method has a potential approach for computer realization as a wavelet 
collocation scheme [2,3]. By using the appropriate realizations of a singular convolution 
kernel, this method can be efficient, accurate and reliable approach for numerical solutions 
[5-13]. In this paper, details of the DSC method are not given; interested readers may refer 
to the works of [1-8]. In the method of DSC, weighted linear combination of the function 
values in the direction of space variable is used to approximate the any order derivative of a 
given function with respect to a space variable at a discrete point. Consider a distribution, T 
and )(tη as an element of the space of the test function. A singular convolution can be 
defined by [6] 

 ∫ −=∗=
∞

∞−
dx)x(η)xt(T)t)(ηT()t(F  (1) 

 
where )( xtT − is a singular kernel. For example, singular kernels of delta type [7] 

 

 )()( )( xδxT n= ;    (n =0,1,2,...,) (2) 
 
Kernel )()( xδxT =  is important for interpolation of surfaces and curves, and 

)()( )( xδxT n=  for n>1 is essential for numerically solving differential equations.  The DSC 
algorithm can be realized by using many approximation kernels. However, it was shown 
[6,7,8] that for many problems, the use of the regularized Shannon kernel (RSK) is very 
efficient. The RSK is given by [6] 
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where Δ=π/(N-1) is the grid spacing and N is the number of grid points. Thus, it is suitable 
to say that in the DSC method, the function f (x) and its derivatives with respect to the x 
coordinate at a grid point xi are approximated by a linear sum of discrete values f (xk) in a 
narrow bandwidth [x-xM, x+xM ]. For example mth order derivative of a function g(x) at the 
ith point is given by 

 

 
)()(  )( )()(

ji xgxxδxf ji
mm

M

Mj
,σ −∑≈

−=
Δ ;   (m=0,1,2,...) (4) 

 
where superscript m denotes the mth-order derivative with respect to x.  

 
 

3. APPLICATIONS 
 

The general governing differential equations of rectangular composite plates are given as [24] 
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where ijD  are the coefficients of the bending rigidity for plate, h is the plate thickness, xN  

and yN  are the applied compressive loads in the respective x and y directions, 0q  is the 
pressure, w is the deflection, ρ is the density, ω is the natural frequency, x and y are the 
midplane Cartesian coordinate. The boundary conditions applied in the numerical analysis 
are [24] 
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ii) Clamped edges 
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 0=w  and 0=
∂
∂
x
w

 at ax ,0=  (7a) 
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 at by ,0=  (7b) 

 
Governing equations can be written in DSC form as 
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where )(, xδ σΔ , )(,

)1( xδ σΔ , )(,
)3( xδ σΔ , and )(,

)4( xδ σΔ are the first-, second-, third-and fourth-
order derivatives of the regularized Shannon’s delta kernel. These are given in Appendix in 
detail. 

 
3.1 Implementation of boundary conditions  
Simply supported and clamped boundary conditions are applied in the analysis. It is known 
that, to obtain a unique solution for a differential equation, appropriate boundary conditions 
must be satisfied. In applying the DSC method Wei et al. [9,10] and Zhao et al. [11] 
proposed a practical method in applying the simply supported and clamped boundary 
conditions. In the present study, same procedure proposed by Wei et al. [9,10] and Zhao et 
al. [11] are used. More detailed formulation about the implementation of boundary 
conditions in DSC can be found in these references [9,10,11,16]. Consider a uniform grid 
having following form 

 
 10 10 =<<<=

xNXXX ...  (9a) 
 
 10 10 =<<<=

yNYYY ... . (9b) 

 
Consider a column vector W given as 
 

 T
NNN WWWW ),...,,...( ,,,, 01000=W  (10) 

 
with ))(( 11 ++ yx NN  entries ),...,,;,...,,();,(, yxjiji NjNiYXWW 1010 ===     . Let us 
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define the ))(( 11 ++ yx NN differentiation matrices ,...),;,( 21== nYXrn
rD , with their 

elements given by 
 

 )xx(δ]D[ ji
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x −= Δσ  (11a) 
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where ),(),()(

, yxrrrδ ji
n =−Δ   σ  is a DSC kernel of delta type.  In this stage, we consider the 

following relation between the inner nodes and outer nodes on the left boundary [9,11]: 
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where parameter ),...,,(, Miai 21= are to be determined by the boundary conditions. Thus, 
the first and second order derivatives of W on the left boundary are approximated by  
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Similarly, the first and second order derivatives of f on the right boundary (at 1−NX  ) are 

approximated by  
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Consequently, we obtain the following relation 
 

