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Abstract 
 

In this work a robust optimum design for mechanical parameters of linear Tuned Mass 
Damper devices is proposed. In this field, standard approaches are based on the implicit 
assumption that all system parameters are deterministically known quantities. When this 
hypothesis is removed, a robust optimum design criterion for Tuned Mass Damper should be 
developed, where robustness is obtained by finding solutions which are less sensitive to 
variation of system parameters, originated by the uncertainty.  

In this study the load condition for the analysed system is represented by a stationary 
stochastic process which models the base acceleration, and here modelled by the Kanai- 
Tajimi stochastic process. The main system, which is equipped by a single Tuned Mass 
Damper, is described by a system with a single degree of freedom: system mass and 
stiffness are assumed to be affected by uncertainty, and then are represented by random-
bounded variables. The ratio between the protected and unprotected main system covariance 
displacement is assumed as Objective Function, and then its mean and standard deviation are 
evaluated. Robust optimum design is formulated as a multi-objective optimization problem, 
in which both the first and the second statistical moments are minimized simultaneously, 
with different weights. In this way, optimal Pareto fronts are obtained: after that a sensitivity 
analysis is carried out in order to assess the variation of robust solution with respect to some 
parameters, and moreover in order to evaluate the differences with respect to conventional 
deterministic solution. 

 
 

1. Introduction  
 

It is well known that all problems in the field of structural engineering deal with uncertainty. 
Nevertheless, in order to reduce conceptual and computational difficulties, often standard 
methods have been developed in structural analysis, assuming that all quantities are 
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deterministically known. Actually, the parameters involved in structural problems, such as 
load or mechanical and geometrical configuration, are only partially known quantities, or 
simply they have an intrinsic uncertain nature.  

In structural dynamics a widely used simplified approach assumes that the loads 
represent the only source of uncertainty. For example, earthquake or wind actions can be 
suitably modelled as stochastic processes, and then the standard random vibration theory can 
be employed [1] for obtaining structural responses, assuming that all the other parameters 
are deterministically defined. This approach in structural design leads to “Conventional 
Stochastic Structural Optimization” (CSSO), where the objective functions and the 
constraints may concern system response processes or related quantities.  

In the field of random vibrations the first definition of structural optimization problem 
was proposed by Nigam [2], leading to a standard nonlinear constrained problem, in which 
constraints were defined by probabilistic structural response quantities and the objective 
function (OF) by structural weight. 

This paper concentrates the attention on a particular optimization problem that is the 
vibration control of systems subject to random dynamic loads. This is a very broad context, 
which embraces different branches of engineering, from the mechanical to the seismic one. 
In this latter field, the use of a stochastically defined OF, after the Nigam proposal, was 
adopted in many different circumstances, regarding passive vibration control (for example 
[3-8]). A CSSO was proposed in [9], where a stochastic reliability - based design criterion 
for linear structures subject to random vibrations was developed. Both OF and constraints 
were defined in a stochastic way. In detail, constraints impose a limit to the failure 
probability associated with the first threshold crossing of a structural response. 

In above cited studies it is implicitly assumed that uncertainties in structural systems have 
negligible effects on system response, obtaining in this way an oversimplification in many 
real problems. However, it is reported that the uncertainty in system parameters may have 
equal or greater influence on response than uncertainty in excitation [10]. This aspect is of 
great relevance particularly in cases in which the solution is strongly influenced by the 
variation of system parameters, as in the case of structural optimization. Therefore, for a 
more realistic analysis, system parameters must be treated with a suitable description of 
uncertainty which affects nominal values.  

For these reasons, real structures in mechanical or civil engineering are often described 
by means of random variables, owing to various factors of uncertainty in materials, 
measurement, manufacturing and installation. For the same reasons, safe domain and input 
process parameters have to be considered uncertain quantities. This means that CSSO may 
become unfeasible due to the scatter of structural behaviour. Therefore, it is reasonable to 
explore the effects of uncertainty on the design of structures subject to random vibrations. 
For this reason, in the last twenty years, various nondeterministic methods have been 
developed in order to deal with optimum design under uncertainty. These methods can be 
classified in two main branches, namely “reliability-based methods (RBMs)” and “robust 
design-based methods” (RDBMs).  

The RBMs, based on the knowledge of probability distribution of the random parameters, 
estimate the probability distribution of the system response, and are mainly used for risk 
analysis, by computing the probability of system failure. However, the solution variation which 
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derives from uncertainty of system parameters is not minimized in reliability approaches [11], 
which are focused on rare events at the tail of the probability distribution [12].  

