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Abstract 
 

This paper presents a particle swarm ant colony optimization for design of truss structures. The 
algorithm is based on the particle swarm optimizer with passive congregation and ant colony 
optimization. The particle swarm ant colony optimization applies the particle swarm optimizer 
with passive congregation for global optimization and ant colony approach is employed to update 
positions of particles to attain rapidly the feasible solution space. Ant colony optimization works as 
a local search, wherein, ants apply pheromone-guided mechanism to update the positions found by 
the particles in the earlier stage. A new relation is defined for the inertia weight, and the 
terminating criterion is changed in the way that after decreasing the movements of particles, the 
search process stops. With these changes, the number of iterations does not increase. The proposed 
method is tested on several benchmark trusses from literature. The result comparisons with particle 
swarm optimizer, particle swarm optimizer with passive congregation and other optimization 
algorithms demonstrate the effectiveness of the presented method. 
 
Keywords: Truss; optimization; particle swarm; ant colony; hybrid 
 

 
1. Introduction 

 
Since the material cost is one of the major factors in the construction of a building, it is 
preferable to reduce it by minimizing the weight or volume of the structural system. All of 
the methods used for minimizing the volume or weight intend to achieve an optimum design 
having a set of design variables under certain design criteria [1]. 

Size optimization of truss structures involves determining optimum values for member 
cross-sectional areas Ai that minimize the structural weight W. This minimum design also 
has to satisfy inequality constraints that limit design variable sizes and structural responses 
[2]. Thus, the optimal design of a truss is formulated as 
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where W({x})=weight of the structure; n=number of members making up the structure; 
m=number of nodes; nc=number of compression elements; ng= number of groups (number 
of design variables); iγ =material density of member i; Li= length of member i; Ai=cross-
sectional area of member i chosen between Amin and Amax; min = lower bound and max= 
upper bound; iσ  and δi = the stress and nodal deflection, respectively; b

iσ = allowable 
buckling stress in member i when it is in compression. 

Traditional mathematical programming methods such as the Lagrange multiplier methods 
[3] usually require the derivative information of the objective function and constraints. 
Besides, the obtained solution often tends to be a local optimum unless the search space is 
convex. In recent years, evolutionary algorithms (EAs) have attracted much attention for a 
variety of optimization problems due to their superior advantages. EAs do not require the 
objective function to be derivable or even continuous, and EAs perform as global 
optimization techniques due to the appropriate balance between the exploration and 
exploitation of the whole search space.  

Genetic algorithm is one of the EA types initially suggested by Holland, and developed 
and extended by some of his students, Goldberg and Ann Arbor. These algorithms simulate 
natural genetics mechanism for synthetic systems based on operators that are duplicates of 
natural ones. In the last decade, GA is used in the optimum structural design. One of the first 
applications was the weight minimization of a 10-bar truss by Goldberg and Samtani [4]. 
Hajela [5], and Kaveh and Kalatjari [6], among many others, used genetic search in design 
of various structures in which the search space was non-convex or discrete. 

Two new evolutionary algorithms are Particle Swarm Optimizer (PSO) and Ant Colony 
Optimization (ACO) that are used in structural optimization problems. He et al. [7,8] and Li 
et al. [9,10] had applied PSO and Kaveh and colleagues [11-13], and Camp et al. [14] had 
applied ACO in structural design optimization. The PSO is simple and effective where ACO 
appears a robust approach.  

It is known that the PSO may perform better than the EAs in the early iterations, but it 
does not appear competitive when the number of iterations increases [15]. To improve this 
character of PSO, one of the methods is hybridizing PSO with other approaches such as 
ACO. The resulted method, called Particle Swarm Ant Colony Optimization (PSACO), was 
initially introduced by Shelokar et al. [16] for solving the continuous unconstrained 
problems and by Mozafari et al. [17] for reactive power market simulation. PSACO utilized 
PSO as a global search and the idea of ant colony approach worked as a local search and 
updated the positions of the particles by applied pheromone-guided mechanism. The 
proposed method in this paper is basically similar to that algorithm but with some 
differences. We have applied PSOPC (a hybrid PSO with passive congregation [7]) instead 
of PSO to improve the performance of the new method. The relation of standard deviation in 
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ACO stage is different with Ref. [16] and the inertia weight is changed in PSOPC stage. 
New terminating criterion is employed to increase the probability of obtaining an optimum 
solution in minimum number of iterations. 

