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ABSTRACT 
 

This paper proposes a refined version of particle swarm optimization technique for the 
optimum design of steel structures. Swarm is composed of a number of particles and each 
particle in the swarm represents a candidate solution of the optimum design problem. Design 
constraints in accordance with ASD-AISC (Allowable Stress Design Code of American 
Institute of Steel Institution) are imposed by the particle swarm optimization based optimum 
design algorithm developed. A constraint handling method called the ‘penalty function 
method’ is introduced to maintain acceptable solutions. The refined version of the particle 
swarm optimization algorithm proposed in this paper is easy to implement and the results 
and convergence performance are better than the simple particle swarm optimization 
algorithm and some other meta-heuristic optimization techniques. The effect of different 
inertia weight parameters in finding the optimum design is also tested in two numerical 
examples. 

 
Keyword: Meta-heuristic optimization; discrete particle swarm; trusses; discrete particle 
swarm; steel structures 

 
 

1. INTRODUCTION 
 

Metaheuristic optimization techniques transform ideas taken from nature such as survival of 
the fittest, immune system or cooling of molten metals through annealing into a numerical 
optimization algorithms [1-3]. These techniques are shown to be quite effective in finding 
the optimum solution of optimization problems where the design variables are discrete [4]. 
Saka [5] carries out a detailed review of these techniques and their applications. Particle 
swarm optimization technique is one of the recent additions to the meta-heuristic 
optimization techniques. It is based on the swarm intelligence [6]. In nature fish school, 
birds flock and bugs swarm not only for reproduction but for other reasons such as finding 
food and escaping predators. There are implicit rules that each member of bird flock and fish 
school has to abide by so that they can move in a synchronized way without colliding. Each 
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individual in a flock maintains optimum distance from the neighboring individuals so that 
the flock can move smoothly from one place to another. Particle swarm optimizer is a 
simulator of social behavior that is used to realize the movement of a birds’ flock. It is 
population based optimization algorithm. Its population is called a swarm and each 
individual in the swarm is called a particle. Each particle flies through the problem space to 
search for optimum. In this study optimum design algorithm based on the particle swarm 
optimizer is presented that determines the optimum W- sections for the load carrying 
members of truss from the steel section list of ASD-AISC (Allowable Stress Design Code of 
American Institute of Steel Institution) [7]. 

Particle swarm optimization technique [8-15] is originally formulated as a continuous 
optimization technique. According to this algorithm, which is originally developed by Kennedy 
and Eberhart [8], real numbers are assumed as design variables. This assumption is utilized in 
most of the applications of the particle swarm optimization algorithm to the structural 
optimization problems in the literature. Continuous applications of particle swarm optimization 
have been reported in Tasgetiren et al. [9], He et al. [10] and Arumugam et al [11]. Very few 
studies considered the discrete valued variables in PSO algorithm. However many optimization 
problems such as steel design problems using ready steel sections do need discrete set. There are 
two approaches that can deal with discrete variables. These are binary numbers technique and 
rounding off method that can be used to obtain integer numbers from continuous ones. Kennedy 
and Eberhart [12] have been the first researchers using binary numbers in particle swarm 
optimization to achieve discrete set. Liu et al.[13] used rounding off method in their research. In 
the present study, the rounding off method is implemented due to its simplicity. However, it is 
noticed that this technique raise problems in the optimum design of  large-scale steel frames. To 
overcome this problem, a refined version of particle swarm optimization method is developed 
and presented. This refined PSO algorithm is compared with simple PSO, simple genetic 
algorithm and ant colony optimization techniques in two real size truss problems. 

