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ABSTRACT

This study investigates a time-domain method for modeling general transient elastodynamic 
problems using the spectral-based finite element method (SEM) which is based upon a 
conforming mesh of two-dimensional quadrilaterals. Employing the Galerkin weighted 
residual method, detailed formulation of the SEM is derived in which various aspects 
involving in elastodynamic problems are discussed. The accuracy and efficiency of the 
method is fully demonstrated by comparing results obtained from the SEM with those 
reported in other studies. For this purpose, a set of wave propagation and structural dynamic 
problems, subjected to various load forms such as triangular load, Heaviside step load, 
sinusoidal impulsive load, and ramped load are modeled using the SEM. Furthermore, 
support motion boundary conditions are examined using the SEM. Each problem is 
successfully modeled using a very small number of degrees of freedom in comparison with 
other numerical methods. The numerical results agree very well with the analytical solutions 
as well the results from other numerical methods.

Keywords: Spectral element method; finite element method; elastodynamics; dynamic 
analysis

1. INTRODUCTION

Elastodynamics illustrates a broad range of phenomena in engineering and physical 
problems such as fluid-structure interaction [1] and soil-structure interaction [2] in which, 
general form of wave equations (in fluid and solid domains) with suitable boundary 
conditions (BCs) should be solved. Coming along with the huge increase of computational 
capacities, numerical methods have provided robust and effective forums to challenge wave 
propagation phenomenon during the last three decades, among which finite difference 
method (FDM) [3], boundary element method (BEM) [4-7], and finite element method 
(FEM) [8-10] are most popular. Spectral-based finite element method (SEM) provides a 
high-order technique which, therefore, allows obtaining the same accuracy as low-order 
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methods (such as FEM and FDM) by using a reduced number of grid points, thus giving rise 
to a significant efficiency in computational resources. The SEM which uses all the 
advantages of the classical FEM (e.g., well-suited to handle complex geometries and 
interface conditions), has been benefited by special sort of interpolation functions which, on 
our knowledge, are being somehow similar to fundamental solutions employed in the BEM. 
These interpolation functions enable the SEM to transfer a wide range of wavelengths 
through elements with higher accuracy and lower computational efforts comparing to the 
classical FEM. In other words, each spectral element could be imagined as a small domain 
modeled by a simplified BEM in which, by ‘simplified’ we mean a simple fashion of 
fundamental solutions which involves no singular integrals to be computed. The SEM which 
was originally introduced in computational fluid mechanics [11] is currently being 
implemented in structural- [12-14] and continuum- [15,16] based elastodynamics problems.

Various features of the SEM as a time-domain approach for general transient 
elastodynamic analyses are inspected in the present work. The SEM approach is based on 
the following idea. First, the computational domain is decomposed into quadrilateral non-
overlapping subdomains/elements. Then, the solution is expressed as a truncated expansion 
of a tensor product of Legendre orthogonal polynomials on each subdomain. Following the 
Galerkin formulation [17], the semi-discrete formulation of the wave equation is then 
written. This is formally represented by a system of linear, second-order, ordinary 
differential equations, which must be integrated in time. In this last step, the semi-discrete 
equation is solved by assembling the global system matrices and integrating numerically the 
resulting ordinary differential equations [18].

Finally, a set of wave propagation and structural dynamics problems, subjected to various 
transient load forms, are modeled to validate the present approach.

Since this method shows a promising performance in solving problems in which elastic 
wave propagation plays an important role, development of this approach for large-scale 
three-dimensional seismic wave propagation in real engineering seismology problems is 
currently followed by the authors. 

2. GOVERNING EQUATIONS

The following presentation is restricted to the isotropic, homogeneous, small-displacement 
linear elastic behavior. The equations of motion that govern the propagation of elastic waves 
in a solid may be solved based upon either a strong or a weak formulation of the problem. In 
the strong formulation one works directly with the equations of motion and associated 
boundary conditions written in differential form. In the weak formulation, one uses an 
integral form of the equations of motion, as in the FEM [17]. The SEM is based upon a 
weak formulation of the equations of motion.

