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Abstract 
 

In the recent years heuristic algorithms such as genetic algorithms, ant colony algorithms 
and simulated annealing have found many applications in optimization problems. The 
essence of these algorithms lies in the fact that they do not depend on the specific search 
space to which they are applied and consequently this extends their generality. In this paper, 
genetic and ant colony algorithms are used to find the collapse load factor of two-
dimensional frames and their efficiency is compared to a direct approach. It is shown that 
when these algorithms are tuned finely and their parameters are adjusted carefully, very 
good results can be obtained. Four examples are presented to illustrate the efficiency of 
algorithms. 
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1. Introduction 
 

The minimum and maximum principles are the basis of nearly all the analytical methods 
used for plastic analysis and design of frames, Baker et al. [1]. The most frequently used 
method based on the minimum principle is the combination of elementary mechanisms, 
developed by Neal and Symonds [2-4]. 

The problem of plastic analysis and design of frames with rigid joints has been solved in 
the form of a linear programming by Charnes and Greenberg [5], as early as 1951. Further 
progress in this field is attributed to Heyman [6], Horne [7], Baker and Heyman [8], 
Jennings [9], Watwood [10], Gorman [11], Theirauf [12], and Kaveh [13] among others. 
Considerable progress has been made in past decades, a complete reference of which can be 
found in Munro [14] and Livesley [15]. Plastic analysis and design of frames using 
combination of elementary mechanisms has some limitations, which prevent its use as a 
common tool for analysis. Among such limitations, one may refer to the extensive numbers 
of mechanisms, which should be generated. The tedious work of combining these 
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mechanisms to find the true mechanism is another drawback associated with this method. 
There is also the possibility that the assumed collapse mechanism for a given frame and the 
corresponding loading is not the correct one and hence the computed collapse load factor 
will then be only an upper bound to the actual collapse load factor. Considering these 
problems it is important to accomplish an algorithm, which has the capability to of finding 
the collapse load factor and the corresponding mechanism as fast and accurate as possible. 

 Therefore two aspects of such an algorithm should be fastness and accuracy. Here we 
intend to provide some sort of compromise between these two issues. This is where the role 
of heuristic algorithms becomes more apparent.  

 In the recent years, heuristic algorithms such as genetic algorithm, ant colony and 
simulated annealing are extensively applied to various optimization problems. The essence 
of these algorithms lies in the fact that they do not depend on the specific search space to 
which they are applied and consequently this extends their generality. In the literature direct 
methods have been used to find collapse load factor of two dimensional frames (see for 
example Watwood [10] and Deeks [16]). For direct methods, elementary mechanisms are 
iteratively combined until the final mechanism with the least collapse load factor is obtained. 
It is however observed that when the configuration of a typical frame is rather complex 
direct methods fail to obtain the correct answer. This failure is mainly attributable to the fact 
that the combination of two elementary mechanisms might not decrease the load factor in 
preliminary stages and many combinations may be required so that active hinges are 
provided at proper locations. Developing an algorithm that takes this effect into account and 
finds the collapse load factor in a polynomial time is hard if not possible. The complexity 
that arises in developing a full proof direct algorithm motivates one to investigate the 
behavior of heuristic algorithms when they are applied to the problem of finding collapse 
load factor of a typical frame. Previous work in developing such algorithms can be found in 
the work of Kaveh and Khanlari [17], and Kaveh and Jahanshahi [18]. 

In this work, genetic and ant colony algorithms are used to find the collapse load factor 
of two-dimensional frames and their efficiency is compared with a direct approach. It is 
observed that if these algorithms are tuned finely and their parameters adjusted carefully, 
good results can be obtained. Four examples are presented to illustrate the efficiency of 
algorithms. 

 
 

2. Generation of Elementary Mechanisms 
 

In order to find a set of independent mechanisms, the method of Watwood [11] can be used. 
However, in this method joint mechanisms are also computed which is unnecessary because 
joint mechanisms can automatically be assigned to each joint. Axial deformations can also 
be neglected since mechanisms are the results of excessive deformations in rotational 
degrees of freedom leading to plastic hinges. Considering these assumptions, one comes up 
with a method similar to that of Pellegrino and Calladine [19] and Deeks [16]. 