The RDBMs optimize a performance index in term of mean value, and at the same time 
they minimize its variability which derives from environmental uncertainty, obtaining a 
solution less sensitive to parameters variation. This is achieved by optimizing the design 
variables in order to make the performance minimally sensitive to the different causes of 
variation. A RDBM solution is not able to give the best performance in an absolute sense but 
it gives a low sensitivity of solution.  

In the field of vibration control, that is the area of this work, recently a robust design 
method intended for a vibration absorber of a system having an uncertain mass and stiffness, 
has been used in order to demonstrate the robust design approach in dynamics, based on a 
frequency approach [13]. The uncertainty of parameters is defined by the mean and the 
covariance, and it concerns with main system mass and damping. As local performance 
index, the maximum of the dimensionless displacement transfer function, over a limited 
frequency band, is used, and the robust optimization has been obtained by minimizing its 
deviation in mean and variance, that are obtained by a direct first order perturbation method 
based on a Taylor series expansion.  

A reliability-robust optimization has been also been proposed in [20]. In this work, the 
failure probability, related to the crossing of system response over a given threshold, is 
adopted as conventional OF, in order to optimize the TMD parameters for a system subject 
to a white noise input. A multi-objective optimization is performed in order to obtain Pareto 
fronts. The mean and variance are evaluated by approximated asymptotic evaluation. 

In this paper, a RDBM is applied for the optimization of a TMD, in the hypothesis that 
some main system parameters have an uncertain nature. More precisely, uncertain 
parameters are described as random variables, and are represented by means of bounded 
independent probability density functions. The PDF here used has a uniform law. The main 
system, described by a single degree of freedom model, is protected by a linear single TMD 
in order to reduce vibration level induced by base acceleration, here modelled by means of 
the stationary Kanai-Tajimi stochastic process. 

The design vector collects the TMD frequency and damping ratio. The ratio between the 
root mean squares (RMSs) of displacement of the protected and unprotected main system is 
adopted as OF. The robust optimum solution is obtained by using a multi-objective OF 
instead of a single conventional one. The mean and standard deviation are estimated by a 
direct numerical integration in order to evaluate the OF. The Pareto front, in the space mean-
RMS, is then obtained by using different weight coefficient values, in the range [0,1]. 
Finally, a comparison between conventional and robust optimum solutions is performed. 

 
 

2. Structural Model and Motion Equations 
 

Tuned Mass Damper (TMD) is one of the simplest and the most reliable passive device for 
vibration control in a wide range of applications. It consists in an additional mass connected 
to a main system by a spring and a damper. 
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Figure 1. Linear model of TMD system 

 
The mechanical model is represented in Figure 1: more precisely, the main system is 

described by a single mass mS, linked with the base by a linear spring and a dashpot, whose 
mechanical characteristics are described by stiffness and damping parameters kS and cS, 
respectively. It is excited by a base acceleration ( )by t&& , and it is connected with a secondary 
mass mT by a spring and a dashpot, whose characteristics are kT and cT, respectively. ,Ty  Ty&  

and Ty&&  denote the displacement, the velocity and the acceleration of the TMD with respect 
to the base, and ,Sy  Sy&  and Sy&&  are the displacement, the velocity and the acceleration of the 
main system with respect to the base.  

In this case, system response is determined by solving the dynamic equilibrium system 
equation: 

 
 ( ) ( ) ( ) ( )bY t Y t Y t ry t+ + =M C K&& & &&  (1) 

 
where ( )Y t , ( )Y t&  and ( )Y t&& , denote the displacement, velocity and acceleration vectors, r  
is the drag vector; finally, M C and K are respectively the mass, damping and stiffness 
matrices of the combined system.  

A widely adopted model in stationary case for ( )by t&&  is obtained by filtering a white noise 
process, acting at the bed rock, through a linear filter which represents the surface ground. 
This is the well known Kanai-Tajimi stochastic process [20] which is able to characterise 
input frequency content for a wide range of practical situations.  

In the stationary case base acceleration ( )by t&&  is: 

 ( )2( ) ( ) ( ) 2 ( ) ( )b f g g f g fy t x t w t x t x tξ ω ω= + = − +&& && &  (2) 
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 2( ) 2 ( ) ( ) ( )f g g f g fx t x t x t w tξ ω ω+ + = −&& &  (3) 
 

In Eqs. (2) and (3) ( )fx t  is the response of the filter representing the ground, gξ  and gω  
are, respectively, the damping ratio and the frequency of this filter, ( )w t  being the white 
noise process, representing the excitation at the bed rock.  

