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ABSTRACT 
 

In recent years special methods have been presented for eigensolution of symmetric 
structures. Therefore, an automatic approach for detecting the symmetry axis and/or planes 
was inevitable. In this paper a simple automatic approach is developed for symmetry 
detection in structural graph models. This is achieved by a special coloring of graph utilizing 
the dominant eigenvector of a special matrix known as the inner-product matrix, and 
imposing some constraints. Combining the present method and some canonical forms, an 
efficient tool is obtained for graph factorization. The efficiency of the present method is 
illustrated through some examples. 
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1. INTRODUCTION 
 

Symmetry has been widely used in science and engineering [1-5]. Eigenvalue problems arise 
in many scientific and engineering problems [6-8]. While the basic mathematical ideas are 
independent of the size of matrices, the numerical determination of eigenvalues and 
eigenvectors becomes more complicated as the dimensions of matrices increase. Special 
methods are beneficial for efficient solution of such problems, especially when their 
corresponding matrices are highly sparse. 

Methods are developed for decomposing and healing the graph models of structures, in 
order to calculate the eigenvalues of matrices and graph matrices with special patterns. The 
eigenvectors corresponding to such patterns for the symmetry of Form I, Form II and Form 
III are studied in references [9-10], and the applications to vibrating mass-spring systems 
and frame structures are developed in [11] and [12], respectively. These forms are also 
applied to calculating the buckling load of symmetric frames [13-14]. Thought the 
decomposition and healing approaches are attractive, however, automating the detection of 
symmetry increases the power of these methods to a great extent. This is the main issue 
studied in this paper. 

Graphs are commonly used in computer science to model relational structures such as 
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programs, databases, and data structures. Symmetry of graphs has been extensively studied 
over the past 50 years by using automorphisms of graphs and group theory which have 
played an important role in graph, and promising and interesting results have been obtained 
[15-18]. Symmetry is one of the most important aesthetics for delivering an easily 
understandable graph layout. A graph with a symmetric structure requires to concentrate on 
its “core” part, while the other parts can be symmetrically mirrored from the symmetric 
structure. 

The problem of determining whether a graph has a non-trivial strict geometric 
automorphism in two and three dimensions is NP-complete [15]. Testing whether a graph 
has an axial (central or rotational) symmetry is also an NP-complete problem [19]. The 
construction of a symmetric drawing of a graph involves two steps. In the first step, known 
as the symmetry finding step, all automorphisms of the graph that can be displayed as 
symmetries of a drawing are found. The second step known as the drawing step, is to 
construct drawings that display these automorphisms. In this article only the first step is 
needed. 

Several methods for detecting symmetries have been introduced in recent years, such as a 
group-theoretic method for drawing graphs symmetrically of David Abelson and Soek-Hee 
Hong [15], branch and cut methods of Buchheim and Junger [16], and the heuristic of de 
Fraysseix for finding symmetries [19]. 

In this paper, we combine the above two methods and introduce a simple approach for 
finding the automorphisms corresponding to axial (central or rotational) symmetries in 
structural graph models and the core of a symmetric graph, which can easily be used in 
structural analysis. 

First by defining Euclidian distance, a suitable coloring of nodes is obtained and by 
imposing some constraints similar to those of the branch and cut method [16] the core of the 
graph and the permutation corresponding to optimal symmetry are specified. Examples of 
such symmetries are the rotational with maximum order and minimum fixed points or axial 
(central) symmetry with minimum fixed points, Figure 1. 

 

 
(a)                                     (b)                                                  (c) 

Figure 1. (a) 4-Rotational symmetry (b) Axial symmetry (c) Central symmetry 

 

www.SID.ir



Arc
hi

ve
 o

f S
ID

SYMMETRY DETECTION FOR STRUCTURAL GRAPH MODELS 

 

661

2. PRELIMINARIES 
 

A graph is considered as a pair G=(V,c) where V is a finite set of nodes and Ν→2:Vc  is 
an arbitrary coloring of node-pairs. For simplicity, we assume { }1,...,V n= . In an 
undirected graph, we have ( , ) ( , )c i j c j i=  for all ,i j V∈ . The adjacency matrix A of a 
graph ( , )G V c=  is an n n× -matrix with entry ( , )c i j  at position ( , )i j . 