In the present method, independent mechanisms are computed for an assembly of pin-
jointed rigid bars. By rigid, it is specifically meant that no axial deformation exists, and bars 
can only have relative rotations. Consider a typical member as shown in Figure 1.  
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Figure 1. Configuration of a typical member 

 
Specifying the elongation of each member in terms of its joint displacements, in the 

global coordinate system, leads to the following relationship. 
 

 α−+α−= sin)dd(cos)dd(e yiyjxixj  (1) 
 
Writing such expressions for all the members, the following equation is derived. 
 

 Cde =  (2) 
 
In a valid mechanism, members do not elongate. Therefore, in order to find the basic 

mechanisms, one should solve an equation for which elongation vector is zero, i.e. the 
following equation should be solved: 

 
 0Cd =  (3) 

 
Since the assembly is not a truss and since it is not stable with all the joints being pinned, 

the number of columns of the coefficient matrix, C, exceeds the number of rows and the 
difference is the number of independent mechanisms (the dimension of null space of C). 
Performing Gaussian elimination on Eq. (3) results in the following form: 
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In other words, the columns corresponding to independent displacements di are reduced 

to an identity matrix I, the order of which shows the dimension of the row space or the 
column space of C. Rearranging the terms in Eq. (4), the vector di can be expressed in terms 
of dd as 

 
 ddi dCd −=  (5) 
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Choosing dependent vectors for dd with dimension as the number of independent 

mechanisms, and computing the independent vector di using Eq. (5), leads to the solution of 
Eq. (3). This results in independent mechanisms of the frame under consideration. As a 
simple computational approach, the dependent vectors can be constructed each time by 
setting one of the dependent displacements to unity and the remaining displacements to zero. 
The details of such an approach can be found in [16]. 

Though the mechanisms obtained in this way can be used in the linear programming 
methods, however, these mechanisms are not suitable for the method of combining 
mechanisms. They contain more active hinges than it is necessary for a logical collapse 
mechanism. An acceptable collapse mechanism can be obtained by just removing one active 
hinge. The mechanisms obtained using the above described method may contain all the 
active hinges of another mechanism as well. 

Following the method of Deeks [16], independent mechanisms can be purified by 
removing the excess hinges in order to obtain a set of potential collapse mechanisms. This is 
achieved by checking each independent mechanism for containing a complete set of active 
hinges of another independent mechanism. For such case purification is performed by 
removing the contained mechanism. This process is repeated over and over until no 
modifications can be made. 

 
 

3. Determination of Collapse Load Factor 
 

Collapse load factor is obtained using the virtual work theorem. Rotations and displacements 
are considered to be virtual and internal and external works are computed based on this 
assumption. The collapse load factor for a specific mechanism is then the ratio of the 
internal virtual work to the external virtual work, i.e. 

 

 
 work virtualexternal
 work virtualinternal

c =λ  (6) 

 
The external virtual work is computed by adding up the products of all joint forces P, and 

the corresponding joint displacements d in the direction of these forces. 
 

 External virtual work = Ptd (7) 
 
The internal virtual work is the sum of all rotations at active hinges multiplied by the 

plastic moments of members in which active hinges are present. However, since the plastic 
moments always resist the rotations at hinges, the internal work is always positive and 
therefore absolute values of rotations should always be used. 

 
 Internal virtual work = Mt|r| (8) 

 
Since the joint mechanisms have been neglected during the formation of independent 

www.SID.ir



Arc
hi

ve
 o

f S
ID

PLASTIC ANALYSIS OF FRAMES USING GENETIC AND ANT... 

 

233

mechanisms, it is necessary to find the location of hinges in the members. These locations 
are determined to minimize the internal virtual work. 

If a joint is restrained against rotation, hinges are formed in all the members connected to that 
joint. However, if the joint is not restrained against rotation, hinges are formed in n−1 members 
among n members connected to that joint. In this case, n possible locations for hinges exist and 
it is necessary to find a location which minimizes the internal virtual work. When the number of 
hinges formed is less than the maximum number of hinges, the rotation in one or more of the 
assumed hinges is zero and does not contribute to the virtual work, Deeks [16]. 