Introducing the space state vector: 
 

 ( )T

T S f T S fZ y y x y y x= & & &  (4) 

 
the stochastic response is completely known by means of the covariance matrix ZZR , 
obtained by solving the  Lyapunov equation: 

 
 T

ZZ ZZ+ + =AR R A B 0  (5) 
 

where the state A is:  
 

 

( ) ( )

2 2 2

2 2 2 2

2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2 2 2

2 2 2 2

0 0 0 0 2

T T f T T T T f f

T T S f T T T T S S f f

f f f

ω ω ω ξ ω ξ ω ξ ω

μω μω ω ω μ ξ ω μ ξ ω ξ ω ξ ω

ω ξ ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= − + + − + +⎜ ⎟
⎜ ⎟+ − + + + − + +⎜ ⎟
⎜ ⎟− −⎝ ⎠

A  (6) 

 
and where the 6 order matrix B has all null elements, except the last on the main diagonal: 
[ ] 06,6

2 Sπ=B , where 0S  is the intensity of the white noise.  

System mechanical parameters in matrix (6) are: 
 

T
T

T

k
m

ω =  - TMD frequency, S
S

S

k
m

ω =  - main system, frequency, 
2

T
T

T T

c
m k

ξ =  - 

TMD damping ratio, 
2

S
S

S S

c
m k

ξ =  - main system damping ratio, T

S

m
m

μ =  - mass ratio. 

Previous formulation deals with the assumption that all system parameters have a 
deterministic nature, but this is usually if referred to many real cases.  

 
 

3. Conventional Stochastic Structural Optimization of TMD 
 

Generally speaking, the structural optimization problem can be formulated as the selection 
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of a set of decision variables (that are the parameters of the design which characterize 
structural configuration), collected in the so called design vector (DV) b , over a possible 
admissible domain bΩ . The optimum DV must be able to minimize a given Objective 
Function (OF) and to satisfy, in general, some constraint conditions. Both constraints and 
OF must be defined over a given time interval, as the problem regards dynamic system 
response. 

The optimization problem so defined has been stated first by Nigam [2] and then 
transformed into a standard nonlinear programming one. It could be stated as: 

 
 Find  bb ∈Ω  (7) 
 
 Which Minimizes  ( ),OF b t  (8) 

 
 Subject  to 

�( , ) ffP b t P≤                                           (9) 
 
The OF could be defined either by a standard deterministic way (e.g., the total structural 

weight or the volume of the elements) or in a stochastic one. In the latter case, response 
statistics could be used, as covariance or spectral moments of variables of interest (e.g., 
displacement, acceleration or structural stress in relevant elements). The reliability constraint 
imposes that possible DVs must guarantee a failure probability ( , )fP b t  smaller than a 

given maximum acceptable one, defined by � fP . 
In this study the unconstrained optimization of TMD mechanical parameters, which are 

collected in the two dimensional design vector ( ),T Tb ω ξ= , will be performed assuming 
that the mass ratio μ  is a given quantity. The criterion selected for the optimization is the 
minimization of the dimensionless peak of the displacement of the protected system with 
respect to the unprotected one. The OF is defined in dimensionless way as the ratio between 

SYσ and the 0
SYσ , which are the root mean squares of displacement of the protected and 

unprotected system, respectively.  
This function represents a direct stochastic index of vibration protection efficiency, 

which will be more effective as its value decreases from one. At the same time, a value close 
to one will indicate a practically negligible efficiency of the vibration control strategy.  

The conventional optimum design is performed assuming that all parameters involved in the 
problem are deterministic. Therefore, the unconstrained problem can be formulated as follows:  

 
 Find   ( ),T T bb ω ξ= ∈Ω  (10) 
 

Which Minimizes  
( )

0
S

S

Y

Y

bσ

σ
 (11) 
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The results of this conventional optimization can be observed in Figure 2, where the 

optimum solution is represented in the space T
T

S

ωρ
ω

=  (that is the ratio of the TMD 

frequency on the system one), and Tξ . Input is characterised by 0.4fξ =  and 

25( / sec)f radω = . The system has a frequency Sω = 45 (rad/sec) and a damping ratio 

5%Sξ = . The mass ratio is assumed 0.1μ = . 
 

 

Figure 2. Conventional optimum solution in the space ρT, ξT. 

 
 

4. Robust Design Based Optimization with Uncertain Bounded System 
Parameters  

 
The probability theory is the most used approach for modelling the uncertainty involved in 
structural parameters. It is based on the assumption that uncertain parameters are random 
variables, and are characterised by a standard joint probability density distribution (PDF). 
This approach is intuitive, even if it offers analytical and numerical difficulties and presents 
some serious conceptual limitations, due to the impossibility of completely characterize 
random parameters, and also due to the complex statistical analysis involved. Nevertheless, 
the assumption of a given PDF cannot be justified for common situations, in which detailed 
statistical input data are not available. Moreover, a complete characterization of random 
variables requires knowledge of all infinite joint moments. This is an extremely difficulty 
and, sometimes, practically inapplicable procedure. A common simplification consists in 
assuming that all variables have independent normal or lognormal distributions, due to the 
application of the central limit theorem. This simplification is valid only for an asymptotic 
and well-defined random variables relation.  