A permutation of V is a bijective map V V→ . The set of permutations forms a group 
under composition, the symmetric group VS ; its natural element is the identity idv. We may 
denote VS  by nS , since the symmetric groups of sets of the same cardinality are isomorphic. 

An automorphism of G is a permutation π  of V with ( , ) ( ( ), ( ))c i j c i jπ π=  for all 
,i j V∈ . The set of automorphisms of G forms a group with respect to composition, denoted 

by Aut(G). The order of an automorphism π  is }|Nmin{)ord( idvk k =∈= ππ , where idv 
denotes the identity permutation of V. For a node i V∈ , the set N}|)({)(orb ∈= kii kππ  is 
the -orbitπ  of i. Finally, the fixed nodes are those in })(|min{)Fix( iiVi =∈= ππ . 

A reflection (axial symmetry) of G is an autimorphism )GAut(∈π  with idv=2π , i.e., 
an automorphism of order 1 or 2 . For {1,..., }k n∈ , a k-rotation of G is an automorphism 

Aut( )Gπ ∈  such that },1{|)(orb| ki ∈π  for all i V∈  and 1|)Fix(| ≤π  if 1k ≠ , i.e., an 
automorphism which cycles are all of the same length (greater than two) and such that the 
fixed points set is either empty or reduce to a single vertex. Each 2-rotation is a reflection, 
but not vice versa, and that the identity idv is both a reflection and a 1-rotation. 

A central symmetry is an involved automorphism Aut( )Gπ ∈ , such that the fixed points 
set of π  is either included in E or reduced to a single vertex. 

Now assume that there exist an injective placement 2: ℜ→Vpl  and an isomorphism 
22: ℜ→ℜφ  of the Euclidian plane with the following properties: For all v V∈  there 

exists a node 'v V∈ with )'())(( vplvpl =φ , and for ,v w V∈  we have )','(),( wvcwvc = ; 
for straight line drawings of simple graphs, this means nodes are mapped to nodes and edges 
are mapped to edges. Then pl and φ  induce an automorphism π  of G by setting ')( vv =π . 
Any automorphism induced like this is called a geometric automorphism or a symmetry of G. 
An automorphism of a graph G is a symmetry if and only if it is a rotation or a reflection [16]. 

 
 

3. CANONICAL FORMS OF MATRICES AND SYMMETRY IN 
STRUCTURAL MECHANICS 

 
In this section, an N×N symmetric matrix M is considered with all entries being real. For 
three canonical forms, the eigenvalues of [M] are obtained using the properties of its 
submatrices [20]. 
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3.1 Canonical Form I 
In this case, matrix M has the following pattern with N=2n : 

 
n×n n×n

n×n n×n N×N

[A] [0]
[M]=

[0] [A]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Considering the set of eigenvalues of the submatrix A as {λA}, the set of eigenvalues of 

[M] can be obtained as 
{λM}={λA} {λA}∪  

 
Where ∪  is the sign for the collection of the eigenvalues of the submatrices. 
 

3.2 Canonical Form II 
For this case, matrix [M] can be decomposed into the following form: 

 
n×n n×n

n×n n×n N×N

[A] [B]
[M]=

[B] [A]
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
The eigenvalues of [M] can be calculated as 
 

{λM}={λC} {λD}∪  
where 

 
C={A]+[B] and [D]=[A]−[B]  

 
3.3 Canonical Form III 
This form has a N×N  Form II submatrix augmented by k rows and columns, as shown in 
the following: 

 
1

1

1

1

. . .
[ ] [ ] . . .

. . .
[ ] [ ] . . .

[M]= ( 1,1) . ( 1, ) ( 1, 1) . . . ( , )
. . . . . .
. . . . . . . .
. . . . . .

