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Abstract 
 

Large spans always fascinated architects and engineers. Domes provide an easy and 
economic method of roofing large areas with minimum material in all forms of space 
structures. Wind loads have significant proportion of the total load to act on such structures 
that’s why the magnitude and distribution of the resultant pressures must be considered. To 
overcome this problem, the concept of Artificial Neural Network is adopted to find wind 
induced pressure coefficients for spherical domes of different span/height ratio. This paper 
aims to use this neural network application in steel space structures. Here, pressure 
measurements had been made on a large dome roof model with Computational Fluid 
Dynamics (CFD) technique and the data generated were used as the training sets to develop 
artificial neural network models to recognize the input–output patterns. 

 
Keywords: Space structures; Domes; Back-propagation neural network; Computational 
Fluid Dynamics; Wind pressure coefficients 
 
 

1. Introduction 
 
Space frame being lightweight, structurally efficient and optimum in material consumption, 
scores over other structural system [1]. The lightness of the structure is mainly due to the 
fact that material is distributed spatially in such away that the load transfer mechanism is 
primarily axial force, either tension or compression, so that in any given element, all the 
material is fully utilized. In large span roofs, where the self weight of the structure 
constitutes an important part of the total load; the lightness of the constituent elements 
largely contributes to the rationality and economy of the entire structure. 

Domes provide an easy and economic method of roofing large areas and are used 
frequently by the designers who realize the advantages and the elegant beauty of this form of 
construction. Analysis and design of such domes are time consuming since a large number 
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of nodes and members are involved [2]. One of the most important criteria to design the 
dome is to construct with its optimized (minimum) weight considering dead, live and wind 
load.  

 Wind is a phenomenon of great complexity because of the many flow situations arising 
from the interaction of wind with structures. Wind is composed of a multitude of eddies of 
varying sizes and rotational characteristics carried along in a general stream of air moving 
relative to the earth’s surface. These eddies give wind-its gusty or turbulent character. Large 
eddies, whose dimensions are comparable with the structure, give rise to well correlated 
pressures as they envelop the structure. On the other hand, small eddies result in pressures 
on various parts of a structure that become practically uncorrelated with distance of 
separation. Therefore, an understanding of the flow of wind around any structure, leading to 
the accurate prediction of wind pressure and/or force coefficients, is an essential requirement 
of modern structural design [3]. Long-span and lightweight roofs, such as spherical 
pneumatic domes, tend to vibrate in strong winds [4]. In other words, wind loads have 
significant proportion of the total load acting on such structures and so the magnitude and 
distribution of the resultant pressures must be considered [5]. 

 The magnitude and distribution of pressures on any structure is governed primarily by 
the pattern of wind flowing around it. Normally, the pressure at a point is expressed in terms 
of a dimensionless pressure coefficient, Cp, where 

 
Cp=p/q and q = ½ρV2                                                         (1) 

 
In which p is the pressure at the point of interest, q is the dynamic pressure (kinetic 

energy) of the wind, ρ is the density of air and V is the velocity of the approaching flow.  
 Unfortunately, the majority of codes are only able to provide data relating to the most 

common types of building and do not provide for unusual or difficult structures with curved 
surface. In addition to that it was found that majority of codes and technical papers provide 
the pressure coefficients detail for domes having span/height (S/H) ratio 2 or 3 and that is 
also for central line only, which is definitely insufficient data for analysis and design of 
domes. When little information available on the pressure coefficients on these roof forms, it 
is not easy for structural designer to make an informed decision on the choice of pressure 
coefficients. There are other sources of pressure coefficients on curved roofs such as 
research papers and commercial wind tunnel studies, but in general these are not in a form 
suitable for codification or they lack essential experimental details which are necessary for 
codification purposes. Thus, developing approximate methods using Artificial Neural 
Networks (ANNs) to find wind coefficients on structure is found to be very useful. 