Alternative “non-probabilistic” approaches, usually called “possibilistic’’, have also been 
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developed. These methods include the “convex modelling”, the “fuzzy set theory” and, 
finally, the “interval analysis” [17]. This last method assumes that the only knowledge of 
uncertain parameters is a finite hyper rectangle where they lie, and that its vertices are the 
only available information. A different and intermediate approach is based on the 
probabilistic description of uncertain parameters by using finite bounded distributions. In 
this method it is assumed that all the involved random parameters in structural problem are 
bounded in nature [18]. This is a realistic consideration, also because in many cases 
engineers can define a suitable and realistic variation range for all involved parameters. The 
bound limits can be assigned through experience and/or physical evidences. By means of 
this approach the uncertain parameters are defined on a finite hype-rectangle only, as by in 
the interval analysis. Anyway, in any internal point of the hyper-rectangle the finite bounded 
distribution gives a finite probability and, therefore, a more qualified level of information. 
This simple approach can be associated with the uniform probability distribution in absence 
of any experimental or analytical information about mean and variance of the bounded 
variables. This means that every possible value has the same probability of happening. The 
expression for this affirmation is 1/∆, where ∆ is the variation range. The probability 
distribution could be more sophisticated and accurate in the sense of entropic information, as 
the beta distribution, in case of additional statistical information as for example mean and 
variance data. 

For the design of structures with random parameters and subject to random dynamic 
loads, a possible approach is to define the optimum condition as the mean value that 
corresponds to deterministic optimum solution. However, the optimum solution obtained by 
minimizing the expected value of the objective function may be still quite sensitive to the 
fluctuation of the stochastic parameters, then causing scatter of the performance. Thus a 
more robust design concept has to be adopted to overcome this limitation. A solution that 
could be defined robust is that which characterises completely the OF as a random variable, 
so by knowledge of its probability density function. This way offers many difficulties and 
only in few cases it could be found in an analytical form. In order to overcome this 
limitation, the complete OF statistical description is replaced by the knowledge of its first 
two statistic moments, the mean value and the variance. Denoting with ϑ  the random vector 
which contains the uncertain parameters, and with ( )p ϑ

Θ
 its joint probability density 

function, the first two statistical moments are 
 

 ( )( ) ( | )OF b OF b p d
ϑ

μ ϑ ϑ ϑ
Θ

= ∫
Ω

 (12) 

 

 ( ) ( )22 2( ) ( | ) ( )OF OFb OF b p d b
ϑ

σ ϑ ϑ ϑ μ
Θ

= −∫
Ω

 (13) 

 
where ϑΩ  is the domain of the uncertain system parameters vector, and ( | )OF b ϑ  is the 
value of the OF evaluated under the assumption that parameters affected by uncertainty have 
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the value of ϑ . 
A possible method for developing a robust optimum design is to minimize the dispersion 

of the OF by means of a multi-criteria measure of the goal performance. By adopting this 
formulation, the proposed problem becomes a vectorial minimization, in which the two 
conflicting criteria are the mean and the RMD of the OF. The optimization problem, 
therefore, can be formulated as follows:  

 
 Find   bb ∈Ω  (14) 
 
Which Minimizes  ( ) ( ){ },OF OFb bμ σ  (15) 

 
Figure 3 shows that in the point where OFμ  reaches its minimum values, OFσ  has a not 

negligible value. This outcome indicates the final performance scatter due to uncertainty and 
therefore, a trade-off between them must be made.  

In order to obtain a Pareto optimum set, a widely used method consists in replacing the 
vector of objective functions with a scalar function: in this work this is obtained by the 
conventional weighted sum method. The objective function for the robust optimization 
becomes: 

 
 ( ) ( ) ( ) ( )1rob OF OFOF b b bβμ β σ= + −  (16) 

 
where the weighting factor [ ]0,1β ∈  is the weight of each objective.  

It must be noted that integrals (6) and (7) usually present serious analytical and numerical 
difficulties, especially when it is assumed that probability distributions has tails. For this 
reason, many approximate methods with different levels of difficulty and accuracy have 
been proposed. The perturbation method is computationally the least expansive and it needs 
only knowledge of the first two statistical moments, instead of complete joint PDF of 
uncertainty parameters. Moreover, it is reasonably applicable only for a limited number of 
cases and for relatively small levels of uncertainty [19].  

Alternative approaches are based on expanding the conditional response moments for given 
values of the uncertain system parameters in terms of a series of orthogonal functions, but they 
are usually computationally expensive. Finally, asymptotic expansion approximations have 
been proposed in order to solve approximately the involved integrals [21-23].  