( 1,1) . ( 1, ) ( 1, 1) . . . ( , )

k

k

k

k

L L
A B L L

L L
B A L L

C N C N N C N N C N k N k

Z N Z N N Z N N Z N k N k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + + + +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + + + +⎣ ⎦
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Where [M] is a (N+k)×(N+k) matrix, with an N×N  submatrix with the pattern of the 
Form II, and k augmented columns and rows. The entries of the augmented columns are the 
same in each column, and all the entries of [M] are real numbers. C(i,j) and Z(i,j) are 
arbitrary real numbers. The set of eigenvalues for [M] is obtained as 

 
{λM}={λD} {λE}∪  

 
3.4 Symmetry of the Forms I, II, III 
Consider a symmetric graph G with an axis of symmetry. In the symmetry of Form I, the 
axis of symmetry does not pass through members and nodes. In this case, G is a disjoint 
graph and its components 1S  and 2S  are isomorphic subgraphs. In the symmetry of Form II, 
the axis of symmetry passes through members, and the graph G has an even number of 
nodes. For some graphs the axis of symmetry may pass through an even number of nodes, 
then one may still consider the graph as Form II by altering the axis of symmetry, while 
maintaining the topological symmetry of the model.  

 

 

Figure 2. a) The axis of symmetry b) Altering the axis of symmetry  

 
In the symmetry of Form III, the axis of symmetry passes through nodes. A combination 

of the Form II and III may also be identified in a model. 
 

3.5 Factorization of symmetric graphs 
Once the three types of symmetry are identified, the isomorphic subgraphs 1S  and 2S  are 
modified such that the union of eigenvalues of the Laplacian matrices of the two modified 
subgraphs becomes the same as the eigenvalues of the entire graph G. The process of the 
modification made to the subgraphs is called healing of the subgraphs, and the entire process 
may be considered as the factorization of a graph. For more detail about healing and 
factorization refer to [20]. 
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4. EUCLIDIAN DISTANCES 
 

Let X be a set of n nodes and d a distance among them. The distance d on a set X is 
Euclidian, if there exists an embedding of X in 1−ℜn  such that the restriction of the usual 
distance in 1−ℜn coincides with the given distance d on X.  

Given a distance d on a set X, it is classical to define the corresponding inner-product 
matrix W defined by 

 
2 2 2

,
1 ( ( , )) ( , ) ( , ))
2i j i jW d v d v d= ⋅ + ⋅ − ⋅ ⋅  

where  
2 2

1

1( , ) ( , )n
i i jj

d v d v v
n =

⋅ = ∑  

2 2
1

1( , ) ( , )n
ii

d d v
n =

⋅ ⋅ = ⋅∑  

 
It is known that the distance d is Euclidian if and only if the matrix W is diagonalizable. 

In such a case, W defines a positive semi-definite bilinear form, and all its eigenvalues are 
positive or null. The maximum of non-null eigenvalues is 1n −  (bound corresponding to the 
maximal dimension of the vector space generated by n points). 

 
4.1 Defining a distance in a graph 
As one of the first natural distances one can think of defining a distance between two 
vertices of a graph. This distance can be considered as the length of the shortest paths 
joining these two vertices. However, for the complete graph on 4 vertices if one edge deleted 
then the shortest paths do not define a Euclidian distance. 

Though many Euclidian distances on abstract sets are defined previously, however, the 
Czekanovski-Dice distance seems to be the most appropriate to reveal the structure of a 
graph [24]. With respect to this distance, two vertices are close to each other if they have 
many common vertices: 

For each pair ( , )i jv v  of vertices, we denote iN  the set of the neighbors of iv : 
 

{ , ( , ) } { }i k i j iN v V v v E v= ∈ ∈ ∪  
 
Then, the distance d is defined by: 
 

2 | |
( , )

| | | |
i j

i j
i j

N N
d v v

N N
Δ

=
+

 

 
Where Δ  denotes the symmetrical set-difference. 
It should be noted that the distances are obviously preserved by any automorphism of the 
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graph: Remark that a pair of non-djacent vertices having no common neighbor are at 
distance 1, and two adjacent vertices having the same neighbors are at distance 0. Therefore, 
there are non-isomorphic graphs having the same distances between their vertices. 