 
 

2. FORMULATION OF DISCRETE OPTIMUM DESIGN FOR TRUSS 
STRUCTURES 

 
Formulation of the optimum design problem according to Allowable Stress Design Code 
(ASD-AISC) [7] for a pin jointed steel structure consisting of  members that are grouped 
into  design variables can be expressed as the following discrete programming problem.  

mN

dN

 Minimize  ∑  (1) 
=

=
mN

m
mm LW

1

ρ

 
In Eqn (1) W is the weight of the structure mm Landρ  are the unit weight and the length 

of member m, respectively. The objective is to find standard steel sections for the members 
of a steel frame such that the overall weight of the frame becomes the minimum. For the 
determination of such a section belonging to each member of structure, algorithm 
necessitates the selection of ready made steel sections which are sequenced with the 
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corresponding integer values in a given profile list. Hence the sequence number of steel 
sections in the profile list is adopted as design variable. At the optimum, the algorithm 
developed comes up with the sequence numbers of steel sections that are to be adopted for 
the frame members so that the frame has the minimum weight.  

It is the merit of the study that while minimizing Eqn (1), it is also necessary to satisfy 
the following restrictions: 
 mallmm Nm ,..,1,)( =≤ σσ  (2) 
 
 mallmm Nm ,..,1,)( =≤ λλ  (3) 
 
 jallkjkj Njdd ,..,1,)( ,, =≤  (4) 

 
Eqn (2) represents stress check for the members subjected to compression or tension. mσ  

and allm )(σ  are the computed and allowable axial stresses for the m-th member, 
respectively. 

Eqn (3) and Eqn (4) are restrictions being bounds on slenderness ratios and 
displacements, respectively; mλ  and allm )(λ  are the slenderness ratio and its upper limit for 
m-th member, respectively; kjd ,  and  are the displacements computed in the k-th 

direction of joint j and its permissible value, respectively, finally  is the
allkjd )( ,

jN  total number of 
joints. The maximum slenderness ratio is limited to 300 and 200 for tension members and 
compression members respectively due to ASD-AISC [7] design code. 

A detailed review of all constraint-handling approaches is presented in [16, 17]. In this 
study penalty function method is used for handling the design constraints mentioned above. 
If constraint violations are encountered frequently in an optimization problem, it is very 
challenging for the process to continue. In such a case, it may be more beneficial to keep a 
slightly infeasible particle in the solution. These particles having one or more constraints 
slightly infeasible are utilized in the design process that might provide a new particle that 
may be feasible. Compatible with this idea, penalty function method is a powerful handling 
method having been a part of the literature on constrained optimization for decades. It is 
easy to implement and efficient with a proper parameterization. For the present study a 
penalty integrated objective function is defined to evaluate infeasible design(s) in proportion 
to the sum of the constraint violation, as formulated in Eqn. (5). 
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where f represents the constrained objective function, and α  is referred to as the penalty 
coefficient, used to tune the intensity of penalization as a whole.  
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3. DISCRETE PARTICLE SWARM OPTIMIZER 
 

Particle swarm optimization is a population based stochastic optimization technique which is 
inspired by social behavior of bird flocking or fish schooling. This behavior is concerned with 
grouping by social forces that depend on both the memory of each individual as well as the 
knowledge gained by the swarm. The procedure involves a number of particles which represents 
the swarm which are initialized randomly in the search space of an objective function. Each 
particle in the swarm represents a candidate solution to the optimum design problem. Originally 
particle swarm optimizer is developed for continuous design variables. To be able to use the 
method for discrete design variables some adjustments are required to be carried out. Firstly the 
discrete values among which the values of design variables are to be selected in set are arranged 
in ascending sequence. The sequence number of these values is then treated as design variables. 
At any stage of design cycle, once a sequence number is generated by the algorithm, then the 
real value of the design variable is easily taken from the discrete set. The steps of the algorithm 
are outlined in the following and the flowchart is given in Figure 1. 
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Start

μSelect number of particles =  

Randomly initialize i th 
particle’s velocity in the 

ran

 
Figure 1. Simple particle swarm optimizer for discrete variable 

Step 1. Initializing Particles: A swarm is composed of a pre-selected number of 
particles called as swarm size (μ ). A position (design) vector I  and a velocity vector  
(Eqn. 6) are two set of components that each particle should have. The positions of design 
variables are retained by the position vector I, while the velocity vector v is used to change 
these positions during the search. Random initialization is used to set up each particle in the 
swarm such that all initial positions  and velocities  are assigned from Eqns. (7-8): 

v

)0(
iI )0(

iv
 

 ( ) [ ] [ ]
dd NN vvvIII ,...,,,,...,,,, 2121 === vIvIP  (6) 