In this work in order to overcome numerical and analytical difficulties in solving 
integrals (13) and (14), the uncertainty about the parameters is analysed by means of a 
simplified probabilistic model. It is assumed that these parameters are uncorrelated, 
uniformly distributed stochastic parameters with a given band amplitude, centred on nominal 
mean value: 
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 ( )
0 0

0

1 ,
, 2 2

0

i i

i i

i i i i

iif
p

otherwise

θ θ

θ θ θ

θ θ θ
θ

⎧ Δ Δ⎡ ⎤
∈ − +⎪ ⎢ ⎥Δ = Δ⎨ ⎣ ⎦

⎪
⎩

 (17) 

 
where 0

iθ is the nominal mean value of each uncertain parameter. 
The OF mean and covariance can thus be directly evaluated numerically for each DV 

value by solving the two integrals:  
 

 ( )
( ) ( ) ( ) ( )

1 2

1 2

1 1

1 2 1 20

,
( )

U UU U
n n

s

nn
L L L L

sn n

Y
OF n

Y

b
b p p p d d d

θ θ

θθθ

θ θ

θ θθ θ

θ θ θ
θ θ θ θ

σ θ
μ θ θ θ θ θ θ

σ θ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫K K K  (18) 

 

 ( )
( ) ( ) ( ) ( )

1 2

1 2

1 1

2

2 2
1 2 1 20

,
( ) ( ) ( )

UU U
n

s

nn
L L L

sn

Y
OF OF n OF

Y

b
b b p p p d d d b

θ

θθθ

θ

θθ θ

θ θ θ
θ θ θ

σ θ
σ μ θ θ θ θ θ θ μ

σ θ

⎛ ⎞
⎜ ⎟= = −
⎜ ⎟
⎝ ⎠

∫ ∫ ∫K K K  (19) 

 
where, nθ  is the number of uncertain parameters. Moreover, the upper and lower interval 
limits of each uncertainty parameter are:  

 

 0

2
i

i i

L θθ θ
Δ

= −  (20) 

 

 0

2
i

i i

U θθ θ
Δ

= +  (21) 

 
 

5. Numerical Examples 
 

In this work as case of study, it is considered that the parameters afflicted by uncertainty are 
the frequency Sω  of the main system and the mass ratio μ  previous defined. These are 

collected in the uncertain vector ϑ : 

 sω
ϑ

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (22) 

 
Concerning the system frequency, it is well known that this is often difficult to predict 

accurately. The actual value is, in fact, usually determined by full-scale measurements after 
that the structure has been constructed, and it may vary with the time. For this reason, in 
many real applications the natural frequency of the TMD has been designed as tuneable on 
site [15]. 
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Moreover, one should consider that also the mass of the main system may be afflicted by 
significant variation during the service life, especially in presence of time variable masses, 
as for example in civil buildings or bridges. For this reason, the mass ratio has been assumed 
as an uncertain parameter in this study. No uncertainty about the main system damping has 
been assumed, even if in real situations one should also consider that there are some 
uncertainties about the dissipation during the dynamic motion of the system. Nevertheless, 
different authors [16], [6] have observed that this parameter has a very limited influence on 
optimal TMD parameters.  

Figures 3 show the mean and the RMS of OF obtained by using Eqs. (12) and (13) in the 

space of variables  0
T

T
S

ωρ
ω

=  and Tξ . The characteristics of the analysed system are given 

in Table 1. 
 

Table 1. Characteristics of the analysed system 

Deterministic parameters Symbol Deterministic value 

Input filter damping ratio 
fξ  0.4 

Input filter frequency 
fω  62.83 (rad/sec) and 20.04 (rad/sec) 

Input White Noise intensity 
0S  1000 (cm2/sec3) 

Main system damping ratio 
Sξ  5% 

Nondeterministic parameters Symbol  

Main system frequency nominal value 0
S

ω  45 (rad/sec) 

Main system frequency band 
amplitude SωΔ  8,706 (rad/sec) 

Mass ratio nominal value 0μ  0,05  

Mass damping ratio band amplitude 
μΔ  0,017 

 
Figures 3(a) and 3(b) correspond, respectively; to two different values of parameter 

0
S

f
ω

ωψ
ω

=  that is the ratio between the nominal value of the main system frequency and the 

predominant frequency of the motion.  
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Figure 3(a). OFμ  and OFσ  in space of design variables Tρ  and Tξ . 0.71ωψ =  

 

Figure 3 (b). OFμ  and OFσ  in the space of design variables Tρ  and Tξ . 2.2ωψ =  

 
First of all, one must notice that the conventional solution, obtained by assuming that all 

involved parameters are deterministic (this solution is the white point in Figures 3(a) and 
3(b) does not correspond exactly to the minimum of the mean value of the OF. At the 
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contrary, the value of RMS of the OF is greater if compared to those relative to the 
minimum local point of OFμ . 