 
 

5. EIGENSOLUTION 
 

In this paper, we need only the last eigenvalue and eigenvector. Therefore the Arnoldi 
method has been used for eigensolution [21]. The Arnoldi method is an efficient procedure 
for approximating a subset of the eigensystem of a large sparse n n×  matrix N. The Arnoldi 
method is a generalization of the Lancczos process and reduces to that method when the 
matrix N is symmetric [7]. After z steps the algorithm produces an upper Hessenberg matrix 

zH  of order z.  The eigenvalues of this small matrix zH  are used to approximate a subset of 
the eigenvalues of the large matrix N. The matrix zH  is an orthogonal projection of N onto a 
particular Krylov subspace and the eigenvalues of zH  are usually called Ritz values or Ritz 
approximations. For more detail one can refer to [21,22]. 

 
 

6. AUTOMORPHISM 
 

Let ( , )G V c=  be a graph and assume {1,..., }V n= , and let π  be a permutation of V. Then 
a real n×n-matrix ( )M π  is defined by 

 
1 if ( )

( )
0 otherwiseij

i j
M

π
π

=⎧
= ⎨
⎩

 

 
yielding a monomorphism (injective homomorphism) M of the group Sn of permutations of V 
into the general linear group )(ℜnGL . The matrices in M (Sn) are called permutation matrices 
and can be characterized as the set of n×n-matrices ( )ijX x=  with {0,1}ijx ∈ , where a value 

of 1 for the mapping variables ijx  is interpreted as the mapping node i to node j.  

The condition of nSπ ∈  being an automorphism of G should be translated into a 
condition on the corresponding matrix ( )M π . For this purpose, consider the adjacency 
matrix A of G. The following lemma is used, which is proved in [16]: 

Lemma 6.1. The permutation π  of V is an automorphism of G if and only if the matrix 
( )M π  commutes with A, i.e., if ( ) ( )M A AMπ π= . 
 

6.1 Rotation 
Let π  be an automorphism of G given by variables ijx , i.e., let ( ) ( )ijM xπ = . The first 

condition for π  to be a k-rotation is | orb ( ) | {1, }i kπ ∈  for all i V∈ and any k-rotation has to 
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meet the additional condition | Fix( ) | 1π ≤ . 
Let 1 ... rV P P= ⊕ ⊕  be the partitioning of V according to c (fine-labeling). If 3k ≥ , we 

know that at most one node may be fixed. Hence the size of every single part must be 
divisible by k, except for at most one part lP  and size one greater than a number divisible by 
k.  If k does not meet this condition, we can omit the corresponding k as a choice. Observe 
that these feasibility criteria include the condition that G can only admit a k-rotation if k 
either divides n or n-1, so that the number of choices for k is bounded by number of divisors 
of either n or n-1. Let ( )d n be the number of divisors of n. By Hardy and Wright [23], we 
know that for each 0ε >  there is an integer 0n  such that 

 
0

lnln/ln)1(  allfor 2)( nnnd nn ≥< +ε  
 
For 1log2 −= eε , we get )()1()( lnln/1 nnOndnd ∈−+ . By Dirichlet, the average 

number of divisors of all numbers from one to n is asymptotic to ln n up to a small constant. 
Thus we have to perform algorithm A O(ln n) times on average. 

In summery, Algorithm A finds an optimal rotational symmetry of G. 
 

Algorithm A : 
    For   k=n,…,3  do   
          Let   feasibleorder = 1 
          Let   onefixed = 0 
          For    l=1,…,r  do 
                If  k  does not divide | |lP   then 
                      If  k  does not divide (| | 1)lP −   then 
                            Let  feasibleorder = 0    
                      Else 
                            If  onefixed = 1  then 
                                  Let  feasibleorder = 0      
                            Else   
                                  Let  onefixed = 1 
 
          If  feasibleorder = 1 then 
                 Graph G can has a k-rotation 
                 If   rotation detected then 
                       Stop 
 
G does not have any rotational symmetry 

 
6.2 Reflection (axial symmetry) 
Reflections of G are much harder to find than k-rotations for 3k ≥ , because we have to find 
fixed points which locate on axis of symmetry. In this type of symmetry, we have to ensure 
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that the automorphism π  to be represented satisfies 2 idvπ = , i.e.,  
 

ij jix x=  
 

for all nodes ,i j V∈ . In other words, we only need a single mapping variable for each pair 
of nodes. Also the number of fixed nodes is not bounded. 