 
 ( ) di NiIIrII ,..,1,minmaxmin

)0( =−+=  (7) 
 

ge of [ -Vmax , Vmax ]

Randomly initialize i th  particle’s discrete position  Ii
in the range of [ Imin , Imax ] that corresponds to discrete 

values of 

    Pi = (Xi) t
  

[X  , X  ] in the setmin max

  Evaluate f ( Pi ) 

    Pbest i = f ( Pi ) 

    Gbest = Best of Pbest i 

     Update velocity (Vi) t  of i th particle 

     INT(Ii) t 
  =  INT[(Ii) t-1 + (Vi)t tΔ ] 

t < itmax

   Stop 

Yes 
No 

Imin =1 
Imax : Last sequence number in 
  the discrete set 
Xmin : lower bound of variables 
Xmax : upper bound of variables 
 t : cycle number 
itmax : total cycle number 
Vmax : maximum velocity 
Pi :Particles’ discrete position 

tΔ :  time step 

t = t + 1 
  Optimal solution = Gbest 
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 di Ni
t

IIrI
v ,..,1,

)( minmaxmin)0( =
Δ

−+
=  (8)  

 
In Eqns. (7-8),  and  are the sequence numbers of the first and last standard steel 

sections in the profile list, respectively, 
minI maxI

r  represents a random number between 0 and 1; tΔ  
is referred to as the time step increment. 

 
Step 2. Evaluating Particles: All the particles are analyzed, and using (Eqn 5) their 

objective function values are calculated. 
 
Step 3. Updating the Particles’ Best and the Global Best: Particle’s best (Pbest) refers 

to the particle’s best position which is the best design having minimum objective function 
during iteration so far. Each particle has a vector B  containing the particle’s best. Another 
vector stores the best feasible design obtained by any particle since the beginning of the 
process, which is the global best position (gbest). Both the particles’ bests and the global 
best are updated at the current iteration k.  

G
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Step 4. Updating a Particle’s Velocity Vector: (Eqn. 10) updates the velocity vector of 

each particle considering the particle’s current position, the particle’s best position and 
global best position. 
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where,  is the inertia of the particle which controls the exploration properties of the 
algorithm;  and  are random numbers between 0 and 1; and  and are the trust 
parameters, indicating how much confidence the particle has in itself and in the swarm, 
respectively. 

w
1r 2r 1c 2c

 
Step 5. Updating a Particle’s Position Vector: Using the updated velocity vector, the 

position vector of each particle is updated (Eqn. 11), which is rounded to nearest integer 
value for discrete variables. 

 
  (11) tvII k
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Step 6. Termination: The steps 2 through 5 are repeated in the same way for  

iterations. 
iteN
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4. REFINED PARTICLE SWARM OPTIMIZATION (RPSO) 
 

Particle swarm optimization technique based optimum design algorithm necessitates to 
update  the positions of all the particles using Eqns.(8-9). During the procedure particles’ 
velocities and positions change and these changes lead to revisions of particle and global 
bests. Numerical applications show that, in large-scale structural optimization problems all 
the particles in the swarm are eventually dragged to the position identified by the global 
best. Therefore, the current and best positions of all the particles become identical to the 
global best, resulting in almost zero velocity vectors. In such a case, particles cannot fly 
anymore   and the search gets stuck in a very poor design point. The present study considers 
the reformulated version of Eqn. (8) as in Eqns. (10-11) where an additional velocity term is 
defined and added to let the particle move randomly in certain directions in the close 
neighborhood of its current position.  

