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Abstract 
 

A discrete version of Particle Swarm Ant Colony Optimization (DPSACO) for design of 
frame structures is presented. DPSACO, similar to continous PSACO, is based on a particle 
swarm optimizer, worked as a global search, and ant colony optimization employed as a 
local search. In the DPSACO, the nearest permitted discrete value is replaced with any value 
selected by agents (Particles or ants). Therefore, the positions of all agents always contain 
the permitted discrete values. In order to improve the exploration of the proposed method, a 
new formula for particles' velocity is defined. Two design examples are tested using the new 
method and their results are compared with the results of other PSO-based algorithms to 
demonstrate the effectiveness of the presented method. 
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1. Introduction 

 
Particle Swarm Optimization (PSO) is a stochastic optimization method capable of handling 
non differentiable, nonlinear, and multi module objective functions. The PSO approach is 
motivated from the social behavior of bird flocking and fish schooling [1]. PSO has a 
population of individuals that move through search space and each individual has a velocity 
that acts as an operator to obtain a new set of individuals. Individuals, called particles, adjust 
their movements depending on both their own experience and the population’s experience. 
At each iteration, a particle moves towards a direction computed from the best visited 
position and the best visited position of all particles in its neighborhood. In this approach, 
except the particle that is the best experience of particles, the effect of other particles is 
ignored. So the probability of becoming trapped in the local points is increased [2]. 
Recently, authors have presented the Particle Swarm Ant Colony Optimization approach 
(PSACO) [3] to avoid this problem. In PSACO, the PSOPC algorithm (a hybrid PSO with 
passive congregation [4]) is combined with the ant colony algorithm. The PSACO applies 
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the PSOPC for global optimization and ant colony approach is employed as a local search, 
wherein, ants apply pheromone-guided mechanism to update the positions found by the 
particles in the earlier stage.  

The PSACO, similar to PSO and PSOPC, is a continuous approach while, in practical 
structural optimization problems, industrial cross sections are used which have discrete values 
and as a result a discrete solution is better than continuous one for this kind of the optimization 
problems [5]. This paper presents a discrete version of PSACO (DPSACO) for design of frame 
structures. In the proposed method, particles (or ants) are allowed to select discrete values from 
the permissible list of cross sections, and if any one of particles (ants) selects another value for 
a design variable, the DPSACO changes the amount of it with the value of the nearest discrete 
cross section. In addition, in this paper the formula of particles' velocity is changed to improve 
the performance of the proposed method. Two design examples are tested using the new 
method and their results are compared with the results of PSO, PSOPC and primary PSACO. 
The remaining sections of this paper are organized as follows:  

The problem formulation is given in Section 2. Section 3 includes a brief review of the 
PSACO algorithm. Section 4 describes a discrete PSACO algorithm, and Section 5 contains 
two illustrative examples. Section 6 includes the concluding remarks. 

 
 

2. Discrete Optimum Design of Steel Frames 
 

Optimal design of frame structures can be formulated as  
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subjected to the following constraints [6]: 
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where X is the vector containing the design variables; Di is an allowable set of discrete 
values (a set of 267 W-sections from the AISC database in this paper) for the design variable 
xi;  ng is the number of design variables or the number of groups; r(i) is the number of 
available discrete values for the ith design variable; f(X) is the cost function which is taken 
as the weight of the structure; iγ  is the material density of member i; iL  is the length of 

member i; iσ  is the stress in member i; a
iσ  is the allowable stress in member i; nm is the 

number of members making up the frame; T∆  is the maximum lateral displacement; H is 
the height of the frame structure; R is the maximum drift index; j∆ is the inter-story drift; 

jh is the story height of the jth floor; ns  is the total number of stories; and RI is the inter-
story drift index permitted by the code of the practice. 