There are some constraints in truss optimization problems that should be carefully 
handled. So far, a number of approaches have been proposed by incorporating constraint-
handling techniques into EAs to solve constrained optimization problems [18]. To our 
knowledge, the penalty function method has been the most popular constraint-handling 
technique due to its simple principle and ease of implementation. The main difficulty of the 
penalty function method lies in that the appropriate values of penalty factors are problem-
dependent and a considerable effort is needed for fine-tuning of penalty factors. Therefore 
several novel techniques have been incorporated into EAs to handle constraints. Koziel and 
Michalewicz [19] proposed a homomorphous mapping (HM); Runarsson and Yao [20] 
proposed Stochastic Ranking (SR); Coello and Montes [21] presented a dominance-based 
selection scheme to handle constraints in a GA; Coello and Becerra [22] incorporated a 
cultural algorithm that used domain knowledge to improve the performance of an 
evolutionary programming technique. Fly-back mechanism, a new technique handling the 
constraints, has been introduced by He et al. [8]. Compared with other constraint-handling 
techniques, this method is relatively simple and easy to implement [10]. Therefore, in this 
paper the constraints are handled by using fly-back mechanism. 

 
 

2. Introduction to PSO and ACO 
 

2.1 Particle swarm optimization  
The application of swarm intelligence in optimization was first developed by Eberhart and 
Kennedy under the name of Particle Swarm Optimization (PSO) [23]. The strength of PSO 
is underpinned by the fact that decentralized (without central supervision) biological 
creatures can often accomplish complex goals by cooperation. A standard PSO algorithm is 
initialized with a population (swarm) of random potential solutions (particles). Each particle 
iteratively moves across the search space and is attracted to the position of the best fitness 
(evaluation of the objective function) historically achieved by the particle itself (local best) 
and by the best among the neighbors of the particle (global best). In essence, each particle 
continuously focuses and refocuses the effort of its search according to both local and global 
best. This behavior mimics the cultural adaptation of a biological agent in a swarm: it 
evaluates its own position based on certain fitness criteria, compares with others, and 
imitates the best in the entire swarm [24]. 

The update moves a particle by adding a change velocity 1+k
iV  to the current position 

k
iX  as follows: 
 

 11 ++ += k
i

k
i

k
i VXX  (2) 
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The velocity is a combination of three contributing factors: (1) previous velocity k
iV , (2) 

movement in the direction of the local best

 

k
iP , and (3) movement in the direction of the 

global best k
gP . The mathematical formulation is expressed as 
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where ω is an inertia weight to control the influence of the previous velocity; r1 and r2 are 
two random numbers uniformly distributed in the range of (0, 1); c1 and c2 are two 
acceleration constants [25]; k

iP  is the best position of the i th particle up to iteration k and 
k

gP is the best position among all particles in the swarm up to iteration k. 
Adding the passive congregation model to the PSO may increase its performance. He et 

al. proposed a hybrid PSO with passive congregation (PSOPC) [7]. In this method the 
velocity is defined as 
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where Ri is a particle selected randomly from the swarm, c3 is the passive congregation 
coefficient, and r3 is a uniform random sequence in the range (0, 1). 

Several benchmark functions have been tested in Ref. [7]. The results show that the 
PSOPC has a better convergence rate and a higher accuracy than the PSO. 

 
2.2 Ant colony optimization  
Ant Colony Optimization (ACO) was first proposed by Dorigo [26] as a multi-agent 
approach to solve difficult combinatorial optimization problems. ACO was inspired by the 
observation of real ant colonies. Ants are social insects whose behavior is directed more to 
the survival of the colony as a whole than to that of a single individual component of the 
colony. An important behavior of ant colonies is their foraging behavior and, in particular, 
how ants can find shortest paths between food sources and their nest. While walking from 
food sources to the nest and vice versa, ants deposit on the ground a substance called 
pheromone, forming in this way a pheromone trail. Ants can smell pheromone and, when 
choosing their way, they tend to choose, in probability, paths marked by strong pheromone 
concentrations. The pheromone trail allows the ants to find their way back to the food source 
(or to the nest). Also, it can be used by other ants to find the location of the food sources 
found by their nest-mates. When more paths are available from the nest to a food source, a 
colony of ants may be able to exploit the pheromone trails left by the individual ants to 
discover the shortest path from the nest to the food source and back [27]. In fact, ACO 
simulates the optimization of ant foraging behavior. 
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3. Fly-Back Mechanism 
 