 

 
t

N
r

t
IB

rc
t

IG
rcwvv s

i

k
i

k
i

k
i

k
ik

i
k

i Δ
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ
−

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Δ
−

+=+
3

)()(

22

)()(

11
)()1( h  (12) 

 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤
=

d

d
i

N
rf

N
rif

2
1

2
1

0
1

h  (13) 

 
where,  is a random number between 0 and 1;  is referred to as the number of steel 
sections in the profile list; and  is 0-1 heaviside function implemented by sampling a 
random number 

3r sN

ih

r between 0 and 1. Equation (12) implies that by means of a random 
velocity term added, in every two iterations only one design variable represented by a 
particle is allowed to change its position to new one. This makes it possible for particles to 
continue the search for optimum. The reformulated equation has been observed to eliminate 
the aforementioned drawback and greatly improve the efficiency of the technique. The 
improvements in the technique are demonstrated by numerical examples solved. 

 
 

5.  NUMERICAL EXAMPLES 
 

The design algorithms are computerized in four design softwares that are all compiled in 
Borland Delphi source code. These design algorithms are based on ant colony optimization 
(ACO), simple genetic algorithm (SGA), standard particle swarm optimizer (PSO) and 
refined particle swarm optimizer RPSO). These softwares are automated to interact with 
SAP2000 v7.4 structural analysis program for generating and screening the structural 
models of the problems under consideration as well as carrying out a displacement based 
finite element analysis for each solution sampled during optimization process.  
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Two design examples namely 230-member plane truss bridge and 564-member space 
truss tower are solved to test the performance of proposed algorithm for the particle swarm 
optimizer and compare the results with the ones obtained from ant colony optimization and 
simple genetic algorithm techniques [18-21]. The parameters used are listed in Table 1. Each 
example is independently designed three times with each technique, resulting in a different 
final design in each run due to stochastic natures of the techniques. The results obtained for 
both examples are carried out and the design history graphs demonstrating the improvement 
of the feasible best design in the search process with all the techniques are plotted. The 
number of structural analysis performed (the number of design points sampled) is shown in 
the horizontal axis of these graphs, whereas the vertical axis represents the variation of the 
best feasible design weight obtained thus far during the search. The number of structural 
analysis is taken as 50,000 to make sure that all the meta-heuristic techniques are given the 
equal opportunity to grasp the global optimum, and that it is not a restraint for not being able 
to reach the global optimum. In all the examples, the following material properties of the 
steel are used: modulus of elasticity (E) = 29000ksi (203893.6MPa) and yield stress ( ) = 
36ksi (253.1MPa). 

yF

 
Table 1. The parameter data set. 

Values of parameter set for particle swarm optimizer 
50=μ              0.1=Δt             5.11 =c  

25.0=w          1000=iteN          5.12 =c  

 
5.1 230-member plane truss bridge 
The geometry of a 230-member, two-span bridge with a total length of 380ft (115.824m) is 
given in Figure 2. The 230 truss members are grouped into 48 independent design variables 
considering the symmetry about centerline. The grouping of members is also shown in 
Figure 2. A single design loading is considered such that traffic loads combined with dead 
loads of the floor system have resulted in an equivalent point load of 80kips (355.86kN) at 
each panel point on the lower chord. A discrete set of 137 economical standard steel sections 
selected from W-shape profile list based on area and radii of gyration properties is used to 
size the variables. The lower and upper bounds on size variables are taken as 6.16in2 
(39.74cm2) and 215.0in2 (1387.09cm2), respectively. The stress and stability limitations of 
the members are calculated according to the provisions of ASD-AISC [7]. In addition, the 
displacements of all nodes in any direction are restricted to a maximum value of 1.44in 
(3.658cm) which is equal to 1/400 of maximum height of the bridge.   

The 230-member plane truss bridge is separately designed three times by ant colony 
optimization (ACO), simple genetic algorithm, standard particle swarm optimizer and 
refined particle swarm optimizer. The design history of these runs is shown in Fig. 3. The 
best runs obtained from for these four softwares are given in Table 2. It is apparent from this 
table that the improved particle swarm optimizer produced the lightest truss that has the 
minimum weight of 309791.83lb. This result is 3%, 5.6% and 43% lighter than the one 
obtained with ant colony, genetic algorithm and simple particle swarm optimizer 
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respectively. The best design obtained by the refined particle swarm optimizer is tabulated 
in Table 3 with section designations attained for each member group, and is considered to be 
the optimum solution of the problem reached in the present study. 

