
Arc
hi

ve
 o

f S
ID

ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 9, NO. 6 (2008) 
PAGES 629-645 

 
 
SELF-ORGANIZING BACK PROPAGATION NETWORKS FOR 

PREDICTING THE MOMENT-ROTATION BEHAVIOR OF 
BOLTED CONNECTIONS 

 
 

E. Salajegheh*, S. Gholizadeh and A. Pirmoz 
Department of Civil Engineering, University of Kerman, Kerman, Iran 

 
 

Abstract 
 

Evaluating the moment-rotation behavior of bolted connections by finite element method is 
very intensive task in terms of computational cost. This study proposes an efficient neural 
system to predict the moment-rotation behavior of the connections. The neural system is 
called self-organizing back propagation (SOBP) networks. The SOBP includes two 
processing units: classification and approximation. In the classification unit, all the training 
data are divided into some classes by a self-organizing map network. In the approximation 
unit, a set of back propagation networks are employed to achieve the approximation task. 
The numerical results demonstrate the computational advantages of the SOBP.  

 
Keywords: Neural network; self-organizing map; back propagation; bolted connection; 
finite element.  

 
 

1. Introduction 
 

Connections in steel structures have been categorized into three types [1]: Type I, II and III. 
Type I connections (rigid connections) have enough stiffness to hold the angle between the 
beam and column almost unchanged. Type II are assumed to behave as pinned connections 
which have low rotational stiffness with respect to the beam flexural stiffness. Behavior of a 
large number of beam-to-column connections is between Types I and II. These connections 
have been categorized as Type III connections (semi-rigid connections) named Partially 
Restrained (PR) connections by AISC-LRFD [2]. Performing an accurate structural analysis 
and design of semi-rigid frames needs accurate moment-rotation response of their 
connections. 

Bolted top-seat angles with double web angle connections is categorized as PR 
connections [2] and does not have the brittle fracture behavior of corresponding welded 
connections; on the other hand it has the advantages of deformable failure patterns, 
relatively large energy dissipation capacity. In [3] an analytical study is done on two 5 and 
10 storey steel buildings with different strength and stiffness of interior hybrid semi rigid 
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frames and interior welded moment frames. The buildings were subjected to three 
earthquake excitations and the results showed that interior semi-rigid frames can lead to a 
less storey shear and column moment and high seismic performance. 

Analyses and design of a semi-rigid frame needs a clear understanding of moment-
rotation relation of its connections. Lots of studies have been performed all over the world to 
estimate moment-rotation behavior of bolted top and seat angle connection. Azizinamini [4] 
has experimentally studied the behavior of such connections under monotonic and cyclic 
loads, the results of his experiments is a vigorous reference used by later investigators to 
verify their proposed methods. Shen and Astaneh-Asl [5] have experimentally tested the 
behavior of bolted angle connections and their failure modes and deformation patterns. In 
the last years, numerical modeling especially finite element (FE) method is used to 
investigate the behavior of this type of connection [6-8]. 

Using FE method to study the behavior of bolted angle connections in spite of its 
accuracy is a time consuming method, thus many researchers proposed multy-linear and 
bilinear formulations to estimate behavior of such connections. Shen and Astaneh-Asl [5] 
proposed a hysteretic model of bolted angle connection based on fiber element formulation. 

Parametric study of behavior of double angle connections welded to column web and 
bolted to beam web under shear, tension and the combination of these loads is done using 
finite element method together with an experimental work in [9-11]. These studies showed 
that these types of connections under combination of axial and shear force, behave like 
simple shear connections. 

The effect of shear force on initial stiffness of top-seat angle connections with double 
web angles subjected to shear force by using FE method is studied in [12-13]. As the 
computational work of evaluation of the moment-rotation behavior by FE method is high, it 
is rational that for a parametric study a fast alternative is involved. In this case, artificial 
neural networks are the best candidates.  

In the last decade, artificial intelligence techniques have emerged as powerful tools that 
could be used to replace time-consuming procedures in many engineering applications. The 
interest showed to neural networks [14-15] is mainly due to their ability to process external 
data and information based on past experiences. 

Few investigations using neural networks to predict joints behavior can be found in the 
literatures. Abdala and Stavroulakis [16] have used neural networks to predict the global 
moment versus rotation curve of single web angle beam-to-column joints. Anderson [17] 
described the use of neural networks to predict a bilinear approximation of the moment 
versus rotation curves of minor axis beam-to-column endplate joints. De Lima et al. [18] 
employed BP neural networks to asses the behavior of beam-to-column joints.  