Fly-back mechanism has been introduced by He et al. [8]. For most of the structural 
optimization problems, the global minimum locates on or close to the boundary of a feasible 
design space. The particles are initialized in the feasible region. When the particles fly in the 
feasible space to search the solution, if any one of them flies into the infeasible region, it 
will be forced to fly back to the previous position to guarantee a feasible solution. The 
particle which flies back to the previous position may be closer to the boundary at the next 
iteration. This makes the particles to fly to the global minimum in a great probability. Some 
experimental results have shown that it can find a better solution with fewer iterations than 
other techniques [8]. 

 
 

4. Particle Swarm Ant Colony Optimization (PSACO) for Truss Design 
 

The implementation of PSACO algorithm consists of two stages [18]. In the first stage, it 
applies PSOPC, while ACO is implemented in the second stage. ACO works as a local 
search, wherein, ants apply pheromone-guided mechanism to refine the positions found by 
particles in the PSOPC stage. In PSACO, a simple pheromone-guided mechanism of ACO is 
proposed to be applied for the local search. The proposed ACO algorithm handles P ants 
equal to the number of particles in PSOPC. 

In ACO stage, each ant generates a solution around k
gP  which can be written as 

 
 ),( σk

g
k
i PNZ =  (5) 

 
In Eq. (5), k

iZ  is the solution constructed by ant i in the stage k; ),( σk
gPN denotes a 

random number normally distributed with mean value k
gP  and variance σ , where η is 

used to control the step size.  
 

 ησ ×−= )( minmax AA  (6) 
 
In the proposed method, objective function value, )( k

iZf , is computed and the current 

position of ant i, k
iZ , is replaced with the position k

iX , the current position of particle i in 

the swarm, if )()( k
i

k
i ZfXf >  and current ant is in the feasible space. This simple 

pheromone-guided mechanism considers, there is highest density of trails (single pheromone 
spot) at the global best solution k

gP  of the swarm at any iteration k+1 in each stage of ACO 
implementation and all ants search for better solutions in the neighborhood of the global best 
solution [16]. The pseudo-code for the PSACO algorithm is listed in Table 1. 
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Table 1. The pseudo-code for the PSACO 

Set k=0 
Randomly initialize positions and velocities of all particles 

FOR(each particle i in the initial population) 
WHILE(the constraints are violated) 

Randomly re-generate the current particle Xi 
END WHILE 
Generate  local best: Set k

i
k

i XP =  

Generate  global best: Find )(min k
iXf , k

gP is set to the position of kX min  

END FOR 
WHILE(the terminating criterion is not met) 

FOR(each particle (ant) i in the swarm(colony)) 
Generate the velocity and update the position of the current particle (vector) k

iX  
Constraint-handling: Check whether the current particle violates the problem 

           constraints or not. If it does, reset it to the previous position 1−k
iX   

Calculate the fitness value )( k
iXf  of the current particle 

Generate the position of the current ant ),( σk
g

k
i PNZ =  

Constraint-handling: Check whether the current ant violates the problem 
           constraints or not. If it does, reset it to the current particle k

iX   

Calculate the fitness value )( k
iZf  of the current ant 

Update current particle position: Compare the fitness value of current ant with 
           current particle. If the )( k

iZf  is better than the fitness value of )( k
iXf , 

            set )()( k
i

k
i ZfXf =  and k

i
k
i ZX =  

Update local best: Compare the fitness value of )( k
iPf  with )( k

iXf .  

           If the )( k
iXf  is better than the fitness value of )( k

iPf , 

            set k
iP  to the current position k

iX  
END FOR 
Update global best: Find the global best position in the swarm. If the )( k

iXf is  

            better than the fitness value of )( k
gPf , k

gP is set to the position 

             of the current particle k
iX  

Set k =k+1 
END WHILE 
 
 

5. Terminating Criterion 
 

The maximum number of the iterations is the most usual terminating criterion in PSO 
literature. If it is selected great, the number of analyses and as a result, the time of 
optimization will increase; vice versa, if it is selected less, the probability of finding a 
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desirable solution will decrease. Thus, the necessity for an exact definition of the 
terminating criterion is really felt. This paper defines a new terminating criterion to fulfill 
this goal. 