 
6.3 Centralization (central symmetry) 
This type of symmetry is the same as axial symmetry, with a difference that the 
permutations in axial symmetry and central symmetry are different. Figure 3 shows 4 nodes 
of a graph which are specified as an orbit. 

 

 

Figure 3. (a) Axial symmetry (b) Central symmetry 

 
 

7. A SIMPLIFIED ALGORITHM FOR SYMMETRY DETECTION IN 
STRUCTURAL GRAPHS 

 
The first step of the simplified algorithm is to compute the Czekanovski-Dice distance 
among the vertices of the graph and corresponding inner-product W. As the Czekanovski-
Dice distance is Euclidian W is diagonalizable and its eiganvalues are all positive or null (for 
more detail refer to [19]). But for our purpose, just the last eigenvalue, which is always 
positive, and the corresponding eigenvector of matrix W are needed. For computing the last 
eigenvalue the Arnoldi method, which has been briefly introduced in Section 4, is applied. 
The dominant eigenvector of matrix W provide a suitable coloring for nodes of the graph G 
which easily can be used for finding favorite automorphism. In the dominant eigenvector, 
nodes with the same position have equal values. In order to illustrate this point, consider a 
graph with 23 nodes as shown in Figure 4. 
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Figure 4. Coloring nodes according to the dominant eigenvector 

 
The dominant eigenvector of matrix W corresponding to graph G is 
Last eigenvalue = 8.7323  
And the corresponding eigenvector is:  
 

T

[0.2147,0.2125,0.2066,0.1975,0.2066,0.2125,0.2147,0.2043,0.2132,0.2127,0.2065,0.2116,
0.2098,0.2098,0.2116,0.2065,0.2127,0.2132,0.2043,0.203,0.2036,0.2036,0.203]

 
 
It is clear that nodes with the same position in graph G, have equal values in dominant 

eigenvector of matrix W. 
According to the above described coloring, when we encounter orbits with orders greater 

than 2, there will be a problem of distinguishing nodes with the same color. This problem, 
which is described below, can be resolved using a proper initial ordering. Especially since 
we usually deal with regular graphs in structural analysis, a simple ordering can be utilized. 
For example, in this article clockwise ordering has been used.  

In the next step, according to this coloring and initial ordering, different orbits, 1,..., rP P , 
can be specified. Now the partitioning of V according to this coloring is available. As an 
example, for the graph of Figure 2 the partitioning is 

 
1 2 3 4 5 6 7 8

9 10 11 12

(1,7) , (2,6) , (3,5) , (4) , (8,19) , (9,18) , (10,17) , (11,16) ,
(12,15) , (13,14) , (20,23) , (21,22)

P P P P P P P P
P P P P
= = = = = = = =
= = = =

 
Now by these orbits, optimal symmetries can be detected. For each graph, first we try to 
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find k-rotational symmetry and if no rotational symmetry is found, we try to find central 
symmetry or axial symmetry. 

 
7.1 Rotational symmetry 
According to partitions, 1,..., rP P , which were specified in the previous step, the algorithm-A 
is used to find maximum order k-rotational symmetry. In summery, Algorithm B finds a 
maximum order k-rotational symmetry of G. 

 
  Algorithm B 
  For k=n,…,3 do 
        If   k divide n  or   k divide n-1  then 
             Check  Algorithm A   
  If feasibleorder = 1 
        If  ( )M π  commutes with  A      
             G has k-rotational symmetry 
        Else 
             Use algorithm C to find central symmetry  
  Else (feasibleorder = 0) 
        Use algorithm D to find axial symmetry  
 

7.2 Central symmetry  
In order to find the symmetry in this method, in two cases we use central symmetry:  

1) If in the rotational algorithm feasibleorder equals to 1 and ( )M π  does not 
commute with the A matrix. 