The equilibrium equations for an elastic bounded medium Ω d (d = 2, 3 is the number 
of space dimensions), subjected to an external body-force  fi  is described by

diuf iijij ,...,1     ,     ,   (1)
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where 22 / tuu ii  is the second derivative of displacement of the medium with respect to 

time; , the mass density, and ij denotes the stress tensor components.
Instead of using the equations of motion and associated BCs directly, strong form as in 

Eq. (1), one can use an integrated form (i.e., weak form such as weighted residual 
approach). This is accomplished by weighting Eq. (1) with an arbitrary test vector (the 
variation of displacement function is chosen here), integrating by parts over the model 
volume Ω, and imposing suitable BCs. This gives

(2)0)( , 


dufu iijiji 

or

(3)0,  


duudfudu iiiijiji 

The first integral of Eq. (3) can now be integrated by parts (Green's Lemma) to obtain the 
weak form as below 

(4) 


dudnudu ijjijijijiji  ,, )(

in which  is the boundary of the physical domain , and nj denotes the jth component of 
the outward unit vector orthogonal to the boundary. Two variational and differential 
operators are commutative thus provide

(5) 


dudnudu ijjijijijiji  ,,

or

(6) 


ddtudu ijijiijiji  ,

where ti and ij are the traction components on  and the strain tensor components, 
respectively.

Considering Eq. (6), Eq. (3) could be written as

(7)0 


duudfudtud TTTT






which shall be followed in Section 4.  

3. MESH DEFINITION

A spectral element approximation of Eq. (2) and its solution are obtained as follows. First, 
the domain  is decomposed into ne quadrilateral (2D) non-overlapping elements e, e = 1, 
..., ne,  such that 

e
n
e

e   . Second, an expansion in terms of a tensor-product of Nth-order 
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orthogonal polynomials is used to approximate solution, data, geometry and physical 
properties on each element. Each quadrilateral spectral element is analogous to the square; 
hence, we adopt a suitable mapping between the square (master/reference element) and each 
spectral element e [17]. The master square is defined in terms of ),( ξ , 11  ξ- , 11 - , 

which are sometimes referred to as the initial coordinates. Each quadrilateral element e is 
defined in terms of a set of na shape functions Na(ξ, η), a = 1, ..., na. For any given 
quadrilateral element, the relation between a point x


 within the element and a point (ξ, η) in 

the master square may thus be written in the form

(8)   



an

a
aa xξ,ηNξ,ηx

1



in which, the shape functions Na(ξ, η) are products of Lagrange polynomials. The 
 1n Lagrange polynomials of degree!

n are defined in terms of  1n  control points 

11  pξ- ,
,...,np 0 , by

(9)        
      

 
 























 n

pi
i ip

i

npppppp

nppn
p ξξ

ξξ

ξξξξξξξξ

ξξξξξξξξ
ξh

0110

110

In what follows, two-dimensional formulation is presented and discussed. A differential 
element of area dxdy within a given quadrilateral element e is related to a differential 
element of area dξ dη in the master square by

(10)dxdy = Je dξ dη

where Je denotes the Jacobian of the transformation

(11) 







xx

Je


.

To calculate the Jacobian Je one needs to determine the partial derivatives of Eq. (11). 
This is accomplished by differentiating the mapping Eq. (8) 

(12)

   
 





 an

a
a

a x
ξ,ηNξ,ηx

1 
,    

 





 an

a
a

a x
η

ξ,ηN

η

ξ,ηx

1

,    
 





 an

a
a

a y
ξ,ηNξ,ηy

1 
, 

   
 





 an

a
a

a y
η

ξ,ηN

η

ξ,ηy

1

4. REPRESENTATION OF WEAK FORM ON THE MESH

To solve the weak form of the governing equations given in Eq. (7), integrations over the 
volume  and the boundary  are subdivided in terms of smaller integrals over the volume 
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and surface elements e and e, respectively 

(13)0 
 eeee

duudfudtud TTTT






As shown in the previous section, the shape of the quadrilateral elements can be defined 
in terms of low-degree Lagrange polynomials. In the FEM, low-degree polynomials are also 
used as basis functions for the representation of fields on the elements (which is a so-called 
isoparametric formulation). 

For reasons discussed in the next sections, the control points ξp, ,...,np 0 , needed in the 

definition (9) of the Lagrange polynomials of degree n are placed at special positions called 

Legendre-Gauss-Lobatto (LGL) points. These correspond, in a normalized 1D situation 
(interval [-1, 1]), to the zeroes of 

nP , the derivative of the Legendre polynomial of 

degree n , and the extremes of the interval 

(14){zeros of )(
nP }{-1, 1}

which means that one has  1n LGL points for a polynomial of degree n .