 
 

4. Combination of Elementary Mechanisms 
 

After generating the elementary mechanisms, it is necessary to combine suitable 
mechanisms to obtain a logical collapse mechanism with the lowest load factor. An 
experienced analyzer would choose the correct mechanisms and derive the true load factor 
in a short time. However, this intuition does not work in a computer oriented algorithm, 
since it is desired to keep the human interference to a minimum. Hence, it is necessary to 
consider all possible combinations of elementary mechanisms. Some mechanisms may 
increase the load factor when combined by the current mechanism but they may decrease it 
after several steps has been accomplished. Therefore, when a mechanism does not reduce 
the load factor, this does not necessarily mean that it should be excluded from the process of 
combination. The criterion for a mechanism to be the correct collapse mechanism is that 
there is no possibility for combining it with other elementary mechanisms without 
increasing the load factor. 

Following the method of Neal and Symonds [2], an algorithm can be designed to check 
every possible combination by starting with an elementary mechanism and combining that 
mechanism with other elementary mechanisms in order to reduce the load factor. When no 
more reduction can be achieved by combining other elementary mechanisms with the 
current one, the same process is repeated for the next elementary mechanism. When all 
elementary mechanisms are exhausted, it is certain that no possibility is left and the correct 
collapse load factor cannot further be reduced. 

Some authors use recursive functions to combine the mechanisms. Recursion has the 
draw back that it might shut down by blowing up the system stack if it does not have enough 
space to accommodate the address of calling recursive function. This can be remedied by 
using an endless loop instead of recursion and a good condition for jumping out of the loop 
when all possibilities are checked. 

 
 

5. Genetic Algorithms 
 

When the number of bays and stories of a typical frame increase, the number of mechanisms 
to be combined also raises. Then finding the correct collapse mechanism becomes a 
formidable task and requires a great deal of computational time. 

It would be advantageous to find a good approximation to the actual collapse load factor 
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in a short time rather than a correct load factor in a long time. In this section, genetic 
algorithms are presented as an alternative to the method of combination of elementary 
mechanisms discussed in the previous section. 

Genetic algorithms as the name suggests are good simulations of natural reproduction. 
Genes with better fitness have higher probability to survive and mate with other survivors to 
reproduce new generations. Samples that are produced from generation to generation have 
the properties that they inherit good aspects of their parents and eliminate weaker ones. We 
adopt these algorithms in order to choose appropriate elementary mechanisms to be used in 
our combination process. For this purpose, some definitions are necessary which are 
presented in the following. 

Chromosomes are strings of binary bits, the number of which is taken as the number of 
independent mechanisms. A unit value for a bit means that the corresponding mechanism 
takes part in combination, and zero value it does not. 

 
 

          
            Mechanism:  1  2  3  4  5  6  7  8 
           Chromosome:        1  0  1  1  1  0  1  1 

 
In the previous example, mechanisms 1, 3, 4, 5, 7 and 8 take part in combination process 

and mechanisms 2 and 6 do not. 
Crossover is an operation in which two strings are crossed and new strings are generated. 

A crossing site should be selected with uniform probability Pc between the first bit and the 
last bit of the strings to which crossover operation is to be applied. The bits extending from 
the crossing site to the end of the string are exchanged. The following example shows how a 
crossover between two strings is performed. 

 
    A1:       0    1   1    0   1 

 
           A2:   1    1   0    1   0 

 

 
Crossing site 

 
A crossing site has been selected between bits 3 and 4. After crossover, the following 

strings are produced. 
 

 A’1:  0       1         1      1        0 
 

  A’2:  1   1   0      0    1 
 

Mutation is the random change of a randomly selected bit from 1 to 0 or vice versa. 
In order to begin the search for the lowest load factor, an initial generation is produced 

randomly and Genetic operations are performed on it. Fittest individuals are copied to a new 
generation and the same process is repeated over and over until a fairly good approximation 
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is obtained. The measure for fitness is the result of evaluation of a specific function called 
fitness function defined as follows.  

 
 ii Cf λ−=  (9) 

 
In which fi, λi and C are the fitness function for chromosome i, the corresponding load 

factor, and the maximum load factor in the current generation, respectively. Thus the problem 
of minimizing the load factor is transformed into the maximization of the fitness function. 

In our experiments, the population size and the number of generations have been set to 
100 and 50, respectively. 

 
 

6. Ant Colony Algorithms 
 

Ant Colony algorithms are another type of optimization algorithms that are used to find the 
final failure mechanism of a typical frame. The building blocks of these algorithms are 
cooperative agents called “ants” [20]. These agents encompass simple capabilities, which 
make them resemble the behavior of real ants. It is known that ants communicate 
information through the pheromone trails. Ants lay pheromone on the ground and in this 
way they mark the path, which leads to the source of food. Although individual ants may 
move in quite an arbitrary direction, but they can detect a previously laid trail of pheromone 
and when such a trail is found, there exists a great probability for them to follow it. The final 
result is that more ants tend to pass through the path and the path becomes more important 
as the amount pheromone being laid increases. 

