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Abstract 
 

In the present study, Discrete Singular Convolution (DSC) method is developed for free 
vibration analysis of plates and membranes with trapezoidal shape. The straight-sided 
quadrilateral domain is mapped into a square domain in the computational space using a four-
node element. By using the geometric transformation, the governing equations and boundary 
conditions of the plate are transformed from the physical domain into a square computational 
domain. Numerical examples illustrating the accuracy and convergence of the DSC method for 
trapezoidal plates and membranes are presented. The results obtained by DSC method were 
compared with those obtained by the other numerical and analytical methods. 
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1. Introduction 
 

Membranes and plates are widely used in various engineering applications. Membrane 
structures are frequently encountered in most practical acoustical and technological applications. 
Hence, many researchers in this area have been carried out.  The analysis of straight-sided 
quadrilateral plates has been the subject of the research of structural and mechanical 
engineering. Cubic serendipity shape functions were first employed for arbitrary shaped 
general plates by finite strip method [1,2]. Following, Wang et al. [3] and Geannakakes [4] 
also used a similar approach to analyze irregular plates using the finite strip method in 
conjunction with orthogonal polynomials and linear serendipity shape functions, 
respectively. Liew and Han [4] introduced a mapping technique to apply the differential 
quadrature (DQ) method for analysis of. Blending functions was employed by Shu et al. [5] 
for vibration analysis of curvilinear quadrilateral plates using the DQ method. Bert and 
Malik [6] improved the numerical accuracy by using the DQ method for plate vibration with 
irregular domain. Following, a DQ solution for straight-sided quadrilateral plates has also 
been presented by Karami and Malekzadeh [7,8]. Detailed reviews on vibration analysis of 
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plates have been made by Leissa [9-13]. The primary objective of this study is to give a 
numerical solution of free vibration analysis of trapezoidal plates and membranes. For this 
purpose, the straight-sided quadrilateral domain is mapped into a square domain in the 
computational space using a four-node element.  

 
 

2. Discrete Singular Convolution  
 

Discrete Singular Convolutions (DSC) algorithm introduced by Wei [14].  Wei and his co-
workers first applied the DSC algorithm to solve some mechanics problem [15-18]. Zhao et 
al. [14,20] analyzed the high frequency vibration of plates and plate vibration under 
irregular internal support using DSC algorithm. Numerical solutions of free vibration 
problem of rotating and laminated conical shells and plates on elastic foundation have been 
proposed by the present author [21-25]. In a general definition, numerical solutions of 
differential equations are formulated by some singular kernels.  A singular convolution can 
be defined by [14] 

 

 
∫ −=∗=
∞

∞−
dxxηxtTtηTtF )()())(()(  (1) 

 
Where )( xtT − is a singular kernel. For example, we have the singular kernels of delta type 
as [15]: 

 

 )()( )( xδxT n= ;  (n = 0, 1, 2, ...,). (2) 
 
Kernel )()( xδxT =  is important for interpolation of surfaces and curves and 

)()( )( xδxT n=  for n>1 is essential for numerically solving differential equations. Recently, 
the use of some new kernels and regularizer such as delta regularizer [15-20] was proposed 
to solve applied mechanics problem. The Shannon’s kernel is regularized as [12] 
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Where ∆ is the grid spacing. Eq. (3) can also be used to provide discrete approximations to 
the singular convolution kernels of the delta type [18] 
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where )()( xxδxxδ kk α −∆=−∆  and superscript (n) denotes the nth-order derivative, and 
2M+1  is the computational bandwidth which is centred around x and is usually smaller than 
the whole computational domain. In the DSC method, the function f (x) and its derivatives 
with respect to the x coordinate at a grid point xi are approximated by a linear sum of 
discrete values f (xk) in a narrow bandwidth [x-xM, x+xM ]. This can be expressed as 
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kki
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Where superscript n denotes the nth-order derivative with respect to x. The xk is a set of 
discrete sampling points centred around the point x, σ  is a regularization parameter, ∆ is the 
grid spacing, and 2M+1 is the computational bandwidth, which is usually smaller than the 
size of the computational domain.  