In the next part of this section the results of the sensitivity analysis carried out with 
regard the proposed TMD robust design method are shown. More precisely, the 
investigation concerns the uncertainty level of main system frequency and mass ratio, the 
weight factor and the frequency content of excitation. The parameters are listed in Table 1, 
where the nominal values of the main system frequency and mass ratio are reported together 
with the band amplitude in the case of uncertain parameters. 

Concerning the level of uncertainty, three different uncertain configurations will be 
considered: these are defined by imposing that the mean value (equal to the nominal one in 
Table 1) and RMS are the only known parameters, and that the PDF has a uniform 
distribution, as stated before. By using this assumption, and considering that the distribution 
amplitude is 12σΔ = , one obtains the three configurations listed in Table 2, where   

 

 ok μ
μ

σ
μ

=  (23) 

 

 S

S o
S

k ω
ω

σ
ω

=  (24) 

 

Table 2. Different levels of uncertainty of main system frequency and mass ratio 

Parameters kμ  
S

kω  μΔ  sωΔ  

Configuration a 0,050 0,050 0,009 7,379 

Configuration b 0,075 0,075 0,013 11,67 

Configuration c 0,100 0,100 0,017 15,58 

 
Optimum solution has been investigated for different input filter frequencies. 

Specifically, the numerical analyses have been carried out with regard to two different input 

filter configurations, defined by means of the parameter 
0
S

f
ω

ωψ
ω

= , assuming that the 

damping fξ  is equal to 0. 4. 
In Table 3 the deterministic solution obtained by means of the conventional approach is 

shown, where it is assumed that the nominal values of uncertain parameters are 
representative of a deterministic condition, which is unaffected by uncertainty.  

The optimum solution is expressed in terms of optimum value of design variables: 
optimum TMD damping ratio TDM opt

Tξ , and optimum frequency ratio opt
Tρ , which define 

www.SID.ir



Arc
hi

ve
 o

f S
ID

G. Carlo Marano and R. Greco 446 

the optimum design vector optb . In the following, the symbols opt
T convξ  and 

0

opt
opt T conv
T conv

S

ωρ
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, collected in opt

convb , will indicate the optimum solution in terms of 

design vector, in the case of deterministic conventional solution. 
 

Table 3. Deterministic optimum solutions for two different soil configurations 

0
Sω (rad/sec) fω (rad/sec) 

f

'
s

ω
ωψ =ω  OF= 0

S

S

ω

ω

σ
σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 ( )opt
T convξ

 
0

opt
opt T conv
T conv

S

ωρ
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

45.0 62.8 0.71 0.7199 0.1079 0.9238 

45.0 20.04 2.20 0.8811 0.1217 0.8667 

 
Table 3 shows that in the hypothesis of conventional optimization a reduction of about 

28% and 12% takes place for the covariance response. The different level of TMD 

efficiency depends on the parameter 
f

'
s

ω
ωψ =ω , which indicates the resonance condition of 

the system motion with respect to the ground one. Obviously, the maximum reduction takes 

place for the resonant system, which corresponds to 1ω −= ~
ω
ωψ

f

'
s . 

A comparative analysis on optimum solution has been carried out with the aim to show 
differences that take place if system parameters are considered as uncertain and not as 
deterministic quantities. 

In Figure 4 the optimized OF is plotted as the parameter ωψ  varies. More precisely, the 
Figure on the left shows three curves which represent, respectively, the conventional 
solution, which corresponds to the optimum solution opt

convb  (continuous line), the mean value 

of the OF evaluate in opt
convb  by considering the uncertainty in the parameters (dash-dot), and 

the mean value of the OF obtained in the case of complete robust optimization (dashed line).  
Moreover, on the right of the same Figure there are shown the standard deviation ( )OFσ  

in case of robust optimization (dashed line) and the standard deviation ( )OFσ  evaluated in 
opt

convb  by considering the uncertainty in the parameters (dash-dot). 
From Figure 4 one can deduce that the deterministic solution in terms of OF, obtained by 

means of a conventional optimization, is underestimated if compared with its mean value 
evaluated by Eq. (5) , obtained by adopting opt

convb  and then carrying out the optimization by 
considering the uncertainty in system parameters. Moreover, it is evident that if the 
uncertainty which affects the parameters of the system is not considered, the TMD 
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performance is overestimated. One should point out that a robust solution (the weight 
coefficient has been assumed in the example equal to 0.5) furnishes in mean a performance 
just little bit lower that obtained by considering opt

convb . On the contrary it is evident by 
analyzing ( )OFσ  that the robust solution shows a scatter lower than those obtained by 
considering opt

convb , that means the conventional optimization gives a solution less sensitive to 
variability of uncertain parameter.  