In the present study, an efficient neural system is designed to predict the moment-rotation 
behavior of the bolted connections. In the neural system two processing units are 
incorporated. In the first unit, called classification unit, all the training data are classified 
using a Self-Organizing Map (SOM) neural network. Training of the SOM neural network is 
performed in an unsupervised manner and the number of the classes is determined by a 
simple method. In the second unit, called approximation unit, a set of BP neural networks 
are trained with a robust training algorithm to predict the moment-rotation behavior of the 
bolted connections. This neural system is called self-organizing back propagation (SOBP) 
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neural networks. The numerical results show excellent performance generality for the SOBP 
in comparison with the single BP neural network. 

  
 

2. Connection Model 
 

The connection models selected for this study and verifying numerical modeling are taken 
from experiments of Azizinamini [4]. The objective of these tests is to investigate the effects 
of different geometric properties of connection such as top and web angles dimensions and 
bolt spacing on connection behavior. The test setup includes two beam segments with equal 
lengths which are symmetrically bolted to a stub column. Beam ends are simply supported 
and stub column can move vertically and applied load on center of stub column applies 
moment on connection. The test setup configuration is shown in Figure 1.  

  

 

Figure 1. Test setup configuration and connection parameters of 14SX specimens [4] 

 
2.1 Geometry of connection models  
Azizinamini experiments include 18 test specimens of bolted top and seat angle connections 
with web angles. Geometrical properties of 17 connections of his 18 experiments are listed 
in Table 1. 

 
2.2 Finite element modeling  
ANSYS [19] multi-purpose finite element modeling code is used to perform numerical 
modeling of connections. FE models created using ANSYS Parametric Design Language 
(APDL). Geometrical and mechanical properties of connection models were as parameters, 
thus the time of creating new models is considerably reduced. Numerical modeling of 
connection is performed including following considerations: all components of connection 
such as beam, column, angles and bolts head are modeled using eight node-first order 
SOLID45 elements and bolt shanks are modeled using SOLID64 element which can 
consider thermal gradient applied for pretension force of bolts [20-21]. Bolts holes are 1.6 
mm larger than bolt diameter. Just half of the connection is modeled because of the 
symmetry about web plane. The model contains just flange and stiffeners of the column 
assuming its high rigidity due to the stiffeners. ANSYS can model contact problems using 
contact pair elements: CONTA174 and TARGE170, which pairs together in a way that no 
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penetration occurs during loading process. So the effect of adjacent surfaces interaction, 
including angle-beam flange, angle/beam flange-bolt head/nut, bolt hole-bolt shank and 
effect of friction, are modeled using mentioned contact elements. Bolts head and nut 
modeled hexagonal and similar to their actual shape. To consider the frictional forces, 
Coulomb’s coefficient is assumed as 0.25 as the yielded results had better agreement with 
test results. The FE model and mesh pattern of connection is shown in Figure 2. Shape of 
bolts head and nut, stiffeners of column stub and nonlinearity of bolt shanks (discussed in 
Section 2.4) are main differences between current study and Ref. [6] models. 

 

Table 1. Geometrical properties of Azizinamini connections 

Top and Seat angle Web angle 

Specimen
Number 

Bolt 
diamete
r (mm) 

Column 
section 

Beam 
section 

Angle 
Lengt

h 
(mm) 

Gauge 
(mm) 

Bolt 
spacing 
(mm) 

Angle Length 
(mm) 