 
 

3. Geometric Mapping for Straight-Sided Plates 
 

Consider an arbitrary straight-sided quadrilateral plate in the Cartesian x-y plane, as shown 
in Figure 1(a). The geometry of this plate can be mapped into a rectangular plate in the 
natural ξ-η plane, as shown in Figure 1(b). By employing the following transformation 
equations the physical domain is mapped into the computational domain  
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Where xi  and yi  are the coordinates of node i in the physical domain, N is the number of grid 
points, and ),( ηξΦ i ; i= 1,2,3,…,N are the interpolation or shape functions. These are given 
for node i [4]; 
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Using the chain rule, the first-order, and second order derivatives of a function are given 
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where ξi  and  ηi  are the coordinates of Node i in the ξ-η plane, and ijJ are the elements of 
the Jacobian matrix. The above transformations will be used later to transform the governing 
differential equations and related boundary conditions from the physical domain x-y into the 
computational domain ξ-η. Thus an arbitrary-shaped quadrilateral plate may be represented 
by the mapping of a square plate defined in terms of its natural coordinates.  
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Figure 1. Mapping of arbitrary quadrilateral plates into natural coordinates  

 
 

4. Fundamental Equation of Motion 
 

4.1 Plate 
The normalized governing differential equations for vibration of thin plates are given as 
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Where Dhω /22 ρ=Ω . Also, D  is the coefficient of the bending rigidity for plate, h is the 
plate thickness, xN  and yN  are the applied compressive loads in the respective x and y 
directions, q is the pressure, w is the deflection, ρ  is the density,  x and y are the midplane 
Cartesian coordinate. 
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Where 2∇ is the Laplace operator. Thus, Eq. (11) takes the following simple form: 

 
 WWXY

222 )( Ω=∇∇     (13) 
 

Consider the following differential operators before discretizing the governing 
differential equations  
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Thus, the fourth-order derivatives can be given in terms of the second order derivatives, 

that is, 
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After the transformation process, the following form can be given for the first-, second, 

and the fourth-order derivatives, respectively 
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Using the differential operators in Eqs. (18-24), the normalized governing equation, i.e., 

Eq. (13), takes the following form 
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Employing the transformation and DSC rule, the governing Eq. (25) becomes 
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For convenience and simplicity, the following new variable is introduced:  
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Such that the governing equations of plate for free vibration can be expressed as 
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In order to the discretized form of Eq. (13) in its natural coordinate, we apply Eqs. (28) to 

below equation 
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On substituting Eq. (28) into Eq. (29) the governing equation can now be given by 
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Therefore, the governing equation is given by the matrix notation as 
 

 .)2( 24224 WWDIDDID Ω=⊗+⊗+⊗ ηξηξηξ  (31) 
 

Where  Iξ and ηI are the ),(;)1( 2 ηξ=+ rN r   unit matrix and ⊗ denotes the tensorial 
product. Two types of boundary conditions, i.e., simply supported (S) and clamped (C) are 
taken into consideration. Following, the related formulations and their DSC form are given 
in detail.  

 
i) For simply supported edge (S) 
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ii) For clamped edge (C) 

 

 0=W , .0=
∂
∂

n
W

 (33) 

 
Where n and s denote the normal and tangential directions of the plate, respectively. It is 
known that, to obtain a unique solution for a differential equation, appropriate boundary 
conditions must be satisfied. In applying the DSC method Wei et al. [17,18] and Zhao et al. 
[19-21] proposed a practical method in applying the simply supported and clamped 
boundary conditions. We used the same procedure proposed by Wei et al. [17] and Zhao et 
al. [20], in this study. Finally, after boundary conditions being implemented, the 
differentiation matrix (for example vibration case), in Eq. (31) is given as 

,...),n;Y,Xr(D n
r

* 21== . Here 
n
r

*D  is a )()( 22 −×− NN  differential matrix and 
superscript * is introduced to avoid confusion in differential matrix with n

rD  in Eq. (31). 
Thus, Eq. (31) is rewritten as 

 
 .)2( 24224 WW Ω=⊗+⊗+⊗ ηξηξξ η **** DIDDID  (34) 

 
in which W is the column vector, that is, 

 
T

NNN WWWW ),...,,...( ,,,, 22122111 −−−=W       (35) 
 

4.2 Membrane 
Membranes are widely used in various engineering applications such as the design stage of 
microphones, pumps, pressure regulators, and other acoustical applications [21-31]. The 
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governing differential equation for free vibration of membranes is [26] 
 

,02
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2
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Y
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        (36) 

 
where W is the transverse deflection, ρ  is the mass per unit area, ω  is the circular 
frequency, and T is the tension per unit length. The density of the membrane is the linear 
function of the x. In Eq. (36) the non-dimensional variables have been used given below 
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Applying the discrete singular convolution to the governing equation yields 
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The boundary conditions are as follows: 
 