 

Table 2. The best runs obtained with for algorithms for 230-member plane truss bridge and 564-
member space truss tower. 

Designs of three different 
runs RPSO ACO SGA PSO 

Best runs for  230 member  
truss bridge 309791.83 318042.73 328209.92 545257.22 

Best runs for 564 member 
truss tower 910354.08 924059.50 1015819.65 1715803.46 

 

 

Figure 2. 230-member plane truss bridge 
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Figure 3. The design history graph obtained with meta-heuristic techniques for the 230-member 
plane truss bridge. 

 

Table 3. The optimum design obtained with RPSO for the 230-member plane truss bridge. 

Size 
Variable 

Ready 
Section Area, cm2 (in2) Size 

Variable 
Ready 
Section Area, cm2 (in2) 

1 W30X211 401 (62.16) 25 W24X104 197 (30.54) 
2 W27X178 337 (52.24) 26 W12X79 150 (23.2) 
3 W8X21 40 (6.2) 27 W8X21 40 (6.2) 
4 W8X24 45.8 (7.01) 28 W8X21 40 (6.2) 
5 W21X132 250 (38.8) 29 W8X24 45.8 (7.01) 
6 W12X53 101 (15.7) 30 W21X122 231 (35.81) 
7 W30X191 362 (56.11) 31 W14X132 250 (38.75) 
8 W10X54 102 (15.81) 32 W10X112 213 (33.02) 
9 W12X190 360 (55.8) 33 W8X21 40 (6.2) 

10 W8X21 40 (6.2) 34 W8X21 40 (6.2) 
11 W12X40 75.9 (11.77) 35 W21X111 211 (32.71) 
12 W8X21 40 (6.2) 36 W14X233 442 (68.51) 
13 W8X21 40 (6.2) 37 W24X117 222 (34.41) 
14 W8X21 40 (6.2) 38 W24X117 222 (34.41) 
15 W10X112 213 (33.02) 39 W40X221 400 (62) 
16 W8X21 40 (6.2) 40 W8X21 40 (6.2) 
17 W8X21 40 (6.2) 41 W8X21 40 (6.2) 
18 W12X190 360 (55.8) 42 W8X21 40 (6.16) 
19 W8X21 40 (6.2) 43 W8X21 40 (6.2) 
20 W8X24 45.8 (7.01) 44 W8X24 45.8 (7.01) 
21 W10X45 85.5 (13.25) 45 W24X162 308 (47.78) 
22 W30X191 362 (56.11) 46 W40X324 614.8 (95.3) 
23 W8X21 40 (6.16) 47 W8X21 40 (6.2) 
24 W12X45 85.1 (13.19) 48 W33X424 800 (124) 

Weight         140500 kg  (309791,83lb) 
 

5.2   564-member space truss tower 
564-member space truss tower is considered as the second numerical example. Figure 4 
shows the geometry of the structure.. The symmetry of the tower around x and y-axes is 
considered to group the 564 members into 31 independent size variables. A single load case 
is considered such that it consists of lateral loads of 4.45kN (1 kips) applied in both x and y 
directions and a vertical load of -13.35kN (-3 kips) applied in the z direction at all nodes of 
the tower. A discrete set of 137 economical standard steel sections selected from W-shape 
profile list based on area and radii of gyration properties is used to size the variables. The 
lower and upper bounds on size variables are taken as 6.16in2 (39.74cm2) and 215.0in2 
(1387.09cm2), respectively. The stress and stability limitations of the members are imposed 
according to the provisions of ASD-AISC [7]. In addition, the displacements of all nodes are 
limited to 7.315 cm (2.88 in) in any direction. The bests of three designs obtained by each 
meta-heuristic technique are given in Table 2. Results show that the same as the previous 
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example minimum weight for truss tower is obtained with refined PSO algorithm, which is 
910354.08lb. This is 1.5%, 10.38% and 46.9% lighter than the design produced by ant 
colony, genetic algorithm and simple particle swarm optimizer respectively. The design 
history graph is shown in Figure 5 and the sections which belong to this design are 
designated in Table 4. 
 