14S1 19.1 W12X96 W14X38 L6X4X3/8 20.32 6.35 13.97 2L4X3-1/2X1/4 215.9 

14S2 19.1 W12X96 W14X38 L6X4X1/2 20.32 6.35 13.97 2L4X3-1/2X1/4 215.9 

14S3 19.1 W12X96 W14X38 L6X4X3/8 20.32 6.35 13.97 2L4X3-1/2X1/4 139.7 

14S4 19.1 W12X96 W14X38 L6X4X3/8 20.32 6.35 13.97 2L4X3-1/2X3/8 215.9 

14S5 22.3 W12X96 W14X38 L6X4X3/8 20.32 6.35 13.97 2L4X3-1/2X1/4 215.9 

14S6 22.3 W12X96 W14X38 L6X4X1/2 20.32 6.35 13.97 2L4X3-1/2X1/4 215.9 

14S8 22.3 W12X96 W14X38 L6X4X5/8 20.32 6.35 13.97 2L4X3-1/2X1/4 215.9 

8S1 19.1 W12X58 W8X21 L6X3-
1/2X5/16 15.24 5.08 8.89 2L4X3-1/2X1/4 139.7 

8S2 19.1 W12X58 W8X21 L6X3-1/2X3/8 15.24 5.08 8.89 2L4X3-1/2X1/4 139.7 

8S3 19.1 W12X58 W8X21 L6X3-
1/2X5/16 20.32 5.08 8.89 2L4X3-1/2X1/4 139.7 

8S4 19.1 W12X58 W8X21 L6X6X3/8 15.24 13.72 8.89 2L4X3-1/2X1/4 139.7 

8S5 19.1 W12X58 W8X21 L6X4X3/8 20.32 6.35 8.89 2L4X3-1/2X1/4 139.7 

8S6 19.1 W12X58 W8X21 L6X4X5/16 15.24 6.35 8.89 2L4X3-1/2X1/4 139.7 

8S7 19.1 W12X58 W8X21 L6X4X3/8 15.24 6.35 8.89 2L4X3-1/2X1/4 139.7 

8S8 22.3 W12X58 W8X21 L6X3-
1/2X5/16 15.24 5.08 8.89 2L4X3-1/2X1/4 139.7 

8S9 22.3 W12X58 W8X21 L6X3-
1/2X3/16 15.24 5.08 8.89 2L4X3-1/2X1/4 139.7 

8S10 22.3 W12X58 W8X21 L6X3-1/2X1/2 15.24 5.08 8.89 2L4X3-1/2X1/4 139.7 
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Figure 2. FE modeling of connection 14S2 with 16070 elements and 17134 nodes 

 
2.3 Boundary conditions and applied loads  
To satisfy symmetry conditions all nodes of web plane are restrained against outward 
motion. Here it should be noted that, since the beams of the connections are compact 
sections so the local buckling instabilities occur in the inelastic range or high stress levels, 
while the von Mises stress distribution in FE models clarifies that the beam remains almost 
elastic and so the local buckling failure mode can be ignored in the FE models. Bolts 
pretension is applied as the first load case, for this purpose a thermal gradient is applied on 
bolts shank to yield an equivalent pretension force yields. Since there is no information 
about the amount of bolts pretension in this experiment, design values of pretension force 
[2] are applied. 178kN pretension force is applied to 22.3 mm bolt diameter and 133kN for 
19.1 mm. To apply bolts pretension, a thermal gradient imposed on bolts shank as first 
loading case. The 50 mm vertical displacement is applied on the nodes of beam end to 
impose the moment on connection. This value of beam end displacement yields a rotation 
near to 0.03 rad. Resulting moment and relative rotation of connections are evaluated as: 
 

L.PM =                                                                 (1) 

h
R 21 εε −

=                                                               (2) 

 
where M is applied connection moment, P is summation of the reactions of applied 
displacement on beam end nodes; L corresponds to beam length, R is relative rotation of 
connection, h is beam depth, 1ε  and 2ε are relatively top and bottom flange horizontal 
displacements, respectively.  
 
2.4. Material properties 
Stress-strain relation for all connection components except bolts is represented using three-
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linear constitutive model. Isotropic hardening rule with von Mises yielding criterion is 
applied to simulate plastic deformations of connection components and fracture of material 
is not considered. ASTM A36 steel was used for the beam, column and angles. In current 
study mechanical properties of beam, column and angles materials are taken from numerical 
study of achieved in [6]. Yield stress and ultimate strength of bolts are assumed based on 
nominal properties of A325 bolts. Bolt materials modeled bilinear with 634.3 MPa yield 
stress and ultimate stress of 930 MPa at 8% strain. Modulus of elasticity and Poisson’s ratio 
is considered respectively 210 GPa and 0.3. Stress-strain relation of A36 steel used for beam 
and angle material of this study and numerical study of [6] are shown in Figure 3. 
 
 

3. Verification of Finite Element Models 
 

To evaluate accuracy of FE modeling approach, 17 FE models are created according to 
Azizinamini tests and the results are compared with test results. Deformed shape of the 
connection is shown in Figures 4 and 5.  
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Figure 3. Material properties of beam, column and angle [6] 

 
 

 
 

Figure 4. Deformed shape of connection 14S2 at 0.03 rad 
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Figure 5. Top bolt-angle surfaces interaction of connection 14S2 at 0.03 rad 

 
Comparison of moment-rotation relations of FE modeling with test data indicates that 

the results obtained from FE models have a good agreement with test data and numerical 
study of Citipitioglu [6]. Difference between numerical simulation and test results may be 
raised due to several causes like numerical modeling simplification, test specimen defects, 
residual stress and bolts pretension [13]. 