If the code of the practice is selected AISC 2001 [7], the allowed inter-story drift index 
is 1/300 and the LRFD interaction formula constraints (AISC 2001, Equation H1-1a,b) is 
defined as  
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where uP  is the required strength (tension or compression); nP  is the nominal axial strength 
(tension or compression); φc is the resistance factor (φc =0.9 for tension,  φc =0.85 for 
compression);  Mux and Muy are the required flexural strengths in the x and y directions, 
respectively; Mux and Mny are the nominal flexural strengths in the x and y directions (for 
two-dimensional structures, 0=nyM ); and φb is the flexural resistance reduction factor 
(φb=0.90). 

In this paper, the constraints are handled by using a fly-back mechanism. Compared with 
other constraint-handling techniques, fly-back mechanism is relatively simple and easy to 
implement. In this method, the particles are initialized in the feasible region. When the 
particles fly in the search space, if any one of them flies into the infeasible region, it will be 
forced to fly back to the previous position to guarantee a feasible solution [8]. 

 
 

3. Review of Particle Swarm Ant Colony Optimization 
 

The implementation of PSACO algorithm consists of two stages. In the first stage, PSOPC is 
applied, and ACO is implemented in the second stage [3]. 

First stage involves a number of particles, which are initialized randomly in the feasible 
space. These particles fly through the search space and their positions are updated based on the 
best positions of individual particles, the best position among all particles in the search space 
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[9], and the position of a particle selected randomly from the swarm [4] in each iteration. 
The update moves a particle by adding a change velocity 1+k

iV  to the current position 
k
iX  as follows: 
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where ω  is an inertia weight to control the influence of the previous velocity; r1, r2 and r3 
are three random numbers uniformly distributed in the range of (0, 1); c1 and c2 are two 
acceleration constants; c3 is the passive congregation coefficient; k

iP  is the best position of 

the ith particle up to iteration k; k
gP is the best position among all particles in the swarm up 

to iteration k; and Ri is a particle selected randomly from the swarm [10]. 
In the second stage, ACO works as a local search, wherein, ants apply a pheromone-

guided mechanism to refine the positions found by particles in the PSOPC stage. The ACO 
algorithm handles P ants equal to the number of particles in the PSOPC stage, and each ant 
generates a solution around k

gP  which can be written as 
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g

k
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where, k

iZ  is the solution constructed by ant i in the stage k; ),( σk
gPN denotes a random 

number normally distributed with mean value k
gP  and variance σ , where 
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Where η is the step size; minA =2.51 in2 (W6×8.5); and maxA =249 in2 (W36×848). 

Then, objective function value for each ant, )Z(f k
i , is computed and the current 

position of ant i, k
iZ , is replaced with the position k

iX , the current position of particle i in 

the swarm, if )()( k
i

k
i ZfXf >  and current ant is in the feasible space. 

The above process continues, until the absolute value of every component of the velocity 
vector is greater than the exactitude of the solutions, shown as A*. This can be written as 
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By using this criterion, the extra iterations are eliminated and optimum solution is 

reached earlier [3]. 
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4. A Discrete Particle Swarm Ant Colony Optimization 
 

In 1997, Kennedy and Eberhart [11] proposed a kind of discrete particle swarm optimization 
algorithm (DPSO) on the basis of the primary continuous PSO algorithm. In DPSO, the 
movement of the particle is realized by flip of bit value, the position of any particle is 
expressed as a binary bit vector composed of 0 and 1. The velocity of the particle is no 
longer a change ratio of its position but a change probability of its position. That is to say, 
the velocity of any particle is a probability in which its position is 1 or 0, the bigger the 
velocity, the bigger the probability in which its position is 1.  

Many discrete PSO algorithms in literature are based on DPSO or relatively utilized 
DPSO principles. Instead, this paper presents a new discrete PSO-based algorithm, called 
discrete PSACO (DPSACO). The framework of DPSACO algorithm is illustrated in Figure 
1. In the DPSACO, new position of each agent is defined as following:  
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where )( XFix is a function which rounds each elements of X to the nearest permissible 
discrete value. Using this position updating formula, the agents will be permitted to select 
discrete values. Although this change is simple and efficient, it may be reduce exploration 
(global investigation of the search space) of the algorithm. Therefore, in this paper, the 
velocity of particles is redefined as following to increase the exploration: 
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where c4 is the exploration coefficient; r4 is a uniformly distributed random number in the 
range of (0, 1); and kRd  is a vector generated randomly from the search domain. 