 
 

2. Computational Fluid Dynamics 
 

The research field of Computational Wind Engineering (CWE) is well established today as a 
powerful tool in wind engineering research. It is now over 25 years since the Computational 
Fluid Dynamics (CFD) technique was first applied to a problem of wind engineering. In 
general, CFD is the use of computers and numerical techniques to solve problems involving 
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fluid flow. Application of it was originally introduced for industrial applications [6], but 
today it has also become a common tool for assessing wind effects on structures [7-8], 
building ventilation [9] and environmental performance [10]. Thus, in general CFD is ‘‘a 
very powerful technique’’ in predicting air movement and characteristics [11]. 

 
CFD Basics 
CFD model is based on the concept of dividing the solution domain into sub-zones. Then, 
for each zone, the mass, momentum, and energy (if problem is non-isothermal) conservation 
equations are solved, and utilized the processing power of computers. This helps to perform 
calculations more easily and, in comparison with natural ventilation mathematical models, 
gives more detailed results. CFD codes are used to predict airflow rate, air velocity-
temperature, and airflow patterns inside-around buildings. Many software based on CFD 
codes have been developed like, Ansys-CFX, Fluent, Phoenics. 
 Following are the governing equations for computational fluid engineering.  

Mass: 
 

 
(2)

 
Momentum (in x direction) : 
 

 
(3)

 
Where 

ρ = density of fluid (air), 
u, v, w = Velocity of air in x, y and z direction, respectively. 
p = pressure, 
μ = dynamic viscosity, 
∇2  is the Laplacian operator. 

 
A complete CFD analysis consists of: 
 
• Pre-processing; 
• Solving; 
• Post-processing. 

 
This study has focused on the “solving” process, but this is of little use without 

preprocessing and post-processing programs. Commercial CFD vendors often supplement 
their flow solvers with grid-generation and flow-visualization tools. These are specialist 
areas in their own right, with much money and effort devoted to developing “user-friendly” 
interfaces to make CFD generally accessible and to facilitate its application to complex 
flows. 

 In the last few years, an intensive work has been done using CFD. However, in some 
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studies the work is not only limited to the use of CFD modeling, but also to compare the 
experimental testing results to check validity. Comparisons of CFD results with wind tunnel 
tests have shown good agreement [12]. CFD performs the unique role in the possibility of 
bringing down the costs and turn-around times in the design and development of wind 
induced structures. 

 Wind-induced pressure distributions on large roof structures depend on several factors 
such as incident wind direction, turbulence characteristics, upstream terrain; roof shapes 
configurations and surrounding condition, etc. Under similar flow conditions, the flow 
pattern around a building strongly depends on incident wind direction and roof shape 
configurations. 

 
CFD for large domes 
The computational wind tunnel analysis and neural network prediction for dome structures 
had been attempted as per following steps: 
 

1) Create a computational wind tunnel to simulate the surrounding environment, (pre-
processing)  

2) Apply wind flow to the dome structures, (solving) 
3) Obtain the structural pressure loading due to the wind flow, (post-processing) 
4) Find corresponding pressure at every 50 in horizontally and vertically in longitude 

and latitude direction respectively. 
5) Get pressure coefficients (CP) from different pressure values. 
6) Prepare data set for neural network training. 
7) Train neural network for the same. 

 
 Dome with span of 30 m and span/height ratio 2 is considered for this study. An 

artificial uniform wind flow with a velocity of 44 m/s (as per IS: 875 (Part 3) wind load) 
[13] had been applied to the entrance of the tunnel. The wind tunnel used for this simulation 
is of size 21D x 8D x 8D where D is the diameter of the dome, which in our case is 30 m. To 
avoid the complexity of model the researchers take only half portion of spherical surface 
(see Figure 1). To find out correct variation authors tried different models with different 
conditions. The main models are of isothermal with shear stress transport and k-ε having 
different turbulence such as 1%, 5% and 10% with isothermal effect. ANSYS CFX 10 
software which can numerically solve the two basic conservation equations of mass and 
momentum in an iterative manner, has been used. From this model pressure coefficients 
were obtained. 