 
 

4. Self-Organizing Back Propagation (SOBP) Neural Networks 
 

The principal advantage of a properly trained neural network is that it requires a trivial 
computational burden to produce an approximate solution. Such approximations appear to be 
valuable in situations where the actual response computations are intensive in terms of 
computing time and a quick estimation is required. Well-known neural network models are 
widely used in civil and structural engineering applications [22-23]. In this study, a combination 
of SOM and BP neural networks are employed to predict the moment-rotation behavior of the 
bolted connection.  
 
4.1. Self organizing map neural networks 
The self organizing map (SOM) is a neural network algorithm developed by Kohonen [24] that 
forms a two dimensional presentation from multi dimensional data. The SOM learn to classify 
input vectors according to how they are grouped in the input space. In the SOM neighboring 
neurons learn to recognize neighboring sections of the input space. Thus, SOM learn both the 
distribution and topology of the input vectors they are trained on. The neurons in the layer of an 
SOM are arranged originally in physical positions according to a specific topology. A SOM 
neural network identifies a winning neuron using a simple procedure. Whereas an input vector 
is presented to the neural network, the output value of neuron i can be obtained by computing 
the Euclidean distance between its weight vector and the input vector as: 
 

∑
=

−=
inpn

j
ijji UYo

1

2)( , SOMmi ,,2,1 L=                                          (3) 

 
If the neuron i* satisfies the Eq. (4) then it is the winner. 
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)(min ii*i oo =   ,  SOMmi ,,2,1 L=                                                (4) 

 
where Uij is the weight of SOM layer from input i to neuron j, Yj is jth component of the input 
vector. Number of input vectors’ component and SOM neurons are ninp and mSOM, respectively.  

However, instead of updating only the winning neuron, all neurons within a certain 
neighborhood of the winning neuron are updated, using the Kohonen rule. Specifically, all such 
neurons are adjusted as: 

 
)]()([)()( kUkYαkU1kU ijjijij −+=+                                        (5) 

 
where α is learning rate and k is discrete time. 

Here the neighborhood Ni(d) contains the indices for all of the neurons that lie within a 
radius d of the winning neuron i. Thus, when an input vector is presented, the weights of the 
winning neuron and its close neighbors move toward the vector. Thus, after many presentations, 
neighboring neurons have learned vectors similar to each other. 

 
4.2. Back propagation neural networks 
Standard BP is a gradient descent algorithm, in which the network weights are moved along 
the negative of the gradient of the performance function. There are a number of variations on 
the basic algorithm that are based on other standard optimization techniques. In this study, 
Levenberg-Marquardt (LM) [25] algorithm is employed. The basic BP algorithm adjusts the 
weights in the steepest descent direction. This is the direction in which the performance 
function is decreasing most rapidly. One iteration of the algorithm is: 
  

kkkk GWW 1 α−=+                                                        (6) 
 

where kW  is a vector of current weights, kG is the current gradient, and kα is the learning rate. 
Newton’s method is an alternative to the conjugate gradient methods for fast 

optimization. The basic step of Newton’s method is as: 
 

kkkk GWW 1
1

−
+ −= A                                                 (7) 

 
where 1−

kA is the Hessian matrix of the performance index at the current values of the weights.  
Newton’s method often converges faster than conjugate gradient methods. Unfortunately, 

it is complex and expensive to compute the Hessian matrix for feedforward neural networks. 
The LM algorithm was designed to approach second-order training speed without having to 
compute the Hessian matrix. When the performance function has the form of a sum of 
squares, then the Hessian matrix can be approximated as: 

 
JJH T=                                                             (8) 
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EG TJ=                                                            (9) 
 
where J is the Jacobian matrix that contains first derivatives of the network errors with 
respect to the weights, and E is a vector of network errors.  

The Jacobian matrix can be computed through a standard backpropagation technique [28] 
that is much less complex than computing the Hessian matrix. The LM algorithm uses this 
approximation to the Hessian matrix in the following Newton-like update: 

 
E][WW T1T

1 JIJJ −
+ +−= µkk                                                (10) 

 
where µ is a correction factor. The value of µ is decreased after each successful step 
(reduction in performance function) and is increased only when a tentative step would 
increase the performance function. In this way, the performance function is always reduced 
at each iteration of the algorithm [26]. 