For DPSACO, *A  (in Eq. (11)) is defined as  
 

⎪
⎩

⎪
⎨

⎧
=

0.
 .

.
A )i(*

1
10
050

      
898

898
129

.P 
.P9.12 

.P  

)i(k
g

)i(k
g

)i(k
g

>

≤<

≤

 (15)

 
where )*(iA  is the exactitude of the ith design variable; )(ik

gP  is the ith element of the k
gP . 
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Figure 1. The flow chart for DPSACO 
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5. Design Examples 
 
In this section, two frame structures are optimized with the proposed method. The LRFD 
specification (AISC 2001) and inter-story drift are considered as constraints for the second 
example but only lateral drift at the top of the structure is considered as the constraint for the 
first example. To demonstrate the effectiveness of this research, the final results of the 
DPSACO algorithm (using Eqs. 10, 12-14) are compared with solutions of other PSO-based 
algorithms containing: simple PSO, PSOPC (using Eqs. 7, 8), PSOPC+ACO (using Eqs. 7-
10). In addition, the result of the first example is compared with the result of a genetic 
algorithm and ACO from the literature.  

The steel members used for the design exercises are 267 W-shaped sections from the 
AISC database. A population of 50 individuals is used for both particles and ants; the value 
of constants c1 and c2 are set to 0.8, the passive congregation coefficient c3 and the 
exploration coefficient c4 are given 0.6 and 0.1, respectively. η  is set to 0.01. 

 
5.1 One-bay eight-story steel frame 
Figure 2 shows the configuration and applied loads of one-bay eight-story framed 
structure. The 24 members of the structure have been categorized into eight groups, as 
indicated in the Figure. The lateral drift at the top of the structure is the only 
performance constraint (no more than 2 in.). The modulus of elasticity is taken as E=200 
GPa (29000 ksi).  

The DPSACO algorithm found the optimal weight of the one-bay eight-story frame to be 
30.91 kN (6.95 kips). Authors [6] used an improved ACO (IACO) to design this frame 
resulting in a weight 31.05 kN (6.98 kips). Also, Kaveh and Shojaee [12] obtained a frame 
with 31.68 kN (7.12 kips) weight using ACO. Camp et al. [13] achieved a frame with 32.83 
kN (7.38 kips) weight by utilizing a genetic algorithm. Table 6 lists the optimal values of the 
eight design variables obtained by this research, and compares them with other results. 

Figure 3 compares the convergence rate of the various PSO-based algorithms and 
DPSACO. It takes about 2640 and 2350 iterations for the PSOPC and the PSO algorithms to 
converge, respectively. However the DPSACO and PSOPC+ACO algorithms take 627 and 
588 iterations to converge, respectively. Because of doing more explorations, the number of 
required iterations for reaching a solution by DPSACO is greater than PSOPC+ACO. 
Instead, the last result of DPSACO (30.91 kN) is better than the result of PSOPC+ACO 
(32.29 kN). 

 
5.2 Three-bay ten-story steel frame 
A 10-storey frame, shown in Figure 4, was first analyzed by Saka and Kameshki [14] under 
displacement and AISC combined strength constraints. The dimensions of the frame, the 
applied loading system, and the grouping of the members, are shown in the figure. The sway 
of the top storey was limited to 4.66 in (118.3 mm). The material has a modulus of elasticity 
E=200 GPa (29000 ksi) and a yield stress of fy=248.2 MPa (36 ksi). 
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Figure 2.  Topology of the one-bay eight-story frame 
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Figure 3.  Comparison of the convergence rates between various PSO-based algorithms for the 
one-bay eight-story frame 
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Table l. Optimal design comparison for the one-bay eight-story frame 

AISC W-shapes    

DPSACO  PSOPC+ACO  PSOPC  PSO  
Kaveh and 
Talatahari 

[6] IACO  

Kaveh and 
Shojaee 
[12] ACO  

Camp et 
al. [13] 

GA  

Element 
group No.  