As an illustrative example, consider the sketch shown in Figure 2. Assume that there are 
two paths along which ants can move from the nest A to the food source F, and vise versa 
(paths ABCEF and ABDEF). Also assume that there are 30 ants deciding to move from A to 
F. At first there exists equal probability for ants to select the either path, so at point B 
roughly 15 ants select BCE and the other 15 select BDE. Since the path BCE is shorter than 
BDE, ants selecting this path reach E sooner than the others. The result is that the ant 
returning back from F to A finds more pheromone trail laid on BCE either by half of the ants 
that selected BCE by chance and by those that have already got back to A via BCE. 
Consequently the number of ants selecting BCE increases as the amount of pheromone laid 
on this path increases with time. 
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Figure 2. Paths from nest A to food source F 

To get more insight into the problem suppose that the distances from B to C and C to E 
are equal to 0.5 and those of B to D and D to E are equal to 1. We are concerned to know 
what happens at discrete time steps t=1, 2… Assume that at t=0, 30 ants come to B from A 
and 30 comes to E from F. Also assume that each ant walks at speed of 1 per time unit and 
lays down a pheromone trail of intensity 1 that evaporates completely after each time step.  

At t=0 there is no trail on the paths from B to E. The probability of choosing either of the 
two paths is equal and thus moderately 15 ants move towards C and 15 towards D. 

At t=1 the new 30 ants that come from A to B find a trail intensity of 15 on the path 
leading to D laid by the 15 ants that went from B to D and an intensity of 30 on the path 
leading to C laid by the other 15 ants that went from B to C and 15 ants that came from E to 
B via C. The probability of choosing the path from B to C is therefore doubled according to 
the amount of pheromone laid on BCE. This process is continued until all of the ants will 
eventually choose the shortest path. 

The idea is that if an ant is to choose among different paths, those with higher level of 
pheromone intensity are more likely to be chosen. Furthermore, a high level of pheromone 
intensity is equivalent to a shorter path. 

In the literature the ant colony algorithms are usually introduced with the help of 
Traveling Salesman Problem (TSP). Here we also give a brief description of TSP to 
complement the description of the ant colony algorithm. The interested reader is encouraged 
to consult reference [20] for more details. 

Given a set of n towns, the TSP is the problem of finding a closed tour of minimum 
length in which every town is visited exactly once. The distance between towns i and j is 
called dij, which in Euclidean space is the real distance between those towns. The TSP 
problem can be represented as a graph consisting of the set of nodes N representing the n 
towns and the set of edges E representing the paths between towns. 

Let bi(t) (i=1, 2… n) be the number of ants in the town i at the time t, and let m be the 
total number of ants. Each ant is a simple agent with the following capabilities: 

• It chooses the town to move to with a probability that is a function of the town 
distance and the amount of trail present on the connecting edge 

• To force the ant to make legal tours, transition to already visited towns are 
prohibited until a tour is completed 
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• When it completes the tour it lays a predefined amount of trail on visited edges 
Assume that at time t, τij is the intensity of trail on edge (i, j). At this time every ant 

chooses the town to move to at time t+1. Therefore in time interval (t, t+1), which is called 
an iteration of ant colony algorithm, m moves are carried out by the m ants. After 
performing n iterations or one cycle each ant completes a tour. At this point the trail 
intensity is updated according to the following formula: 

 
 τij(t+n) = ρ.τij(t) + ∆τij (10) 

 
Where ρ is a coefficient such that (1-ρ) represents the evaporation of trail between time t and 
t + n, and 

 

 ∑ τ∆=τ∆
=

m

1k

k
ijij  (11) 

 
Where k

ijτ∆ is the quantity of trail substance per unit length laid on edge (i, j) by the kth ant 

between the time t and t + n. The value of k
ijτ∆ is given by 
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k
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Where Q is a constant, and Lk is the length of the tour for kth ant. 

The coefficient ρ must be set to a value smaller than one to avoid unlimited accumulation 
of trail. At time t = 0, a small positive constant c is assigned to τij(0). 