 For the same span/height ratio the coefficients of pressures were compared with the IS: 
875 (part- 3) wind load coefficients. IS-code gives pressure coefficient values at every 150 
along the centre line. Accordingly authors had taken same points for coefficients of pressure, 
to check the value for simulated models. The values were taken from the best suited model 
i.e. shear stress transport with 5% turbulence with isothermal features. The study proves that 
the CFD models gives nearly best results for wind loading on domes. 

 As the model with S/H ratio of 2 matches with IS code values, the researchers tried other 
two ratios 3 and 4. The same procedure had been carried out for other two ratios. In order to 
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train the network over the entire region of dome, the large database had been formed. The 
database was covered by taking pressure coefficient values with the variation of θ (theta) 
and φ (fi). Theta is angle measured vertically with respect to the vertical axis of the dome to 
the ring beam and fi is angle measured horizontally with respect to wind direction. The 
interval was kept common as 50 in both theta and fi. For span/height ratio 2, 3 and 4, 
pressure and pressure coefficient values were taken respectively at 703, 555 and 444 points 
respectively (see Figure 1(a), (b), (c)). The need of above data is to prepare data set to train 
neural network and to find out pressure coefficients on domes. 

 

 
(a) (b) (c) 

Figure 1. Contour diagram for wind pressure and point under consideration for CP values for 
dome having span/height ratio 2, 3 and 4 

 
 

3. Artificial Neural Networks 
 

Artificial Neural Networks (ANNs) are, by definition, interconnected networks of 
processing elements that have the ability to be trained to map a given input into the desired 
output [14]. ANNs possess some distinctive properties not found in conventional 
computational models. Traditional computing models are based on predefined rules 
(equations, formulas, etc.) that clearly specify the problem. The program follows an explicit 
step-by-step procedure to compute desired outputs. This is feasible when the rules defining 
the problem are known in advance. In most cases however, there are only observational data 
of the problem, while the underlying rules relating the input variables to the output variables 
are either unknown or extremely difficult to discover. Under there circumstances, ANNs 
exhibit their superiorities over conventional computational techniques.  
 ANNs are composed of any interconnected processing units. Each processing units 
keeps some information locally, is able to perform some simple computations, and can have 
many inputs but can send only one output. The ANNs have the capability to respond to input 
stimuli and produce the corresponding response, and to adapt to the changing environment 
by learning from experience. Garrett [15] has given an interesting engineering definition of 
the ANN as: “An ANN is a computational mechanism from one multivariate space of 
information to another, given a set of data representing that mapping.”  
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Back-propagation neural networks 
The most widely used paradigm of ANNs is Back-Propagation Neural network (BPNN), 
which belongs to the family of Multi Layer Perceptron (MLP) network [16]. BPNN is made 
of at least three layers of nodes: i) An input layer that receives input values, ii) An output 
layer that reports the final answer(s) and iii) one or more hidden layers between the input 
and output layers . The neighboring layers are fully interconnected by weights. A typical 
back propagation neural network is shown in Figure 2. Here, the notation BPNN n-m-h-o is 
used as a label for a net with n input variables, o output variables and two hidden layers with 
m and h neurons in the first and second hidden layers, respectively. Layers are fully 
interconnected, as shown by arrows.  

 A feed forward operation, represented the flow of information is from left to right, as 
shown in Figure 2. Initially a random weight is assigned to each connection. These weights 
are then adjusted as the learning progress. The next step in the feed forward operation is to 
calculate the input of each hidden neurode. 

 

 
 

Figure 2. A typical back propagation neural network 
 

 The value of input to hidden layers is calculated as:  
 

Ih = ∑ (Wi * Pi )                                                              (4) 
Where 

Ih is the value of input to the hidden layer neurons 
Wi is the network interconnecting weights from the input to the hidden layer 
Pi is the value of the input variables in the output layer 

 At this point, an activation function is called to calculate the output value from the 
hidden neurons to output neurons. Once the output of the hidden neurons is calculated, the 
activation function is again called to calculate the network output. The network output is an 
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estimate prediction of the target output using the input patterns and the associated network 
weights. At his stage, the network error was calculated, which is the difference between the 
target output Y and the network prediction y, as: 

  
E = (Y – y)                                                                 (5) 

 
 This error is then back propagated to the system to adjust the interconnecting weights for 

each layer. The repeated process of back-propagation of network error and adjusting the 
interconnecting weights are continued for many iterations (epochs) until the network error is 
reduced to an acceptable level. Once this has been achieved, training is considered to be 
completed, the inter-node link weights are registered and kept unchanged and the network is 
considered ready to handle new problems.  