One of the problems that occur during neural network training is called overfitting. The 
error on the training set is driven to a very small value, but when new data is presented to 
the network the error is large. The network has memorized the training examples, but it has 
not learned to generalize to new situations. One method for preventing of overfitting and 
improving network generalization is called regularization. This involves modifying the 
performance function, which is normally chosen to be the sum of squares of the network 
errors on the training set. The typical performance function used for training neural 
networks is the mean sum of squares of the network errors: 

 

∑
=

=
N

i
iN

mse
1

2)(E1                                                          (11) 

 
It is possible to improve generalization if the performance function is modified by 

adding a term that consists of the mean of the sum of squares of the network weights: 
 

∑
=

−
+=

n

j
jreg n

γγmsemse
1

2W)1(                                               (12) 

 
where γ  and n are the performance ratio and number of network weights, respectively. 

Using this performance function causes the network to have smaller weights, and it 
forces the network response to be smoother and less likely to overfit [27]. 

 
4.3. Architecture of  SOBP neural networks 
In the present paper, the typical input vector is as follows: 
  

{ }g    sl  t l  t  I  d wwttbb XT =                                             (13) 
 
where, db, Ib, tt, lt, tw, lw, s and g are bolts diameter, moment of inertia of beam, thickness and 
length of top-seat and web angles, bolts spacing and gauge, respectively.  
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The output vectors include the corresponding moment-rotation behavior of top and seat 
bolted angle connections with double web angles. In these vectors, the moments associated 
with the 0.0, 1.0, 2.0, 3.5, 5.0, 6.5, 8.0, 11.0, 15.0, 20.0, 25.0, and 30.0 rad are captured. 
Thus, the typical output vector can be expressed as:  

 
}                      {O 305220151185653.5210

T
============= θθθθθθ.θθθθθθ MMMMMMMMMMMM      (14) 

 
The input and output matrices are as follows: 
 

][O]X[ ii , == OX   , tsn,...,i 1=                                        (15) 
 

where X and O are matrices contained input and output vectors, respectively. The number of 
training samples is expressed by nts. 

As the single BP network trained to predict the moment-rotation behavior of bolted 
connections appears improper performance generality, it is necessary to design an accurate 
neural system for the mentioned purpose. In the testing mode of the single BP network it is 
observed that the performance generality of the network is poor over the some test samples 
while it is good over the others. Therefore we need a set of BP networks organized by a 
clustering algorithm. In order to design the SOBP, it is necessary to divide the training 
samples into some classes. SOM network is utilized for this purpose. To train the SOM and 
find the optimal number of data classes a simple procedure is performed. In this procedure, 
at first, some grids of SOM neurons with random topology are selected and the SOM is 
trained involving the mentioned grids. During the training process the SOM neurons 
concentrate on distinguishable regions. The number of these regions is taken into account as 
the optimal number of the SOM neurons. At last, a SOM network with the optimal number 
of SOM neurons is trained. Let ms be the optimal number of SOM neurons, therefore  

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

→→

ssmsm CmjCjCs

CjCjC

CjCjC

njm

nj

nj

,

,…1,= ,  ][O  , ]X[ = : Class
                                                                      

     ,…1,= , ][O= , ]X[= :2 Class

,…1,= , ][O=   , ]X[=   :1 Class

Clustering SOM 222

111

OX

OX

OX

OX
M

                    (16) 

 
where iCn is the number of data located in class i.  

After classification the samples, a BP network is trained for each class by using its 
assigned data: 

  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

→

→
→

sCmCm

CC

CC

m
ss

Network  BP    , 
                                               
2Network  BP       , 

1network  BP        , 

22

11

OX

OX
OX

M

                                             (17) 

 
In this manner, a neural system including two processing units, classification and 
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approximation, is designed for predicting the moment-rotation behavior of bolted 
connections. The SOBP and its processing units are displayed in Figure 6. It should be noted 
that XCi ⊂ X, OCi ⊂ O, i=1,…,ms. In the traditional method X and O are employed to train the 
single BP network.  