Another important parameter used in ant colony algorithms is visibility which is defined 
as ηij=1/dij and unlike trail intensity is not modified and remains constant through iterations.  

With the help of previous parameters, the probability of transition from town i to town j 
can be defined as:  
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Where the allowedk is the set of towns among which the ant can choose to move to and α 
and β are parameters that control the relative importance of trail versus visibility. Therefore 
the transition probability is a trade off between visibility and trail intensity at a given time.  

Given the basics of ant colony algorithms, it can now be adopted for computing the 
collapse load factor of frames. Assume that a typical frame has n elementary mechanisms. 
Initially a complete graph consisting of n nodes representing the n elementary mechanisms 
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is constructed and 2 ants are placed on each node. Ants have the extra capability of saving 
the mechanism resulting from combination of two elementary or combined mechanisms. 
Ants move from one node to another node based on pseudorandom proportional rule. In 
each movement they save the mechanism resulting from the combination of mechanisms 
that they already saved with the mechanism corresponding to the node to which they are 
bound to. Based on this logic, the meaning of distance is slightly different from that of the 
TSP. Consider the node i on which the ant is placed and a node j to which the ant has chosen 
to move to, and finally the mechanism resulting from the combination of ant’s mechanism 
(the combined mechanism saved by ant up to node i) with mechanism corresponding to node 
j. Denoting the load factors of ant’s mechanism and mechanism corresponding to node j as 
Fi and Fj and that of the combined mechanism Fc, the distance from node i to node j can be 
computed as follows: 

 
dij = Fmax + Fc − Fi                                                  (14) 

 
Where Fmax denotes the maximum load factor of the elementary mechanisms. The idea is 
that when an ant is placed on a typical node i, it chooses to move to another node j. If the 
combination of mechanism already saved by ant with the mechanism corresponding to node 
j results in a smaller load factor, the process of combining takes place and ant moves from 
node i to node j otherwise it is skipped. 

In order to diversify the search space, the best combined mechanism obtained by ants in 
each cycle is added to the set of elementary mechanisms. In other words, the initial complete 
graph consisting of n nodes is expanded to a complete graph consisting of n + 1, n + 2… 
nodes. The size of expansion in this work is chosen to be limited to 2n nodes although other 
alternatives could be considered as well. After the limit is reached, new mechanisms replace 
old inferior ones. However, as the elementary mechanisms comprise the essence of 
combination, a differentiation between the original n nodes (corresponding to the elementary 
mechanisms) and the new n nodes (corresponding to the combined mechanisms) has to be 
made. This means that in subsequent cycles new combined mechanisms replace combined 
mechanisms with higher load factors and elementary mechanisms remain intact. The concept 
of expansion is shown in Figure 3, where initially the graph consists of n nodes 
corresponding to n elementary mechanisms (Figure 3a) and after the first cycle it expands to 
a graph consisting of n + 1 nodes, where n nodes corresponds to elementary mechanisms 
and the new node corresponds to new combined mechanism. Other free nodes in Figure 3b 
imply that the graph ultimately expands to 2n nodes. To emphasize that the original n nodes 
remain intact in replacement process, two parts of the graph corresponding to original nodes 
and new nodes are isolated by drawing ellipses around them. After expansion, new cycles 
start with ants placed on new nodes as well. 
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Figure 3. The process of expansion: (a) Original graph, (b) Expanded graph. 

 
An important issue which has to be taken into account is the initialization and updating 

the pheromone matrix when the graph is expanded or when a new node replaces an old one. 
Initialization is easy to perform since one can initialize the matrix corresponding to 2n nodes 
(instead of n nodes) at the beginning of algorithm. However, replacing nodes produces many 
problems because one should keep the track of those elements of the pheromone matrix that 
are affected during pheromone updating by ants traveling from other nodes to the replaced 
nodes or vice versa. Besides, the process through which the values corresponding to new 
nodes are updated is also questionable. In this work a simple scheme is chosen for updating. 
As the new nodes which replace the old nodes with higher load factors are more favorable, 
and it is desirable to motivate ants to move towards these new nodes, it is sufficient to add to 
the corresponding rows and columns a value equal to the difference between the replacing 
and the replaced load factors. In this way the probability of choosing new nodes in 
subsequent cycles is increased.  