In truss optimization, a discrete solution is better than continuous one. If Amin, Amax, A* are 
the minimum cross-sectional area, the maximum cross-sectional area, and the amount of 
increase in cross-sectional areas for a given truss respectively, discrete allowable series of 
allowable cross-sectional areas will be [13]: 

 
 minA , *

min AA + , *
min 2AA + , … , maxA  (7) 

 
A* controls the exactitude of the solutions with a reverse relation; as A* gets more, 

exactitude of the solutions decreases and searching process must be stopped earlier and if the 
amount of A* gets less, searching process must be continued until reaching an exact result. 

In PSACO algorithm, the current position of each particle equals the previous position of 
that particle added to the velocity vector. Components of the velocity vector and the 
largeness of the search space decrease as optimization continues.  

Considering these facts, the terminating criterion is redefined: 
Searching continues until the absolute value of every component of the velocity vector is 

greater than A*, and as soon as the maximum absolute value of Component of the velocity 
vector gets less than A*, searching stops. This can be summarized as 

 

 Terminating criterion: *|)max(| AV k
ij <

⎩
⎨
⎧

=∀
=∀

ngj
Pi

,...,2,1
,...,2,1

 (8) 

 
With this criterion, the extra iterations are eliminated and optimum solution is reached 

earlier. 
The value of the inertia weight (ω(k)) is related with the number of the iterations. For 

example, in truss design, ω(k) decreases linearly from 0.9 in first iteration to 0.4 in 3000th 
iteration [10]. Since the convergence rate of PSACO is higher than PSOPC, the solution is 
reached in less iterations. Therefore, )(kω  is redefined as 

 
 4.0001.09.0)( ≥×−= kkω  (9) 

 
where k =the iteration number. With this new equation, the inertia weight decreases from 0.9 to 
0.4 in 500 iterations then the amount of it (0.4) remains fixed. In this way, the balance between 
ω(k) and the fast rate of convergence is saved; consequently, the performance improves.  

 
 

6. Numerical Examples 
 

In this section, common truss optimization examples as benchmark problems are optimized 
with this method; then, the final results are compared with solutions of other methods to 
demonstrate the effectiveness of this work.  
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For the proposed algorithm, a population of 50 individuals is used for both particles and 
ants; the value of constants c1 and c2 are set 0.8 and the passive congregation coefficient c3 is 
given 0.6. The algorithms are coded in Matlab and structures are analyzed using the direct 
stiffness method. 

 
6.1 The ten-bar planar truss 
The 10-bar truss problem shown in Figure 1, has become a common problem in the field of 
structural design to test and verify the efficiency of many different optimization methods. 
The material density is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is 10,000 
ksi (68,950 MPa). The members are subjected to the stress limits of ±25 ksi (172.375 MPa) 
and all nodes in both vertical and horizontal directions are subjected to the displacement 
limits of ±2.0 in (5.08 cm). There are 10 design variables in this example and a set of pseudo 
variables ranging from 0.1 to 35.0 in2 (from 0.6452 cm2 to 225.806 cm2). Two cases are 
considered: Case 1, P1=100 kips (444.8 kN) and P2=0; and Case 2, P1= 150 kips (667.2 kN) 
and P2=50 kips (222.4 kN). 

For both load cases, the PSO and PSOPC algorithms achieve the best solutions after 
3000 iterations [10]. However, the PSACO algorithm finds the best solution after about 619 
and 650 iterations respectively for Case 1 and Case 2. In first iteration, the PSACO 
algorithm achieves 7426 lb while the PSO and PSOPC algorithms do not reach it until 
nearly 1780 and 900 iterations respectively. Figure 2 provides a comparison of the 
convergence rates of the three algorithms. The best weights of PSACO are 5057.36 lb for 
Case 1 and 4676.05 lb for Case 2 while the best results of PSO and PSOPC are 5061.00 lb, 
5529.50 lb for Case 1 and 4679.47 lb, 4677.70 lb for Case 2 respectively. Table 2 and Table 
3 compare the obtained results in this research with the existing results. 

 

 

Figure 1. Ten-bar planar truss 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A HYBRID PARTICLE SWARM AND ANT COLONY OPTIMIZATION ... 