W=0 at edges                                          (39) 
 
Employing the transformation rule, the governing Eq. (38) becomes, 
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5. Numerical Results 
 

The results given in this section are aimed to illustrate the numerical accuracy of the 
proposed DSC based coordinate transformation method. The plates of various geometries 
are designated by the boundary conditions at their edges (Figures 2-3). For example, the 
symbol CSCS trapezoidal plate indicates that the trapezoidal plate would have the parallel 
edges clamped (C) and the other two nonparallel edges simply supported (S). The results are 
listed in Table 1 are for trapezoidal plate of Figure 2 and having three different boundary 
conditions. The following geometric properties are used for the trapezoidal plate: 2h/c=1.5, 
d/c=0.4. The results are compared with those obtained by Bert and Malik [6]. Natural 
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frequency parameters of trapezoidal plate are given in Table 2, it is observed that a good 
agreement between the present calculated results and the results of literature [15] has been 
obtained.  It can be observed that the rate convergence of DSC technique is excellent and 
comparison agrees very well. Non-dimensional frequencies of symmetric SSSS trapezoidal 
plate for different geometric parameter are given in Table 2. In general, the frequencies 
increase with the increasing of a/d ratios.  

 
 

c 

a 

d 

β
x

y 

 

Figure 2. An unsymmetrical trapezoidal plate 

 

α 

c 

a 

d 

x

y 

 

Figure 3. Symmetric trapezoidal plate 

 
The fundamental frequency values are listed in Table 3 for different values of c/a and α 

for simply supported trapezoidal plate (Figure 3). In general, the values of frequency 
increase with an increase in the c/a ratio for plates with different value of α. This increasing 
of the frequency is more significant for α than the c/a ratio.  

Free vibration analysis of trapezoidal membrane (Figure 4) is considered. The results 
obtained by the present method are compared with the finite element solution [26]. The 
frequency values are given in Table 4.  The results are matching very well with the results 
given by Kang and Lee [26]. 
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Table 1. Natural frequencies ( Dρhπωa // 22=Ω ) of trapezoidal plate  
(2h/c=3.0;c/d=2.5; β=0) 

DQ results (Nζ=Nη= 17) 
Bert and Malik [6] 

Present DSC results  
Nζ=Nη= 16 

Mode sequence Mode sequence 
Boundary 
conditions 

1 2 3 1 2 3 

SSSSS 5.388 9.421 14.676 5.389 9.422 14.680 

CCCC 10.427 15.563 21.476 10.427 15.565 21.478 

SCSC 9.443 14.386 19.897 9.449 14.401 19.906 

 

Table 2. Non-dimensional frequencies of symmetric SSSS trapezoidal plate 

a/c 
a/d 

0.5 1.0 1.5 2.0 

1 7.032 4.450 3.771 3.514 

1.5 8.103 4.962 4.055 3.849 

2.0 8.694 5.288 4.268 3.837 

2.5 9.045 5.548 4.451 3.968 

 

Table 3. Non-dimensional fundamental frequencies ( Dρωa /2=Ω ) of symmetric SSSS 
trapezoidal plate 

α 
c/a 

60 65 70 80 

0.125 3.3515 2.1849 1.3302 0.3125 

0.25 3.5882 2.3251 1.4094 0.3283 

0.5 5.1403 3.1385 1.8216 0.4008 
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x
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β 

 

Figure 4. Trapezoidal membrane 

Table 4. Comparison of frequency values of the trapezoidal membrane (a/b=2.0; β= 70o; α=60o) 

Methods 
 

Mode Ref. 
33 

Present 
DSC 
N=11 

Present 
DSC 
N=13 

Present 
DSC 
N=15 

1 3.81 3.83 3.82 3.82 
2 5.29 5.30 5.27 5.27 
3 6.58 6.58 6.56 6.56 
4 7.07 7.07 7.05 7.05 

 
 

6. Concluding Remarks 
 

In the present study, using the DSC method, a numerical approach for the free vibration 
analysis of trapezoidal plates and membrane is presented. By using the geometric 
transformation, the governing equations and boundary conditions of the plate are 
transformed from the physical domain into a square computational domain. Several 
examples were worked to demonstrate the convergence of the method. Excellent 
convergence behavior and accuracy in comparison with exact results or results obtained by 
other numerical methods were obtained.    
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