 

 
 

Figure 6. The architecture of SOBP 
 
In order to evaluate the accuracy of approximate moment-rotation curves predicted by the 

neural networks, two evaluation metrics are used: the relative root mean square (RRMS) 
error and R-square (R2) statistic measurement. The RRMS between the exact and predicted 
curves is defined as follows: 

 

∑ ∑
= =

−λλ−λ=
r

1i

r

1i

12
i

2
ii ))(

r
1()(

1-r
1RRMSE ~                                             (18) 

 
where, λi and 

iλ~ are the ith component of the exact and predicted responses, respectively.  
To measure how successful fitting is achieved between exact and approximate curves, the 

R-square statistic measurement is employed. Statistically, the R2 is the square of the 
correlation between the predicted and the exact curves. It is defined as follows: 

 
1

r

1i

2
i

r

1i

2
ii ))(()(1square-R −

==
∑∑ λ−λλ−λ−= ~                                         (19) 

 
where λ  is the mean of exact vectors component. The vectors dimension is expressed by r.  

The main steps of training of the SORBF neural networks are displayed in the following 
flowchart: 
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Figure 7. The flowchart of the SOBP training 

 
 

5. Training and Testing the Single BP and SOBP Neural Networks 
 

A total number of 60 samples are generated employing ANSYS. From which 44 samples are 
used for training and 16 ones are used for testing the performance generality of the neural 
network.  

In order to train the single BP neural networks, LM algorithm is used and 4 neurons are 
adopted in the hidden layer. The number of the neurons is determined by trail and error. The 
single BP neural network is trained in 12000 epochs. Topology of the single BP neural 
network is shown in Figure 8. 

Training of the SOBP neural networks is achieved in two stages. In the first stage, an 
SOM neural network is trained to classify the inputs. In order to determine the number of the 
classes, some arbitrary grids of SOM neurons with random topology are considered. After 
training the SOM neural networks with the mentioned grids it is observed that the SOM 
neurons tend to concentrating about two main clusters. In order to simplify training of the 
SOBP, a reduced order grid of 2×1 SOM neurons is adopted here. Thus, all the input data is 
divided into two classes. Training of the SOM neural network by the above mentioned 
approach is achieved during 1000 training epochs. The number of data located in classes 1 
and 2 are 23 and 21, respectively. In the approximation unit there are two BP neural 
networks trained by LM algorithm and each of them has two hidden neurons. The BP neural 
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networks are trained in 6000 and 2000 epochs, respectively. Thus, The SOBP is trained in 
9000 epochs. From 15 test samples 9 and 7 ones are located in class 1 and 2, respectively.  

 

 

Figure 8. Topology of the BP network 

 
The results obtained by the single BP and SOBP neural networks are compared in Table 

2, Figures 9 and 10 in terms of RRMSE and R-square, respectively.  
 

Table 2. Testing information of BP and SOBP neural network models 

Neural 
network model 

Average of 
RRMSE 

Average 
of R-square 

Number 
of the training epochs 

BP 0.1451 0.8820 12000 

SOBP 0.0255 0.9938 9000 
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Figure 9. RRMSE of test samples (          SOBP;           BP) 
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Figure 10. R-square of test samples (          SOBP;           BP) 

 
As shown in Table 2 and Figures 9 and 10, the performance generality of the SOBP is 

much better than that of the single BP network; furthermore, the computational burden of 
the SOBP training is lower than that of the single BP. The results of the SOBP testing are 
shown in Figure 11 for 6 test samples. Similar results exist for the other samples. 
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Figure 11. Comparison between results of FE models and the SOBP prediction 

 
It can be observed that proper conformance exist between FE and the SOBP results. 
 
 

7. Concluding Remarks 
 

In this paper the moment-rotation behavior of top and seat bolted angle connections with 
double web angles is evaluated using finite element modeling and neural network 
techniques. In finite element models all the connection components are modeled using brick 
elements also interaction of all adjacent surfaces are modeled using contact elements. All 
geometrical and mechanical properties of the connection components are as parameter. 
Material nonlinearity, large deformation effects and nonlinearity of contact algorithm caused 
a highly nonlinear model which is very time consuming method to evaluate the moment-
rotation behavior of this type of connections. 

Using neural networks to predict the moment-rotation behavior of the bolted connections 
is an alternative to comprehensively reduce the computational burden of the finite element 
analysis. Employing a single BP neural network shows poor performance generality. In 
order to attain appropriate performance generality a neural system including SOM and a set 
of BP neural networks is proposed. This neural system is called self-organizing back 
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propagation (SOBP) neural networks. The numerical results demonstrate the computational 
advantages of the SOBP neural networks in comparison with the single BP. The accurate 
results indicate that the SOBP neural model can be used as an alternative method to 
overcome difficulties in estimating the moment rotation behavior of the connections. 
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