 Before using the network, it needs to be adequately trained using a carefully selected 
and large set of solved examples (i.e. sets of given input and output values) that effectively 
cover the range of variables likely to be encountered. The network uses these examples to 
adjust the weights of its inter-node links so that the error in the output is minimized.  
 
Neural networks in structural engineering 
In the last decade, a wide range of research had been carried out and many papers published 
in using neural networks for doing analysis and design of structures. Hajela and Berke 
applied the neural networks in analysis of structural mechanics [17]. Jenkins used the neural 
networks method as an approximation approach for structural analysis [18], and Adeli and 
Park applied the counterpropagation nets in structural engineering [19]. The use of ANN 
increases then in typical areas of structural engineering such as El-Kassas E. M. A. used 
neural networks in cold-formed steel design [20], Hadi Muhammad adopted neural networks 
applications in optimizing concrete structures [21]. Further, Cladera A. used ANN in shear 
design procedure for reinforced concrete beams (normal and high strength) without and with 
stirrups [22, 23] and Adikary B. used ANN for the prediction of shear capacity of steel plate 
strengthened RC beams [24]. In addition to concrete structures, ANN also used in analysis 
and design of steel structures. Kaveh A. [25] and Keyvani S. [26] applied Backpropagation 
neural networks in double layer grids and Kaveh A. also used ANN in analysis and design 
of Domes [2]. In wind engineering application, Fu J. Y. [27, 28] used ANN applications in 
prediction of wind pressures on large flat and gymnasium roofs.   

 ANNs have many inputs and outputs and allow nonlinearity in the transfer function of 
the neurons; therefore they can be used to solve multivariate and nonlinear modeling 
problems, such as some wind engineering problems. For this research paper the set of theta 
and fi values with coefficients of pressure values are considered as data set. 

 
 

4. BPNN Prediction for Pressure Coefficients on Domes 
 
The main objective of this study is to check the variation of pressure and thus pressure 
coefficient along the curved surface of the domes and train neural network for same. The 
well-establish back-propagation learning algorithm is adopted to train the network. Two 
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Hidden Layer – 1 / 2 

Input Layer

Thet

Fi 

Output Layer 

CP 

alternative networks, Neural Network–1 (NN-1) and Neural Network–2 (NN-2) are 
considered.  

In the first case NN-1, the program requires the following input data: 
1. As span of 30 m and span/height ratio 2 is constant, only theta and fi angles are selected 

for the input. The output is pressure coefficients at corresponding points of domes. The 
above developed CFD database is used to train a neural network. So, the processing 
elements (PEs) in input layer were two and in output layer was one. Please see Figure 
3(a). 

2. All the above 703 data of CP are divided into three groups, 563 data for training, (80% of 
total data), 70 for cross validation (10% of total data) and 70 for testing (10% of total 
data). Above data are randomized by randomized function. The need of this function is 
to give data to the neural nets in random way, so mapping from input to output variables 
to minimize the error between the network response and the target output with 
satisfactory results are achieved.  

3. The networks are selected with both one and two hidden layers. An additional second 
hidden layer can be considered between the first hidden layer and the output layer to 
allow smoother mappings possible. The PEs in first hidden layer and second hidden 
layer are varied from 4 to 10 as shown in Table 1. 

4. Multi layer perceptron in combination of delta bar delta learning rule with both sigmoid 
and tangent hyperbolic functions are taken for the process of training. 