In our experiments, 1.0, 5.0 and 0.5 are used for α, β and ρ, respectively. The number of 
cycles was set to 20. Pheromone matrix is initialized with a small positive value. It is 
observed that lowering the β value to 1.0 while keeping α constant does not affect the final 
result. The reason for this insensitivity to β parameter is that a local search is also working in 
addition to ant colony meta-heuristic. It should be remembered that when a node j was 
selected as a result of pseudorandom proportional rule, transition to that node was only 
allowed when the final load factor was smaller. However, increasing α while keeping β 
constant misleads the algorithm and higher load factors are obtained. As an example, 
choosing 2.0 for α and 1.0 for β leads to a load factor of 0.65041 for Example 4 of the 
following section. 

At the end, the procedure followed by ants to find the minimum collapse load factor is 
described using a high level pseudo code shown in Figure 4. In this figure, it is observed that 
any initialization takes place in InitializeData. Afterwards the main loop starts in which ants 
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are assigned to mechanisms. Initially only elementary mechanisms are present and since the 
number of ants is twice the number of elementary mechanisms, two ants are assigned to each 
mechanism. However when the expansion process is complete each ant is assigned exactly 
to one mechanism. In ConstructSolution ants move from node to node based on a decision 
rule building a partial combined mechanism. Each ant builds a tour in which the number of 
visited nodes is at most equal to the number of existing mechanisms minus one (skipping the 
movement back to initial node). In each iteration, after all ants have built their respective 
tours, the pheromone matrix is updated and the best mechanism is saved. This mechanism 
gets added to elementary mechanisms and thus expands the graph or it replaces the worst 
combined mechanism if the expansion process is complete. Finally ants die and a new 
iteration starts. 

 
procedure FindCollapseMechanism 
 InitializeData 
 while (termination condition not met) do 
  PositionAntsOnIndividualMechanisms 
  ConstructSolution 
  UpdatePheromoneMatrix 
  SaveTheBestCombinedMechanism 
  RemoveAnts 
 end while 
end procedure 
 
procedure InitializeData 
 InitializeAnts 
 InitializePheromoneMatrix 
end procedure 
 
procedure ConstructSolution 
 for i = 1 to number_of_iterations 
  for j = 1 to number_of_mechanisms 
   for k = 1 to (number_of_mechanisms - 1) 
    MoveAntBasedOnDecisionRule(j) 
   end for 
  end for 
 end for 
end procedure 

Figure 4. High level pseudo code describing ACO 

 
 

7. Numerical Results 
 

In this section, four examples are presented to show the performance of algorithms and to 
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provide a measure for comparing the results. These examples vary from simple one-bay frames 
to multi-story, multi-bay frames and it is intended to qualify the algorithms against different 
level of complexity. The computer time are also provided which present the CPU time 
consumed by each of the heuristic algorithms; genetic and ant colony. The computational time 
are computed using a 2.8GHz Pentium 4 computer equipped with a 1GB RAM. 
 
Example 1: A gable frame is considered with the configuration and loading shown in 
Figure 5. The frame has four independent mechanisms and the collapse load factor obtained 
from the direct method, genetic and ant colony algorithms is 0.8182. Failure mechanism for 
all three methods is identical as shown in Figure 6. The CPU time for this example is 
provided in Table 1. 

 

Table 1. CPU time for Example 1 

Method Time (seconds) 

Genetic Algorithm 0.047 

Ant Colony Algorithm 0.047 

 

 

Figure 5. Gable frame, loading and plastic moments 

 

 

Figure 6. Collapse mechanism 

 
Example 2: Second example is a three-story frame as illustrated in Figure 7. The actual 
collapse load factor computed by the direct method is 1.97 (Figure 8) and that by genetic 
and ant colony algorithms is 2 (Figure 9). The mechanism corresponding to load factor 2 is a 
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simple beam mechanism while the mechanism corresponding to the load factor 1.97 affects 
the entire structure. The CPU time for this example is given in Table 2. 

 

 

Figure 7. Two-bay, three-story frame, loading and plastic moments 

 

 

Figure 8. Collapse mechanism obtained from direct method 
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Figure 9. Collapse mechanism obtained from genetic and ant colony algorithms 

 
Table 2. CPU time for Example 2 

Method Time (second) 

Genetic Algorithm 0.219 

Ant Colony Algorithm 1.297 

 
The load factor corresponding to the beam mechanism is very close to the actual load 

factor and therefore makes it hard for the algorithms to find the correct load factor and 
collapse mechanism. 