  

a) 3D view 

 
b) side view 
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c) side view 

 4.88 m 

   9.75m  (32 ft)

   19.51 m  (64 ft) 

   29.26 m  (96 ft) 

Figure 4.  564-member space truss tower a) 3D view b) top view c) side view 
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Figure 5. The design history graph obtained with meta-heuristic techniques for 564-member 
space truss tower 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

A REFINEMENT OF DISCRETE PARTICLE SWARM OPTIMIZATION... 333

Two examples are also designed with different inertia weight parameters and it is 
observed that it is highly effective in finding the optimum weight. Two static inertia 
parameters are selected as 0.25 and 0.5. It is observed that the best design obtained with 
(w=0.5) is 314719.90lb which is 1.57% heavier than the one with (w=0.25). The second 
example namely 564 bar truss tower is also designed with both inertia parameters. Similar to 
the first example, lower one shows better performance that is the optimum weight with 
(w=0.5) is 1078196.72lb while the one attained with (w=0.25) is 910354.08lb which is 
15.56% lighter. Results obtained during these trials are demonstrated Figure 6. 
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a) 230-bar truss bridge b) 564-bar truss tower 

     Figure 6. The design history graph obtained with different inertia weights. 

 

Table 4. The optimum design obtained with RPSO for 564-member space truss tower 

Size 
Variable 

Ready 
Section Area, cm2 (in2) Size 

Variable 
Ready 
Section Area, cm2 (in2) 

1 W8X31 58.6 (9.08) 17 W8X31 58.6 (9.08) 
2 W12X65 123 (19.07) 18 W8X24 45.8 (7.1) 
3 W12X65 123 (19.07) 19 W8X21 40 (6.2) 
4 W8X28 53.1 (8.23) 20 W8X31 58.6 (9.08) 
5 W12X72 136 (21.08) 21 W8X48 91.1 (14.12) 
6 W12X65 123 (19.07) 22 W10X49 92.8 (14.38) 
7 W8X24 45.8 (7.1) 23 W8X21 40 (6.2) 
8 W12X65 123 (19.07) 24 W8X31 129.03 (20.0) 
9 W12X65 123 (19.07) 25 W8X48 85.81 (13.3) 

10 W8X21 40 (6.2) 26 W8X21 40 (6.2) 
11 W12X65 123 (19.07) 27 W8X31 58.6 (9.08) 
12 W12X65 123 (19.07) 28 W8X21 40 (6.2) 
13 W8X21 40 (6.2) 29 W8X21 40 (6.2) 
14 W12X65 123 (19.07) 30 W8X21 40 (6.2) 
15 W12X65 123 (19.07) 31 W8X21 40 (6.2) 
16 W10X49 92.8 (14.38)    

Weight        412900 kg  (910354.08lb) 
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6. CONCLUSIONS 
 

In this paper the particle swarm optimizer is refined so that it can effectively be used in the 
optimum design of large size pin jointed structures. It is shown that the refined design 
algorithm is mathematically quite simple but effective in finding the solutions of large size 
structural optimization problems. The optimum design algorithm presented selects optimum 
W-sections from American steel sections table for the members of trusses such that design 
constraints described in ASD-AISC are satisfied and the structure has the minimum weight. 
The results obtained from the optimum design of 230-member and 564-member trusses 
revealed the fact that the refined particle swarm optimizer performs better than ant colony 
optimizer and simple genetic algorithm. The minimum weights attained by the refined 
particle swarm algorithm in both cases are less than the ones obtained from ant colony and 
simple genetic algorithm. The tests on different inertia parameters imply that this parameter 
has important role in finding the optimum.  

 
 

REFERENCES 
 

1. Kochenberger GA, Glover F. Handbook of Meta-Heuristics, Kluwer Academic 
Publishers, The Netherlands, 2003. 

2. Dreo J, Petrowski A, Siarry P, Taillard E. Meta-Heuristics for Hard Optimization, 
Springer-Verlag, Berlin, Heidelberg, 2006. 