5. The error tolerance, which is set to 0.0001 for training set and cross validation set in this 
study, and is defined according to mean squared error (MSE). The maximum number of 
training cycles or epochs, which is chosen as 50,000 to achieved the specified error 
tolerance. Once this number is attained the program is terminated even if the error 
tolerance is not met. 

 In this paper Neurosolutions is employed for training and testing of our structure. The 
program Neurosolutions is capable of representing useful information in the process of 
training. Once it is trained, the network is capable of generalization and is able to 
approximate the solution to unseen problems. 

 

                                 
 
                                         (a)                                                          (b)      

Figure 3. Model NN –1 and NN–2 

Hidden Layer – 1 / 2 / 3 

Input Layer

Thet

Output Layer 

CP 

S/H ratio
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For the second case NN 2, the program requires the following input data: 
1) Here, span/height ratio (i.e. 2, 3 and 4), theta and fi angles are selected for the input. 

The output is pressure coefficients at corresponding points of domes. So, the 
processing elements (PEs) in input layer were three and in output layer was one. 
Please see Figure 3(b). 

2) For S/H ratio 2, 703 data, for ratio 3, 555 data and for ratio 4, 444 data are 
considered for training. All above 1702 data are divided into three groups, 80% for 
training, 10% for cross validation and 10% for testing. Above data are randomized 
by randomized function.  

3) The networks are selected with one, two and three hidden layers. The PEs in hidden 
layer is varied from 6 to 14 as shown in Table 1. 

4) Multi layer perceptron in combination of delta bar delta learning rule with tangent 
hyperbolic functions are taken for the process of training. 

5) The error tolerance and maximum number of epochs are taken same as NN – 1for 
network termination.  

 
Table 1. Architecture and results of NN–1 network for testing data 

 

PEs in each layer 
Model 
name 

Input 
layer 

First 
hidden 
layer 

Second 
hidden 
layer 

Output 
layer 

Transfer 
function 

Mean 
squared 

error 

Correlation 
coefficient 

M4 ct 2 4 - 1 Tanh 0.00220 0.9968 

M6 ct 2 6 - 1 Tanh 0.00168 0.9976 
M8 ct 2 8 - 1 Tanh 0.00161 0.9977 

M10 ct 2 10 - 1 Tanh 0.00135 0.9980 
M4 cs 2 4 - 1 Sigmoid 0.00262 0.9962 
M6 cs 2 6 - 1 Sigmoid 0.00181 0.9974 
M8 cs 2 8 - 1 Sigmoid 0.00228 0.9967 

M10 cs 2 10 - 1 Sigmoid 0.00238 0.9965 
M4 4ct 2 4 4 1 Tanh 0.00143 0.9979 
M6 6ct 2 6 6 1 Tanh 0.00126 0.9982 
M8 8ct 2 8 8 1 Tanh 0.00126 0.9982 

M10 10ct 2 10 10 1 Tanh 0.00124 0.9983 
M4 4cs 2 4 4 1 Sigmoid 0.00198 0.9971 
M6 6cs 2 6 6 1 Sigmoid 0.00193 0.9972 
M8 8cs 2 8 8 1 Sigmoid 0.00217 0.9969 

M10 10cs 2 10 10 1 Sigmoid 0.00224 0.9968 
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Figure 4. Training of M10 10ct model 
 

 
 

Figure 5. Testing of M10 10ct model 
 

 
 

Figure 6. Training of m14-3ct model 
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Table 2. Architecture and results of NN-2 network for testing data 

PEs in each layer 
Model 
name 

Model 
notation 

Input 
layer 

First 
hidden 
layer 

Second 
hidden 
layer 

Third 
hidden 
layer 

Output 
layer 

Transfer 
function 

Mean 
squared 

error 

Correlation 
coefficient 

m6 ct 3-6-1 3 6 - - 1 Tanh 0.00167 0.9971 

m10 ct 3-10-1 3 10 - - 1 Tanh 0.00077 0.9986 

m14 ct 3-14-1 3 14 - - 1 Tanh 0.00074 0.9987 

m6-2ct 3-6-6-1 3 6 6 - 1 Tanh 0.00043 0.9992 

m10-2ct 3-10-10-1 3 10 10 - 1 Tanh 0.00030 0.9994 

m14-2ct 3-14-14-1 3 14 14 - 1 Tanh 0.00030 0.9994 

m6-3ct 3-6-6-6-1 3 6 6 6 1 Tanh 0.00040 0.9993 

m10-3ct 3-10-10-10-1 3 10 10 10 1 Tanh 0.00034 0.9994 

m14-3ct 3-14-14-14-1 3 14 14 14 1 Tanh 0.00031 0.9995 

 
 