 ].)[()()( iNiNiiN aXWXWaXW −+= −−−+− 1111  (16) 
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Hence, the first and second order derivatives of f on the right boundary are given by  
 

 )()()()()( )(
,

)(
, 1

0

1
1

1
1 1 −

=
Δ−Δ− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−=′ ∑ Nji

J

j
iNiN XWXXδaXXδXW σσ

 
 

 )()()( )(
, iji

J

j
i XWXXδa −−+ ∑

=
Δ

0

11 σ  (17) 

 

 
)()()()()( )(

,
)(

, 1
0

2
1

2
1 1 −

=
Δ−Δ− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+−=′′ ∑ Nji

J

j
iNiN XWXXδaXXδXW σσ

 
 

 )()()( )(
, iji

J

j
i XWXXδa −++ ∑

=
Δ

0

21 σ  (18) 

 
As a result the DSC forms of given boundary conditions can be easily written using 

above procedure. For example, DSC form of simply supported boundary conditions can be 
given for right boundary by 
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4. NUMERICAL RESULTS 
 

In this section some numerical results are presented. As a first example, consider the free 
vibration problem of isotropic plate.  The results are listed in Table 1 and Table 2 for CCCC 
and SSSS boundary conditions. Comparisons are made with the analytical solutions 
provided by Leissa [23]. It can be seen that good accuracy is achieved by the present DSC 
method with N=16. Non-dimensional fundamental frequency of CCCC rectangular 
anisotropic plates are given in Table 2 for two different aspect ratios.  
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Table 1. Non-dimensional frequency parameters of CCCC isotropic plates Dρhωa /)( 2=Ω  

Present DSC results 
N 

Mode sequence 

 1 2 3 4 

12 36.005 73.433 73.421 108.278 

16 35.993 73.415 73.415 108.273 

18 35.992 73.413 73.413 108.273 

20 35.992 73.413 73.413 108.270 

22 35.992 73.413 73.413 108.270 

Leissa [23] 35.992 73.413 73.413 108.270 

 

Table 2. Non-dimensional frequency parameters of SSSS isotropic plates Dρhωa /)( 2=Ω  

Present DSC results 
N 

Mode sequence 

 1 2 3 4 

12 19.7401 49.3493 49.3493 78.9578 

16 19.7398 49.3488 49.3488 78.9573 

18 19.7393 49.3482 49.3482 78.9573 

20 19.7392 49.3480 49.3480 78.9571 

22 19.7392 49.3480 49.3480 78.9570 

Leissa [23] 19.7392 49.3480 49.3480 78.9568 

 
From Table 3, it can be seen that the results compare well with data obtained by the 

Rayleigh-Ritz [18] and differential quadrature [24] method. Other results of a convergence 
study of frequencies are presented in Table 4. Results from the present DSC method are 
compared with the results of the method of differential quadrature (DQ) and harmonic 
differential quadrature (HDQ) by Bert et al.  [24]. From the results presented in this table, it 
is clear that the present DSC results are in excellent agreement with those obtained using a 
variety of numerical methods using N=16. Non-dimensional frequency parameters of CCCC 
anisotropic rectangular plates are analysed and results are listed in Tables 5-7.  
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Table 3. Non-dimensional fundamental frequency of CCCC rectangular anisotropic plates 
( Dρhωb /)( 2=Ω ; ]1(12/[ 2

12
3

1 rEυhED −= ; 12 / EEEr = ; θ=15) 

a/b Bert et al. [24] Whitney [18] DSC 

1 23.09 23.10 23.12 

2 9.67 9.68 9.70 

 

Table 4. Non-dimensional frequencies ( 11
22 /)/( Dρhωa π=Ω ) of SSSS square anisotropic 

plates (D22/D11=1; D12+ 2D66/ D11=1) 

N Bert et al. 
[24] DQ 

Bert et al. [24] 
HDQ 

Present study 
HDQ 

Present 
study DSC 

9 2.00 2.00 - 2.008 

13 - 2.00 2.00 2.000 

16 - - 2.00 2.000 

 

Table 5. Non-dimensional frequency parameters of CCCC anisotropic plates Dρhωa /)( 2=Ω  
b/a=0.5; E1/E2 = 10; G12/E2=0.25;  3.012 =υ ; )]1(12/[ 2112

3
1 υυhED −= ) 