 

337

0 650 1000 1500 2000 2500 30004500

5000

5500

6000

6500

7000

7500

8000

8500

9000

Iteration

W
ei

gh
t (

lb
)

 

 
PSO [10]
PSOPC [10]
PSACO

0 619 1000 1500 2000 2500 3000
5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

Iteration

W
ei

gh
t (

lb
)

 

 
PSO [10]
PSOPC [10]
PSACO

b) Case 2 a) Case 1 

Figure 2. Comparison of the convergence rates between the three algorithms for the 10-bar 
planar truss structure  

 

Table 2. Optimal design comparison for the 10-bar planner truss (Case 1) 

Optimal cross-sectional areas (in2) 

PSACO Li et al. [10] Schmit & Miura [28] 

cm2 in2 PSOPC PSO 
Lee & 

Geem [2]CONMINNEWSUMT 
Element 
group 

(193.99)30.068 30.569 33.469 30.15 30.57 30.67 A1 1 

(0.6452)0.100 0.100 0.110 0.102 0.369 0.100 A2 2 

(149.72)23.207 22.974 23.177 22.71 23.97 23.76 A3 3 

(97.858)15.168 15.148 15.475 15.27 14.73 14.59 A4 4 

(0.6452)0.100 0.100 3.649 0.102 0.100 0.100 A5 5 

(3.4581)0.536 0.547 0.116 0.544 0.364 0.100 A6 6 

(48.142)7.462 7.493 8.328 7.541 8.547 8.578 A7 7 

(136.95)21.228 21.159 23.340 21.56 21.11 21.07 A8 8 

(139.55)21.630 21.556 23.014 21.45 20.77 20.96 A9 9 

(0.6452)0.100 0.100 0.190 0.100 0.320 0.100 A10 10 

22505N 5057.365061.00 5529.50 5057.88 5107.3 5076.9 Weight(lb) 
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Table 3. Optimal design comparison for the 10-bar planner truss (Case 2) 

Optimal cross-sectional areas (in2) 

PSACO Li et al. [10] Schmit & Miura [28] 

cm2 in2 PSOPC PSO 

Lee & 
Geem [2] 

CONMIN NEWSUMT 

Element 
group 

(148.72)23.052 23.473 22.935 23.25 23.55 23.55 A1 1 

(0.6452)0.100 0.101 0.113 0.102 0.176 0.100 A2 2 

(165.17)25.601 25.287 25.355 25.73 25.20 25.29 A3 3 

(97.671)15.139 14.413 14.373 14.51 14.39 14.36 A4 4 

(0.6452)0.100 0.100 0.100 0.100 0.100 0.100 A5 5 

(12.703)1.969 1.969 1.990 1.977 1.967 1.97 A6 6 

(78.748)12.206 12.362 12.346 12.21 12.40 12.39 A7 7 

(81.084)12.568 12.694 12.923 12.61 12.86 12.81 A8 8 

(131.16)20.330 20.323 20.678 20.36 20.41 20.34 A9 9 

(0.6452)0.100 0.103 0.100 0.100 0.100 0.100 A10 10 

20808N 4676.05 4677.70 4679.47 4668.81 4684.1 4677 Weight 
(lb) 
 

6.2 Twenty five-bar spatial truss 
Figure 3 shows the topology of a 25-bar spatial truss. The material density is 0.1 lb/in3 
(2767.990 kg/m3) and the modulus of elasticity is 10,000 ksi (68,950 MPa). 

25 members are categorized into eight groups, as follows: (1) A1, (2) A2–A5, (3) A6–A9, 
(4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21, and (8) A22–A25. This spatial truss was 
subjected to the two loading conditions shown in Table 4. Maximum displacement 
limitations of ±0.35 in (8.89 mm) were imposed on every node in every direction and the 
axial stress constraints vary for each group shown in Table 5. The range of cross-sectional 
areas varies from 0.01 to 3.4 in2 (from 0.6452 cm2 to 21.94 cm2). 

For this spatial truss structure, it takes about 1000 and 3000 iterations for the PSOPC and 
the PSO algorithms to converge, respectively. However the PSACO algorithm takes 577 
iterations to converge. Indeed, in this example, the PSO algorithm did not fully converge 
when the maximum number of iterations is reached [10]. In first iteration, the PSACO 
algorithm achieves 652.38 lb while the PSO and PSOPC algorithms do not reach it until 
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nearly 2600 and 550 iterations respectively. Figure 4 compares the convergence rate of the 
three algorithms. Table 6 lists the optimal values of the eight size variables obtained by this 
research, and compares them with other results.  