3. Horst R, Pardolos PM. (Editors), Handbook of Global Optimization, Kluwer Academic 
Publishers, The Netherlands, 1995. 

4. Arora, JS. Methods for Discrete Variable Structural Optimization, Recent Advances in 
Optimum Structural Design, Ed. S.A. Burns, ASCE, 1-40, USA, 2002. 

5. Saka, M.P., Optimum design of steel frames using stochastic search techniques based 
on natural phenomena: A Review, Civil Engineering Computations: Tools and 
Techniques, Ed. B.H.V. Topping, Saxe-Coburgh Publications, 2007, pp. 105-47. 

6. Kennedy J, Eberhart R, Shi Y. Swarm Intelligence, Morgan Kaufmann Publishers, 
USA, 2001. 

7. Manual of Steel Construction, Allowable Stress Design, 9th edition, AISC, American 
Institutes of Steel Construction, Inc, Chicago, Illinois, USA, 1989. 

8. Kennedy J, Eberhart R. Particle Swarm Optimization, IEEE International Conference 
on Neural Networks, IEEE Press, Vol. 4, 1995, pp. 1942-8. 

9. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G. Particle Swarm Optimization 
Algorithm for Makespan and Maximum lateness minimization in Permutation 
Flowshop Sequencing problem, In: Proceedings of the Fourth International Symposium 
on Intelligent Manufacturing Systems, Turkey: Sakarya; 2004, pp. 431-41. 

10. He S, Prempain E, Wu QH. An Improved Particle Swarm Optimizer for Mechanical 
Design Optimization Problems, Engineering Optimization, No. 5, 36(2004)585-605. 

11. Arumugam MS, Rao MVC, Chandramohan A. A new and improved version of particle 
swarm optimization algorithm with global–local best parameters, Knowledge and 
Information Systems. 16(3):2008:331-57. 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

A REFINEMENT OF DISCRETE PARTICLE SWARM OPTIMIZATION... 335

12. Kennedy J, Eberhart RC. A Discrete Binary Version of the Particle Swarm Algorithm, 
In Proceedings of the World Multi-Conference on Systemic, Cybernetics and 
Informatics, pp. 4104-49, NJ: Piscatawary; 1997. 

13. Liu H, Shichang S, Ajith A. Particle swarm approach to scheduling work-flow 
applications in distributed data-intensive computing environments, Proceedings of the 
Sixth International Conference on Intelligent Systems Design and Applications 
(ISDA'06) 0-7695-2528-8/06. 

14. Fourie P, Groenwold A. The particle swarm optimization algorithm in size and shape 
optimization, Structural and Multidisciplinary Optimization, No. 4, 23(2002)259-67. 

15. Parsopoulos KE, Vrahatis MN. Particle Swarm Optimization Method for Constrained 
Optimization Problems, P Sincak, J Vascak, V Kvasnicka, J Pospichal (eds.), Intelligent 
Technologies - Theory and Applications: New Trends in Intelligent Technologies, pp. 
214-20, IOS Press (Frontiers in Artificial Intelligence and Applications series, Vol. 76), 
2002, ISBN: 1-58603-256-9.  

16. Michalewicz Z. A survey of constraint handling techniques in evolutionary 
computations methods, 4th Annual Conference on Evolutionary Programming, MIT 
Press, Cambridge, MA, 1995, pp. 135-55. 

17. Coello CAC. Theoretical and numerical constraint-handling techniques used with 
evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied 
Mechanics and Engineering 191(2002)1245-87.  

18. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning, 
Addison Wesley, USA, 1989. 

19. Mitchell M., An Introduction to Genetic Algorithms, The MIT Press, 1998. 
20. Dorigo M, Stützle T. Ant Colony Optimization, A Bradford Book, Massachusetts 

Institute of Technology, USA, 2004. 
21. Camp CV, Bichon JB, Stovall SP. Design of steel frames using ant colony optimization, 

Journal of Structural Engineering, ASCE, No. 3, 131(2004)369-79. 

 www.SID.ir

www.SID.ir