 
 

Figure 7. Testing of m14-3ct model 
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5. Results 
 
A successful attempt was made to apply a backpropagation neural network to the prediction 
of pressure coefficient on a large hemispherical roof. The results of NN–1 and  
NN – 2 networks with different model configuration are shown in Table 1 and 2. The best 
models are shown with bold figures. In addition to that, the training and testing of the best 
models were presented in Figures 4 to 7 respectively. Using tanh activation function and 
almost 10 nodes in two hidden layer the correlation factors approached to 0.9983 and 0.9995 
for NN–1 and NN–2, respectively.  
 
 

6. Discussions and Concluding Remarks 
 
The results presented in this paper indicate that the developed BPNN models were capable 
of generalizing the complex, multivariate nonlinear functional relationships among a number 
of variables such as wind induced pressure and positions of pressure taps, etc, so that they 
are able to predict wind-induced pressures on the large dome structures with good accuracy 
for any combination of these variables. 

 Backpropagation networks using Neurosolutions software has perfectly evaluated wind 
pressure coefficients data. The results show that ANNs have strong potential as a feasible 
tool for predicting the CP values at any point on the dome roof. Even NN – 2 network 
models where more span/height ratios are considered gives good result compare to NN – 1. 
Based on CFD study and ANN study the following results and conclusions can be drawn for 
the present work:  
1) The neural network reacts negatively to reducing the size of the training set. 
2) At least six nodes should be used per hidden layer in order to maintain a high accuracy 

for the network predictions.  
3) Two hidden layers models show mainly the difference in terms of time required for 

learning and little significant difference in terms of accuracy, than one hidden layer. 
4) Increasing the number of hidden layers in the network is not justifiable because of the 

resulting slow speed of network training and operation and the subsequent very slight 
change in network accuracy level. 

5) By considering above two points network with two hidden layer and with ten neurons 
nearly give best results. 

6) Changes in the transfer function results in effects on the network accuracy but no 
consistent trend could be identified. 

 Above study shows comparisons of the prediction results by the ANN approaches and 
those from the CFD analysis are made to examine the performance of the ANN models. It 
demonstrate that the ANN approaches can successfully predict the pressures on the entire 
surfaces of the large dome roof on the basis of computational fluid dynamics data. 
 
 

 
 

www.SID.ir



Arc
hi

ve
 o

f S
ID

WIND PRESSURE COEFFICIENTS PREDICTION ON DIFFERENT SPAN/HEIGHT ... 
 

 

143

References 
 

1. Subramanian N. Principles of Space Structures, Wheeler Publishing, 1999. 
2. Kaveh A, Dehkordi MR. Neural networks for the analysis and design of domes, 

International Journal of Space Structures, No. 3, 18(2003)181-95. 
3. Baker S. A comparison of the codes of practice used in different countries for the 

determination of wind loads on domes, Analysis, Design and Construction of Braced 
Domes, Z. S. Makowski, Granada Publishing, 1984. 

4. Ogawa T, Nakayama M, Murayama S, Sasaki Y. Characteristics of wind pressures on basic 
structures with curved surfaces and their response in turbulent flow, Journal of Wind 
Engineering and Industrial Aerodynamics, 38(1991)427-38. 

5. Letchford CW, Sarkar PP. Mean and fluctuating wind loads on rough and smooth parabolic 
domes, Journal of Wind Engineering and Industrial Aerodynamics, 88(2000)101-17. 