 

 

Figure 3. Twenty five-bar spatial truss 

 

Table 4. Loading conditions for the 25-bar spatial truss 

Case 2 Case 1 

PZ 
kips(kN) 

PY 
kips(kN) 

PX 
kips(kN) 

PZ 
kips(kN) 

PY 
kips(kN) 

PX 
kips(kN) 

Node

–5.0 (22.25) 10.0 (44.5)1.0 (4.45) –5.0 (22.25)20.0 (89) 0.0 1 

–5.0 (22.25) 10.0 (44.5)0.0 –5.0 (22.25)–20.0 (89) 0.0 2 

0.0 0.0 0.5 (2.22) 0.0 0.0 0.0 3 

0.0 0.0 0.5 (2.22) 0.0 0.0 0.0 6 
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Table 5. Member stress limitation for the 25-bar spatial  truss 

Tensile stress limitations 
ksi (MPa) 

Compressive stress 
limitations ksi (MPa) Element group 

40.0 (275.80) 35.092 (241.96) A1 1 
40.0 (275.80) 11.590 (79.913) A2 ~ A5 2 
40.0 (275.80) 17.305 (119.31) A6 ~ A9 3 
40.0 (275.80) 35.092 (241.96) A10 ~ A11 4 
40.0 (275.80) 35.092 (241.96) A12 ~ A13 5 
40.0 (275.80) 6.759 (46.603) A14 ~ A17 6 
40.0 (275.80) 6.959 (47.982) A18 ~ A21 7 
40.0 (275.80) 11.082 (76.410) A22 ~ A25 8 
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Figure 4. Convergence rate comparison for the three algorithms for the 25-bar spatial truss 

 
6.3 One hundred twenty-bar dome truss 
120-bar dome truss, shown in Figure 5, was first analyzed by Soh and Yang [30] to obtain 
the optimal sizing and configuration variables. In the example considered in this study 
similar to Lee and Geem [2] and Keleşoğlu and Ülker [31], only sizing variables to 
minimize the structural weight are considered. In addition, the allowable tensile and 
compressive stresses are used according to the AISC ASD (1989) [32] code, as follows 
 

 
⎪⎩

⎪
⎨
⎧

<

≥=
−

+

0                  

0      6.0

i

i

σσ

σσ

for

forF

i

yi  (10) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A HYBRID PARTICLE SWARM AND ANT COLONY OPTIMIZATION ... 

 

341

where −
iσ  is calculated according to the slenderness ratio 

 

Table 6. Optimal design comparison for the 25-bar spatial  truss 

Optimal cross-sectional areas (in2) 
PSACO Li et al. [10] 

cm2 in2 PSOPC PSO 
Lee & 

Geem [2] 
Camp et 
al. [14] 

Saka 
[29] Element group

0.065 0.010 0.010 9.863 0.047 0.010 0.010 A1 1 
13.24 2.052 1.979 1.798 2.022 2.000 2.085 A2 ~ A5 2 
19.36 3.001 3.011 3.654 2.950 2.966 2.988 A6 ~ A9 3 
0.065 0.010 0.100 0.100 0.010 0.010 0.010 A10 ~ A11 4 
0.065 0.010 0.100 0.100 0.014 0.012 0.010 A12 ~ A13 5 
4.413 0.684 0.657 0.596 0.688 0.689 0.696 A14 ~ A17 6 
10.42 1.616 1.678 1.659 1.657 1.679 1.67 A18 ~ A21 7 
17.24 2.673 2.693 2.612 2.663 2.668 2.592 A22 ~ A25 8 

2425.4N545.04 545.27 627.08544.38 545.53 545.23Weight (lb) 
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where E=the modulus of elasticity; Fy =the yield stress of steel; Cc =the slenderness ratio (λi) 

dividing the elastic and inelastic buckling regions ( yC FEC 22π= ); λi = the slenderness 

ratio (λi=kLi/ri); k =the effective length factor; Li =the member length; and ri =the radius of 
gyration. 