Finally, with regard to the sensitivity analysis carried out with respect to ωψ , one can 
observe from Figure 4, as previous mentioned, that the higher performance is attained when 

1ω −= ~
ω
ωψ

f

'
s . Moreover discrepancies between conventional and robust solution grow as 

this parameter increases.  
Also ( )OFσ can be strongly influenced by ωψ . More precisely, when ωψ is smaller than 

1, the values of ( )OFσ are not much different each others. Instead, if this parameter 
becomes greater than the unit, the difference between the robust solution and that obtained 
by assuming opt

convb  is more emphasized. Anyway, the results here obtained indicate that a 
major dispersion in TMD performance evaluation takes place if ωψ <1 when a conventional 
optimization is adopted rather than a robust one.  

 

 

Figure 4. Mean value and variance of OF evaluated in case of conventional and robust 
optimization. It is assumed β=0.5 
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Figure 5. Optimum solution in terms of design variables in case of conventional and robust 
optimization. It is assumed 0.5β =  

 
Concerning optimum design variables, from Figure 5 one can deduce that robust and 

conventional solutions give dissimilar results. More precisely, for what concerns the design 

variable 0

opt
opt T
T

S

ωρ
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, the robust solution overestimates this parameter if compared with 

the robust one (moreover, as previous shown, the performance is larger). The difference 
between the two solutions grows up as the parameter ωψ  increases and then remains almost 
constant.  

With regard the optimum TMD damping ratio opt
T convξ , from Figure 5 one can deduce that 

the conventional optimum values are underestimated with respect to the robust solution. 
Also for this parameter the difference between robust and conventional becomes larger as 

ωψ  increases. 
In Figures 6(a) and 6(b) the results of the multi-objective robust design of TMD is shown 

for three uncertain configurations (Table 2) and for two different values of ωψ . More 
precisely, optimum Pareto fronts are obtained for 2.2ωψ =  (in Figure 6(a)) and for 

0.71ωψ =  (Figure 6(b)). The weight coefficient has been assumed 0.5β = . Different lines 
correspond to various uncertainty levels.  

The conventional optimum solution, that is a single OF evaluated without considering 
any uncertainty of system parameters is also represented by the single dash-dot vertical line. 
Moreover, the points represent the mean and the RMS of the OF, obtained by adopting the 
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conventional solution opt
convb  and then taking into account the uncertainty of system 

parameters.  
 

 

Figure 6(a). Pareto set evaluated for different uncertain configurations given in Table 2 
( 2.2ωψ = ) 

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

0.01

0.015

0.02

0.025

0.03

0.035

μ
O.F.

σ O
.F

.

 

 

configuration (a)
configuration (b)
configuration (c)

 

Figure 6(b). Pareto set evaluated for different uncertain configurations given in Table 2 
0.71ωψ =  
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From Figures 6(a) and 6(b), one can deduce that the conventionally optimized OF 
overestimates TMD performance with respect to real situation, in which uncertainty of 
system parameters is considered. This outcome is evident by observing that all Pareto fronts 
are on the right of the vertical line which indicates the conventional OF value. Moreover, the 
distance between this line and the Pareto front points measures the difference between real 
(with uncertainty) and purely ideal (without uncertainty) solution. This distance obviously 
tends to grow up with the increase of the level of the uncertainty. 

Furthermore, one can observe that Pareto fronts become wider as the uncertainty level 
increases; moreover, as the level of the uncertainty grows up, the same performance in mean 
value is obtained with a greater RMS.  

In addition, one can observe that the variation of the OF mean value and RMS is narrow 
in the configuration (a), while this variation becomes  wider in the case of configuration (b) 
and, especially in (c). Points which correspond to the conventional solutions are always 
dominated in relation to the corresponding Pareto’s fronts obtained through a robust method. 
This means that it is possible by means of robust solution to obtain better performance 
without increase the scatter of solution. Greater levels of uncertain structural parameters lead 
to greater dominance of the solutions. Particularly, in the case of configuration (a), the 
points corresponding to the conventional solution lie in the front (Figure 6(a)), while in case 
of (b) and (c) they clearly lie inside the feasible domain.  

Regarding the analysis developed in this work, one can deduce that the conventional 
solution is not different from that obtained by means of a multi-objective robust approach, 
only in the case of low levels of uncertainty. In this condition the Pareto front is narrow and 
the conventional solution is localized on the same front. Moreover, the distance between the 
conventional solution and each point of Pareto front is moderate. On the contrary, in case of 
high levels of uncertainty, the conventional solution does not represent the real TMD 
efficiency and the solution lies more inside the feasible domain.  