W18×35 W18×35 W18×35 W14×34 W18×40 W21×50 W18×46 1 

W16×31 W16×31 W14×26 W16×26 W16×26 W16×26 W16×31 2 

W16×26 W14×22 W16×26 W16×26 W16×26 W16×26 W16×26 3 

W14×22 W12×16 W14×26 W12×26 W12×14 W12×14 W12×16 4 

W16×31 W21×48 W24×62 W21×44 W21×44 W16×26 W18×35 5 

W18×40 W18×40 W18×35 W14×34 W18×35 W18×40 W18×35 6 

W16×26 W16×31 W16×31 W21×83 W18×35 W18×35 W18×35 7 

W14×22 W16×36 W12×30 W12×30 W12×22 W14×22 W18×26 8 

30.91 
(6.95) 

32.29  
(7.26) 

34.21 
(7.69) 

36.89 
(8.29) 

31.05 
(6.98) 

31.68 
(7.12) 

32.83 
(7.38) 

Weight kN 
(kips) 

Note: GA= Genetic Algorithm; IACO= Improved Ant Colony Optimization 

 
 
The effective length factors of the members are calculated as 0≥xK  for a sway-permitted 
frame and the out-of-plane effective length factor is specified as 0.1=yK . Each column is 
considered unbraced along its length, and the unbraced length for each beam member is 
specified as one-fifth of the span length. 
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Figure 4.  Topology of the three-bay ten-story frame 
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Figure 5. Comparison of the convergence rates between various PSO-based algorithms for the 
three-bay ten-story frame 

 
The optimum design of the frame was obtained after 692 iterations by using DPSACO, 

which had the minimum weight of 211.41 kN (47.53 kips). The optimum designs for 
PSOPC+ACO, PSOPC and simple PSO had the weight of 215.19 kN (48.38 kips), 221.69 
kN (49.84 kips) and 235.08 kN (52.85 kips), respectively. Table 2 summarizes the optimal 
results and the number of the required iterations for the various algorithms. Figure 5 shows 
the convergence history for the various PSO-based algorithms. 

 

Table 2. Optimal design comparison for the three-bay ten-story frame 

AISC W-shapes  
DPSACO  PSOPC+ACO  PSOPC  PSO  

  Element group 
No.  

W12×72 W30×99 W14×74 W30×99 1 
W21×101 W12×87 W14×90 W12×96 2 
W21×48 W14×43 W10×49 W14×82 3 
W24×68 W21×83 W12×72 W18×76 4 
W14×43 W10×39 W14×43 W8×31 5 
W18×65 W14×53 W18×65 W14×53 6 
W8×28 W8×28 W16×36 W8×28 7 
W8×24 W8×24 W12×30 W8×24 8 

W18×40 W18×40 W21×44 W21×44 9 
211.41  
(47.53) 

215.19 
 (48.38) 

221.69 
(49.84) 

235.08 
(52.85) 

Weight kN  
(kips) 

679 635 2820 2590 Number of 
iterations 
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6. Concluding Remarks 
 
Particle Swarm Optimization is a stochastic optimization method capable of handling 
various objective functions. Although the PSO is a simple and effective method, the 
probability of becoming trapped in the local optimums is high. Particle Swarm Ant Colony 
Optimization approach (PSACO) prevents this problem by using the PSOPC algorithm for 
global optimization and ant colony approach as a local search. 

This paper presents a discrete version of PSACO (DPSACO) for design of frame 
structures. In this method, particles (or ants) are allowed to select discrete values from the 
permissible list of cross sections. A new formula for the velocity of particles is also defined 
to improve the performance of the presented method. The algorithm is tested on two frames. 
The comparison of results with those of PSO-based optimization algorithms, prove the 
robustness of the proposed method in optimizing frame structures. 

 
Acknowledgement: The first author is grateful to the Iran National Science Foundation for 
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