The modulus of elasticity is 30,450 ksi (209,952 MPa) and the material density is 0.288 
lb/in3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi (405 MPa). On the 
other hand, the radius of gyration (ri) can be expressed in terms of cross-sectional areas, i.e., 

b
ii aAr = [29]. Here, a and b are the constants depending on the types of sections adopted for 

the members such as pipes, angles, and tees. In this example, pipe sections (a = 0.4993 and b 
= 0.6777) were adopted for bars. All members of the dome are linked into seven groups, as 
shown in Figure 5. The dome is considered to be subjected to vertical loading at all the 
unsupported joints. These were taken as −13.49 kips (60 kN) at node 1, −6.744 kips (30 kN) 
at nodes 2 through 14, and −2.248 kips (10 kN) at the rest of the nodes. The minimum cross-
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sectional area of all members is 0.775 in2 (2 cm2). In this example, four cases of constraints 
are considered: with stress constraints and no displacement constraints (Case 1), with stress 
constraints and displacement limitations of ±0.1969 in (5 mm) imposed on all nodes in x- 
and y-directions (Case 2), no stress constraints but displacement limitations of ±0.1969 in 
(5 mm) imposed on all nodes in z-directions (Case 3), and all constraints explained above 
(Case 4). For Case 1 and Case 2, the maximum cross-sectional area is 5.0 in2 (32.26 cm2) 
and for Case 3 and Case 4 is 20.0 in2 (129.03 cm2). 

Table 7 gives the best solution vectors and the corresponding weights for all cases. 
Figure 6 shows the convergence for all cases.  

 

Figure 5. One hundred twenty-bar dome truss 
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Table 7. Optimal design comparison for the 120-bar dome  truss (four Cases) 

Optimal cross-sectional areas (in2) 

Case 2 Case 1 

PSACO PSACO 

cm2 in2 
PSOPC PSO Lee & 

Geem [2] cm2 in2 
PSOPC PSO Lee & 

Geem [2] 

Element 
group 

(19.94) 3.091 3.083 15.978 3.296 (20.16) 3.125 3.235 3.147 3.295 1 

(21.64) 3.354 3.639 9.599 2.789 (21.65) 3.355 3.370 6.376 3.396 2 

(26.42) 4.095 4.095 7.467 3.872 (26.62) 4.125 4.116 5.957 3.874 3 

(17.83) 2.764 2.765 2.790 2.570 (17.96) 2.783 2.784 4.806 2.571 4 

(10.27) 1.592 1.776 4.324 1.149 (5.00) 0.775 0.777 0.775 1.150 5 

(21.40) 3.317 3.779 3.294 3.331 (21.64) 3.354 3.343 13.798 3.331 6 

(15.70) 2.435 2.438 2.479 2.781 (15.79) 2.447 2.454 2.452 2.784 7 

89423N 20095.
0 20681.7 41052.7 19893.34 86795N 19504.6 19618.7 32432.9 19707.77 Weight 

(lb) 

Case 4 Case 3 

PSACO PSACO 

cm2 in2 
PSOPC PSO Lee & 

Geem [2] cm2 in2 
PSOPC PSO 

Keleşoğlu 
& Ülker 

[31] 

Element 
group 

(19.52) 3.026 3.040 12.802 (12.71) 1.970 2.098 1.773 5.606 (19.52) 1 

(98.21) 15.222 13.149 11.765 (99.48) 15.420 16.444 17.635 7.750 (98.21) 2 

(31.64) 4.904 5.646 5.654 (37.74) 5.850 5.613 7.406 4.311 (31.64) 3 

(20.15) 3.123 3.143 6.333 (14.22) 2.204 2.312 2.153 5.424 (20.15) 4 

(53.81) 8.341 8.759 6.963 (60.46) 9.371 8.793 15.232 4.402 (53.81) 5 

(22.05) 3.418 3.758 6.492 (23.71) 3.676 3.629 19.544 6.223 (22.05) 6 

(16.11) 2.498 2.502 4.988 (12.51) 1.938 1.954 0.800 5.405 (16.11) 7 

148024N 33263.9 33481.2 51986.2 140938N 31671.5 31776.2 46893.5 38237.83 148024N Weight 
(lb) 
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Figure 6. Comparison of the convergence rates between the three algorithms for the 120-bar 
dome truss structure 

 
 

7. Discussion 
 

7.1 Efficiency of PSACO  
Figures of the PSACO convergence in all examples are similar and in almost all trusses, an 
optimum solution is reached after nearly 600 iterations and global search is completed after 
200 iterations. In that condition, the average weight is nearly 0.5 percent more than the last 
result. The convergence rate in the global search stage is very high, but decreases in the 
local search stage (after nearly 200 iterations); however, it is more acceptable than the 
convergence rates in the PSO and the PSOPC. 