In Figures 7(a) and 7(b) ( 2.2ωψ =  and 0.71ωψ = , respectively) the optimized OFμ  and 

OFσ (continuous lines) are plotted for different values of weight factor β. In these Figures 
the conventional solutions are also represented (dashed lines). One can immediately point 
out that by increasing the weighting factor value, the robust optimal solution tends to reduce 
the OF mean value, but at the same time it increases its RMS. This result means that a more 
robust optimal solution is characterised by a general reduction of structural performance, 
expressed by the OF mean value. This is, on the other hand more stable and less sensitive to 
uncertainty sources. This variation in consideration is expressed by a general reduction of 
OF RMS. These variations in OF first and second statistical moments are more evident for 
greater uncertainties (configuration b and c), while they tend to be negligible for low levels 
of uncertainty (configuration a). 
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Figure 7(a). Variation in optimum OF mean and RMS for different weight values β . It is 
assumed 2.2ωψ =  
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Figure 7(b). Variation in optimum OF mean and RMS for different weight values β . It is 
assumed 0.71ωψ =  
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Finally, elements of the optimum robust design vector  
opt
robb   are plotted in Figures 8(a) 

( 2.2ωψ = ) and 8(b) ( 0.71ωψ = ), where also the conventional solution is shown. 

Concerning the optimum TMD frequency ratio T
optρ , one can deduce that this parameter 

shows two different trends as β varies in relation with the value assumed by ωψ . More 
precisely if 1ωψ ≤  (Figure 8(a)) when β increases the optimum TMD frequency first grows 

up, reaching a maximum value, then it decreases. If ωψ >1 (Figure 8(b)), T
optρ  decreases by 

the increase of weight factor β. Moreover, one can notice that as the uncertainty level 
increases from configuration a) to configuration c) the optimum TMD frequency ratio 
decreases. Furthermore, it can be larger or smaller with respect to the conventional 
configuration in relation to the value assumed by β, for 2.2ωψ = , whereas for 0.71ωψ =  
the conventional solution gives always values greatest that the robust ones.  

With regard the optimum TMD damping ratio, the robust solution supplies always a 
solution larger than those obtained by conventional optimization. Moreover, values decrease 
with the increase of the weight factor β . Uncertainty configuration can have an important 
effect: the greater is the uncertainty level, the greater is the required optimal damping for 
TMD device. This trend is the same in both frequency ratio ωψ  configurations here 
considered.  
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Figure 8(a). Sensitivity of optimum design vector elements with respect to β ; 2.2ωψ =  
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Figure 8(b). Sensitivity of optimum design vector elements with respect to β ; 0.71ωψ =  

 
 

Conclusions 
 

A robust optimal design criterion for a single TMD device intended for suppressing the 
vibration level in dynamic systems is here proposed. Robustness is obtained by finding 
solutions insensitive to variation of system parameters due to uncertainty. The dynamic 
input is represented by a random base acceleration modelled by a stationary filtered 
stochastic process. The main system is described by a single degree of freedom; its mass and 
stiffness are assumed to be affected by uncertainty so that the main system frequency and 
the TMD mass ratio are represented by random uniform bounded stochastic variables. The 
performance index is assumed to be the factor of reduction of system displacement. In order 
to obtain a robust optimum design, mean and standard deviation of Objective Function are 
then evaluated. Robust optimization is formulated as a multi objective optimization problem, 
in which both the mean and the standard deviation of the deterministic OF are minimized. It 
is assumed that uncertain parameters are described by two independent random variables 
with uniform distributions, so that only the distribution extremes are needed for a complete 
statistical characterisation.  

Some interesting conclusions can be drawn with regard to the results obtained. First, 
results attained have showed an improvement in the evaluation of performance of TMD, and 
a limitation of OF real values dispersion, especially if compared with standard conventional 
solutions. In fact, robust solutions are able to control and to reduce the final OF dispersion, 
by limiting the standard deviation. Results have pointed out that the  deterministic solution 
in terms of OF, obtained by means of a conventional optimization, is underestimated if 
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compared with its mean value obtained by adopting opt
convb  (conventional solution)  and then 

carrying out the optimization by considering the uncertainty in system parameters. 
Moreover, it is evident that if the uncertainty which affects the parameters of the system is 
not considered, the TMD performance is overestimated.  

The proposed method can also be suitably used when more accurate information about 
uncertain parameters are known, for instance by using different probability distributions 
such as beta. Finally, the number of uncertain sources can be incremented to take into 
account more parameters, without a serious computational cost increment. 
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