6. Fujii K. Progress and future prospects of CFD in aerospace-wind tunnel and beyond, 
Progress in Aerospace Sciences, 41(2005)455-70. 

7. Huang S, Li QS, Xu S. Numerical evaluation of wind effects on a tall steel building by CFD, 
Journal of Constructional Steel Research, 63(2007)612-27. 

8. Gomes MG, Rodrigues AM, Mendes P. Experimental and numerical study of wind 
pressures on irregular-plan shapes, Journal of Wind Engineering and Industrial 
Aerodynamics, 93(2005)741-56. 

9. Asfour OS, Gadi MB. A comparison between CFD and Network models for predicting 
wind-driven ventilation in buildings, Building and Environment, 42(2007)4079-85. 

10. Hu CH, Wang F. Using a CFD approach for the study of street-level winds in a built-up 
area, Building and Environment, 40(2005)617-31.  

11. Horr AM, Safi M, Alavinasab SA. Computational wind tunnel analyses for large domes 
using CFD theory, International Journal of Space Structures, 18-2 (2003)85-104.  

12. Oberkampf WL, Trucano TG. Verification and validation in computational fluid dynamics, 
Progress in Aerospace Sciences, 38(2002)209-72. 

13. Indian Standards, IS 875 (part 3) Wind loads, Bureau of Indian standards. 
14. Haykin S. Neural Network - A Comprehensive Foundation, Pearson Education (Singapore) 

Pte. Ltd, 1999. 
15. Garrett JH. Where and why artificial neural networks are applicable in civil engineering, 

Journal of Computing in Civil Engineering, ASCE, No. 2, 8(1994)129-30. 
16. Zenon Waszczyszyn, Neural Network in the Analysis and Design of Structures, Springer, 

WeinNewYork, 2005.  
17. Hajela P, Berke L. Neural networks in structural analysis and design: an overview, 

Computing Systems in Engineering, 3-1(1992)525-38. 
18. Jenkins WM. Neural network based approximation for structural analysis,  In: topping B.H. 

V., editor, Developments in Neural Networks and Evolutionary Computing for Civil And 
Structural Engineering, Civil-Comp. Press, 1995. 

19. Adeli H, Hyo Seon Park, Counterpropagation neural networks in structural engineering, 
Journal of Structural Engineering, ASCE, 121-8(1995)1205-12. 

20. El-Kassas EMA, Mackie RI, El-Sheikh AI. Using neural networks in cold-formed steel 
design, Computers and Structures, 79(2001)1687-96. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

G.R. Vesmawala, J.A. Desai and H.S. Patil 
 

144 

21. Hadi Muhammad, Neural networks applications in concrete structures, Computers and 
Structures, 81(2003)373-81. 

22. Cladera A, Mari AR. Shear design procedure for reinforced normal and high strength 
concrete beams using artificial neural networks. part I: beams without stirrups, Engineering 
Structures, 26(2004)917-26.  

23. Cladera A, Mari AR. shear design procedure for reinforced normal and high strength 
concrete beams using artificial neural networks. part II: beams with stirrups, Engineering 
Structures, 26(2004)927-36. 

24. Adhikary B, Mutsuyoshi H. Artificial neural networks for the prediction of shear capacity of 
steel plate strengthened RC beams, Construction and Building Materials, 18(2004)409-17. 

25. Kaveh A, Seravati H. Design of double layer grids using backpropagation neural networks, 
Computers and Structures, 79(2001)1561-68. 

26. Keyvani J, Barkhordari MA. Comparative study of neural networks for design and analysis 
of double-layer grids, Space Structures 5, Thomas Telford, London, 2002, pp. 479-86. 

27. Fu JY, Li QS, Xie ZN. Prediction of wind loads on a large flat roof using fuzzy neural 
networks, Engineering Structures, 28(2006)153–61. 

28. Fu JY, Liang SG, Li QS. Prediction of wind-induced pressures on a large gymnasium roof 
using artificial neural networks, Computers and Structures, 85(2007)179-92. 

www.SID.ir