The difference between the best and the worst results of the 10-bar truss (Case 1) in 50 
tests is only 3.2lb (0.06%) and the standard deviation is 1.46lb (see Table 8). This fact 
shows that the proposed method is able to achieve an optimum solution and is never trapped 
in local optimums. 

Applying the developed method has led to a significant improvement in PSOPC. Perhaps, 
this can not be formulated as an exact mathematical relation but the major reasons of this 
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improvement can be summarized as following: 
a) Heuristic methods utilize two factors: the random search factor and the information 

collected from the search space during optimization process. In early iterations, the random 
search factor has more power than the collective information factor, but the increase in the 
number of iterations gradually abates the power of the random search factor and increases 
the power of the collective information factor. In PSACO, ACO stage actually plays an 
auxiliary role in rapidly increasing the collective information factor; consequently, the 
convergence rate increases highly. 

b) In truss optimization, usually there are some local optimums in the neighborhood of a 
desirable solution. So, the probability of finding a desirable optimum increases with more 
search around the local optimums. PSACO does extra search around the local optimums, k

gP , 
(by using Eq. 5) and obtains the desirable solution with more probability in less iterations.  

 
7.2 Efficiency of the new terminating criteria  
Figure 7 shows the average and a typical of |)max(| k

ijV  in 50 tests for the 10-bar truss (Case 
1). This figure shows that from beginning of searching to nearly 580th iteration, the velocity 
of particles decreases quickly; and in result, the search space in the neighborhood of the 
optimum solution gets less rapidly. After 580th iteration, velocity of particles is very small 
and after few numbers of iterations, the search process stops. 

The movement of particles and the rapid decrease in the search space demonstrate the 
good performance of the new terminating criterion. In this criterion, when the velocity of 
particles becomes neglect able and the probability of weight reduction gets less, the search 
process stops; consequently, the time of optimization decreases.  
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Figure 7. The average and a typical of |)max(| k
ijV in 50 tests for 10-bar truss (Case 1) 

 
7.3 Effect of step size in PSACO  
In ACO stage, the amount of step size, η, highly influences the results. Table 8 compares the 
minimum, maximum and average of the optimum weight and the required iterations for the 
10-bar truss (Case 1) in 50 runs. If η is too small, the velocity of particles will decrease very 
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fast and the search process will stop in early iterations; thus the obtained results stay far 
away from an optimum solution and amount of the standard deviation is too great; on the 
contrary, if η is selected too great, the PSACO algorithm will perform similar to the PSOPC 
algorithm and the effect of ACO stage will be eliminated, and a desirable solution can not be 
obtained in less iterations. Since the standard deviation becomes minimum and a best 
solution is achieved in the acceptable number of iterations, a step size of 0.01 is 
recommended. 

 

Table 8. Effect of step size in PSACO algorithm for 10-bar truss (Case 1) in 50 runs 

Standard 
deviation 

(lb)  

Average 
weight 

(lb) 

Worst 
weight 

(lb) 

Best 
weight 

(lb) 

Average 
iterations

Maximum 
iterations 

Minimum 
iterations η 

557.2 5879.3 7260 5241.2 72.6 90 65 10-6 

538.2 5807.6 7149.6 5175.7 217.3 456 95 10-5 

398.3 5324.8 6498.2 5065.9 462.6 628 404 10-4 

6.35 5064.3 5076.6 5060.5 605.4 638 598 10-3 

1.46 5058.2 5060.65057.4 635.2 655 619 10-2 

3.31 5063.1 5057.4 5060.9 667.4 702 654 10-1 

58.86 5110.0 5267.8 5069.6 810.5 1000 718 100 

 
 

8. Conclusions 
 

In this paper PSACO, based on PSOPC and ACO, is employed for optimizing truss 
structures. ACO plays a helping role for PSOPC process in creating an optimum solution 
and rapidly attaining the feasible solution space. 

In order to make the particles remain in the feasible space, fly-back mechanism is utilized 
which shows better performance than other constraint-handling methods and does not posses 
the disadvantages of the penalty function approach. 

Since the convergence rate of the proposed method is greater than PSO and PSOPC in 
comparison, a new relation is defined for the inertia weight. The terminating criterion is 
changed in the way that after decreasing the movements of particles, the search process 
stops. With these changes, the number of iterations and time of optimization do not increase. 
The comparisons based on several well-studied benchmark trusses demonstrate the 
robustness of the proposed method. 
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