2) If neither rotational nor axial symmetry is found in the graph. 
It should be noted that in using central symmetry algorithm, correspondences are 

considered as explained in Section 6.3. In this type of symmetry, there is at most one fixed 
node. 

 
Algorithm C finds central symmetry of G. 
 

  Algorithm C 
  Find all correspondences in V  according to the pattern which was introduced in Section 6.3 
  According to these correspondences ( )M π  is formed. 
  If  ( )M π  commutes with  A 
          G has central symmetry 
 

7.3 Axial symmetry (reflection) 
This type of symmetry is the most complicated problem in symmetry detection because the 
set of fixed nodes is not bounded and different cases can exist in a graph as it will be 
specified in this section. 
1) The order of orbits in the graph are 1 or 2: In this case the axis of symmetry just passes 

through orbits of the 1st order or it also passes through some of orbits of the 2nd order.  
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If the axis passes through orbits of the 2nd order, the method explained in Section 3.3 is 
used (conservation of symmetrical properties by altering the axis of symmetry). 

2) The order of the orbits in the graph are of 1st, 2nd, or a multiplier of 2nd order:  When all 
the orbits of larger than 1st order, are also larger than 2nd order, then the graph will 
exhibit rotational or central symmetry. But when there is only one orbit of 2nd order, the 
graph will not exhibit either of the mentioned symmetries.   

3) The order of the orbits in the graph are of 1st, 2nd, 3rd  and …: In this case all orbits with 
odd order, contain one node on the symmetry axis and other points of these orbits will 
be on either side of the symmetry axis.  This is particularly complex case and can cause 
a number of various cases, i.e., when just one node locates on the symmetry axis or odd 
number of nudes locate on symmetry axis. In most common case, in order to find the 
fixed node of each orbit with odd order (and greater than 2): 

a. Orbits of odd order (and greater than 2) are taken out of the graph. 
b. The ith orbit with odd order is added. 
c. A node (on the symmetry axis) whose elimination will result in a symmetrical 

graph is found. 
d. The next odd orbit with odd order (greater than 2) is dealt as above. 
e. Eventually all fixed nodes of the odd orbits of greater than 2 are 

distinguished.  
According to the above cases, the axial symmetry can be determined using the below 

algorithm. 
  Algorithm D 
       D1. Graph G contains orbits with 1 or 2 nodes 
              Find all correspondences in V and form ( )M π  matrix 
              Check whether ( )M π  commutes with  A or not. 
       D2. Graph G contains orbits with 1,2 or even number of nodes 
              Find correspondences in orbits with 2 nodes 
              Find correspondences in orbits with even number of nodes (greater than 2) 
              (According to the pattern which was introduced in Section 6.3) 
              Form ( )M π  matrix and check whether ( )M π  commutes with A matrix or not. 
       D3. Graph G contains orbits with 1,2,3,… nodes 
              No = number of orbits with odd order (greater than 2) in graph G 
              Remove all orbits with odd order (greater than 2) from graph G and consider as 
              graph H 
              For k = 1,…,No do 
                      Lo= Order kth odd orbit 
                      Add kth orbit with odd order to graph H 
                      For l = 1,…,Lo do 
                             Remove lth node of kth orbit with odd order 
                             Use Algorithm D2. and check whether graph H is symmetric  
                              If graph H is symmetric then 
                                      Consider lth node of kth orbit with odd order as a fixed node 
                                       break 
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8. EXAMPLES 
 

In this section seven examples having different symmetries are investigated. Results are 
obtained by a Pentium4 1.6 GHz. 