Whitney [Ref.18] Present DSC results Orientation 
β 

Mode sequence Mode sequence 

 1 2 3 1 2 3 

0o 9.34 17.61 20.83 9.34 17.61 20.84 

15o 9.68 17.19 22.02 9.68 17.20 22.03 

45o 13.88 17.73 23.85 13.86 17.66 23.68 

60o 17.87 19.86 23.75 17.88 19.78 23.58 

90o 22.57 23.38 25.30 22.57 23.38 25.31 
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The geometric and material properties are b/a=0.5 and b/a=1; E1/E2=10, G12/E2=0.25, 
3.012 =υ . The present results are compared with the results of Whitney [18]. In comparison 

with the results of Whitney [18], the DSC results provide satisfactory accuracy. Buckling 
coefficients ( )/( 3

22
2 hQNbK =  of SSSS square anisotropic plates under biaxial 

compression (Nx=Ny=N) are listed in Table 8 for the value of Q11/Q22=25, Q12/Q22=0.25, 
Q66/Q22=0.5. Results from the present DSC method are compared with the results of Bert et 
al. [24] and Whitney [18]. The results by DSC are close to the numerical solution by Bert et 
al. [18] using the differential quadrature method. In Table 9, non-dimensional deflections 
( 4

11 / qawDW = ) of SSSS square anisotropic plates for different stiffness ratio are given.  
Consequently, by comparing the computed results with those available in published works, 
the present analysis by the DSC method is examined and a very good agreement is observed.  

 

Table 6. Non-dimensional frequency ( Dρhωa /)( 2=Ω ) parameters of CCCC anisotropic 
square plates (b/a=1; E1/E2 = 10; G12/E2=0.25;  3.012 =υ ; )]1(12/[ 2112

3
1 υυhED −= ) 

Whitney [Ref.18] Present DSC results Orientation 
β 

Mode sequence Mode sequence 

 1 2 3 1 2 3 

0o 23.97 31.15 46.41 23.97 31.13 46.40 

15o 23.10 31.52 47.65 23.08 31.50 47.61 

30o 21.35 33.18 50.72 21.33 33.16 50.64 

45o 20.51 35.01 47.07 20.50 34.98 46.88 

 

Table 7. Non-dimensional frequencies ( 11
22 /)/( Dρhωa π=Ω ) of SSSS square anisotropic 

plates for different stiffness ratio 

 Present study DSC 

Material parameters 7×7 16×16 18×18 

D22/D11=1, D12+ 2D66/ D11=1, D16/D11=0 2.098 2.00 2.00 

D22/D11=1, D12+ 2D66/ D11=1.061, 
D16/D11=-0.174 

2.012 1.986 1.987 
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D22/D11=1, D12+ 2D66/ D11=1.500, 
D16/D11=-0.500 

1.919 1.884 1.886 

Table 8. Buckling coefficients ( )/( 3
22

2 hQNbK =  of SSSS square anisotropic plates under 
biaxial compression (Nx=Ny=N;  Q11/Q22=25; Q12/Q22=0.25; Q66/Q22=0.5) 

N Bert et al. 
[24] DQ Whiney [18] Ashton [20] Present 

study DSC 

7 8.740 8.418 11.060 9.113 

9 8.574 - - 8.585 

16 - - - 8.578 

 

Table 9. Non-dimensional deflections ( 4
11 / qawDW = ) of SSSS square anisotropic plates for 

different stiffness ratio 

Material parameters Ashton [20] DQM Bert et 
al. [24] 

Present DSC 
solution 

D22/D11=1, D12+ 2D66/ D11=1, 
D16/D11=0 

 

0.00406 

 

0.00406 

 

0.00406 

D22/D11=1, D12+ 2D66/ D11=1.061, 
D16/D11=-0.174 

 

0.00411 

 

0.00411 

 

0.00410 

D22/D11=1, D12+ 2D66/ D11=1.500, 
D16/D11=-0.500 

 

0.00452 

 

0.00455 

 

0.00454 

D22/D11=1, D12+ 2D66/ D11=1.690, 
D16/D11=-0.587 

 

0.00476 

 

0.00478 

 

0.00476 

 
 

5. CONCLUSIONS 
 

Free vibration, deflection and buckling analyses of rectangular composite plates via discrete 
singular convolution have been presented. In the proposed approach, the derivatives in both 
the governing equations and the boundary conditions are discretized by the method of DSC. 
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The obtained results are compared with those of other numerical methods available in the 
literature. Numerical results indicate that the discrete singular convolution is a simple, 
accurate and reliable algorithm for vibration and buckling analyses of anisotropic composite 
plates. In addition, the new numerical technique DSC algorithm has been examined and 
found to be simple, accurate and efficient.  Some different applications of the present 
method to analysis of solid mechanic problems are currently under investigation. 
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