 
Example 3: A six-story frame is considered with the geometry and loading shown in Figure 
10. The magnitude of the collapse load factor is 1.29 and is the same for all three methods. 
The failure mechanism is illustrated in Figure 11. The CPU time for this example is given in 
Table 3. 
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Figure 10. Two-bay, six-story frame, loading and plastic moments 

 
Table 3. CPU time for Example 3 

Method Time (seconds) 

Genetic Algorithm 0.797 

Ant Colony Algorithm 17.344 
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Figure 11. Collapse mechanism 

 
Example 4: The fourth example is a four-bay, four-story frame that is provided as a more 
general structure to test the efficiency of algorithms. The frame configuration and its loading 
are shown in Figure 12. The actual collapse mechanism obtained by both the direct method 
and the ant colony algorithm and that by the genetic algorithm are shown in Figs. 13 and 14. 
The corresponding load factors are 0.65 and 0.67, respectively. The CPU time for this 
example is given in Table 4. 

 

 

Figure 12. Four-bay, four-story frame, loading and plastic moments 
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Table 4. CPU time for Example 4 

 Method  Time (seconds) 

Genetic Algorithm 0.954 

Ant Colony Algorithm 31.969 

 

 

Figure 13. Actual collapse mechanism obtained by the direct method and ant colony algorithm 

 

 

Figure 14. Collapse mechanism obtained by the genetic algorithm 

 
 

8. Concluding Remarks 
 

It is observed that both the genetic and ant colony algorithms compute reasonable load 
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factors for frame examples presented in this paper. However, the collapse mechanism might 
be different from the actual one. The difference is more pronounced for genetic algorithms 
but mechanisms found by ant colony algorithms are in many situations actual mechanisms 
or very close to it.  

Time is another important factor in comparing genetic algorithms with ant colony 
algorithms. It is observed that for the parameters chosen (50 generations for genetic 
algorithm and 20 cycles for ant colony algorithm) genetic algorithm accomplishes the task 
of finding collapse mechanism much faster than that of the ant colony algorithm. This 
difference in time motivates one to investigate the convergence behavior of genetic 
algorithms versus ant colony algorithms.  

The variation of the collapse load factor computed in each generation and cycle for the 
frame of Example 4 by the genetic and ant colony algorithms are shown in Figure 15 and 
Figure 16, respectively. The load factors that genetic algorithms compute have considerable 
oscillations and one should choose the minimum load factor ever found through the 
optimization process. This clearly means that it is not guaranteed that genetic algorithms will 
finally converge to the minimum load factor. However, the graph in Figure 15 shows that 
unlike genetic algorithms, ant colony algorithms converge to the final collapse load factor 
after a few cycles. For instance, at most 4 or 5 cycles are needed to compute the collapse 
load factor for the frame in Example 4. This is a considerable reduction compared to 20 
cycles and it is suggested that one chooses a limited number of cycles to compute the 
collapse load factor and then increases the cycles to verify the results. Thus as a concluding 
remark it can be stated that if a reasonable number of cycles is chosen for ant colony 
algorithms, the time elapse compares well with that of genetic algorithm. 
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Figure 15. Load factor obtained by GA in each generation. 
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Figure 16. Load factor obtained by ACO in each cycle. 

 
There is also a performance point about ant colony algorithms, which is noteworthy to be 

mentioned. New suboptimal mechanisms obtained in each cycle expand the graph up to 
twice the original size. This limit was arbitrarily chosen based on such factors as CPU time, 
memory accessibility and speed. The goal was to find out how the expansion idea in a 
predefined scheme (like the one chosen here) can affect the overall behavior of ant colony 
algorithms. No elaboration has been focused on relating the expansion size on the 
convergence route of algorithm. Based on this hypothesis, one can impose other constraints 
on the size of the graph and choose an optimal limit or dynamically modify it. It is certain 
that if the size is three, four… times the original size, the space in which the actual 
mechanism is searched for becoming larger and there is a strong probability for actual 
mechanism to reside in this space. However, it is important to pay attention to the time being 
consumed for searching such a large space. The compromise problem between time and 
speed again manifests itself. 

Based on these observations it can be suggested that ant colony algorithms should be 
employed instead of genetic algorithms especially in situations where a greater safety bound 
is required. 
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