Example 1: A graph with 26 nodes is considered as shown in Figure 5.  
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Figure 5. Graph G of Example 1 

 
Results: 
 

1 2 3 4

5 6

(1,3,5,7,9) , (2,4,6,8,10) , (11,13,15,17,19) , (12,14,16,18,20) ,
(21,22,23,24,25) , (26)

Orbit Orbit Orbit Orbit
Orbit Orbit

= = = =

= =  
 
Graph G has 5- rotational symmetry with one fixed node, according to the following 

symmetry permutation: 
 

(1,3,5,7,9)(2,4,6,8,10)(11,13,15,17,19)(12,14,16,18,20)(21,22,23,24,25)(26)Permutation =  
 
Computational time = 0.19 (sec) 
 
Example 2: A graph with 41 nodes is considered as shown in Figure 6 
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Figure 6. Graph G of Example 2 
 
Results: 
Graph G has 8- rotational symmetry with one fixed node, according to the following 

symmetry permutation: 
 

(17,18, 20, 21,23, 24,26,27, 29,30,32,33,35,36,38,39) (19,22,25, 28,31,34,37, 40)
(41)(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
Permutation =  

 
Computational time = 0.49 (sec) 
Example 3: A graph with 12 nodes is considered as shown in Figure 7. 
Results: 
 

1 2 3 4 5(1,3) , (2,4) , (5,6,8,9) , (7,10) , (11,12)Orbit Orbit Orbit Orbit Orbit= = = = =  
 

Graph G  has a central symmetry, according to the following symmetry permutation: 
 

(1,3)(2,4)(6,9)(5,8) (7,10) (11,12)Permutation =  
 
Computational time = 0.05 (sec) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. Kaveh, K. Laknegadi and M. Zahedi 674 

 

Figure 7. Graph G of Example 3 

 
Example 4: A graph with 12 nodes is considered as shown in Figure 8. 
Results: 
 

1 2 3(1,2,3,4) , (7,8,11,12) , (5,6,9,10)Orbit Orbit Orbit= = =  
 
Graph G has a central symmetry, according to the following symmetry permutation: 
 

(1,3)(2,4)(5,9)(6,10)(7,11)(8,12)Permutation =  
 
Computational time = 0.05 (sec) 
 

 

Figure 8. Graph G of Example 4 

www.SID.ir



Arc
hi

ve
 o

f S
ID

SYMMETRY DETECTION FOR STRUCTURAL GRAPH MODELS 

 

675

Example 5: A graph with 29 nodes is considered as shown in Figure 9. 
Results: 
Graph G has an axial symmetry, according to the following symmetry permutation: 

(1,3)(4,19)(5,18)(2)(6,17)(7,16)(8,15)(9,14)(10,13)(22,29)(20)(23,28)(21)...
(22,29)(25,26)(24,27)
Permutation =

 
Computational time = 0.28 (sec) 
 

 

Figure 9. Graph G of Example 5 

 
Example 6: A graph with 17 nodes is considered as shown in Figure 10. 
Results: 
Graph G has axial symmetry with one node on the axis of symmetry, according to the 

following symmetry permutation: 
(1,10)(2,9)(3,8)(4,7)(5,6)(11)(12,17)(13,16)(14,15)Permutation =  

Computation time = 0.08 (sec) 

 

Figure 10. Graph G of Example 6 
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Example 7: A graph with 20 nodes is considered as shown in Figure 11. 
 
Results:

1 2 3 4 5 6(9,14) , (3, 4) , (1, 2,5,6,7) , (8,10,13,15) , (11,12) , (16)Orbit Orbit Orbit Orbit Orbit Orbit= = = = = =
 

Graph G has axial symmetry with one orbit of odd order (greater than 2), according to 
the following symmetry permutation: 

 
(1,6)(2,5)(3,4)(7)(8,15)(9,14)(10,13)(11,12)(16)Permutation =  

Computational time = 0.12 (sec) 

 

Figure 11. Graph G of Example 7 

 
 

9. CONCLUDING REMARKS 
 

The problem of detecting symmetries in structural graph models in an automatic manner is 
an important issue, since symmetry has been utilized as a common tool for decreasing the 
computational time and storage in static, dynamic and stability analyses. Using the present 
method, symmetries of a graph can be detected, however, for a proper drawing additional 
considerations are needed. The latter is not an important restriction for our problem since in 
structural analysis the graph models are often neither complicated nor irregular. A proper 
initial nodal ordering of graphs plays an important role which can be performed by graph 
theoretical algorithms similar to those of [20].  
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