On each elements e, a function f is interpolated by products of Lagrange polynomials of 
degree n as

(15)        
 


  n

p

n

q
pqqp

n

a
aa fhhfNxf

a

0 01

,, 

where the coefficients fpq are the functional values of f at the interpolation points!  qpx  ,


(16)  qppq xff  ,




In a similar fashion of Eq. (8), orthogonal polynomials (or interpolation functions) are 
used as basis functions for the representation of field quantities, say displacement 
components u

 , on the elements e in a matrix form as follows 

(17) aNu




in which the components of  N  are interpolation functions, and a
  represents a listing of 

nodal displacements for a particular element e. The variation of displacement function is 

(18)  aNu
  

Strain tensor is defined in terms of the displacements by the well-known relations which 
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define the operator  L

(19) uL


   ,   
T

xy

yx
L 












0

0

Combining Eqs. (17)-(19) results in

(20) aB


   ,      NLB 
and

(21)  aB


 

in which  B  is the well-known strain-displacement transformation matrix.
The stress tensor is linearly related to the strain tensor by Hooke's law, which in an 

elastic, isotropic solid may be written in the form of

(22) 


C

or
(23)  aBC




Substituting Eqs. (18), (21) and (23) in Eq. (13) and some algebraic manipulations, Eq. 
(13) may lead to a system of second-order ordinary differential equations in time 

(24)    0.


  e

ext
e

t
ee FFaKaM

where  eM  and  eK  are the mass matrix and stiffness matrices, respectively, at the element 
level; e

tF


 and e
extF .


 are the local discrete representations of the forcing terms for external 

traction and body-force, respectively, at the element level 

(25)       


dNNM
e

Te 

(26)      



e

dBCBK Te

(27) 



e

dtNF Te
t



(28) 



e

dfNF Te
ext


.

.

The  M and  K global matrices are the discrete counterparts of the integrals over the 

domain  and are equivalent to the sum of integrals over the set of the elements e of the 
partition. They are built through the assembly process of the element matrices (direct 
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stiffness method). The  M and  K system matrices and the forcing terms vector are given by

(29)   



en

e

eMM
1

  ,      



en

e

eKK
1

  ,  



en

e

e
tt FF

1

  ,  



en

e

e
extext FF

1
..



As a result, the system of equations (24) poses the global level form as

(30)    0.


  extt FFaKaM

4.1 Numerical integration of element matrices
The integrals of characteristics matrices being appeared in Eqs. (25)-(28) are usually 
calculated by Gauss quadrature in the FEM. In the SEM, integrations over the elements e

may be approximated using the Legendre-Gauss-Lobatto (LGL) quadrature rule instead, 

(31)         


  


 n

qp
pqepqqpe JfddJxfdxdyxf

e 0,
)(

1

1

1

1
,, 

in which p and q are the weights associated with the LGL points of integration, and 
 qpepqe JJ  ,)(  .

To integrate the functions and their partial derivatives over the elements, the values of 
the inverse Jacobian matrix x


  need to be determined at the  21n  LGL integration 

points for each element.
A highly interesting property of the SEM is the fact that the mass matrix  M  is diagonal 

[16] thanks to using LGL quadrature for each element. This allows for a very significant 
reduction in computational cost and complexity, and thus, no costly linear system resolution 
algorithm is needed to march the system in time.

4.2 Time integration of the global system
The system of ordinary differential equations (30) that governs the time dependence of the 
global system may be written in the form of

(32)    FaKaM


 

where F


indicate the source term. The system of equations (32) is integrated in time by 
various schemes [17]. In this research, time discretization of Eq. (32) is achieved based 
upon a classical central-difference scheme, moving the stiffness term to the right-hand side. 
Since this scheme is fully explicit and conditionally stable, in order to ensure stability, it 
must satisfy the usual Courant-Friedrichs-Levy (CFL) condition. The Courant stability 
number of the explicit time integration schemes is defined as

(33)
max











h

c
tC
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in which, h is the minimum grid spacing, c the maximum propagation velocity of stress 
waves and t denotes the time step chosen. The CFL condition [15] states that C should not 
be chosen higher than an upper limit 

(34)maxCC 

For most practical purposes and regular meshes, the value 5.0max C  is acceptable, while 

for very irregular meshes with distorted elements the upper limit reduces to approximately 
0.3 to 0.4. For a given element, using higher-order interpolation functions decreases h, 
resulting in smaller t to be selected (see Eq. (33)). In these cases, the Courant stability 
condition may be too restrictive for an explicit scheme. In that case, a Newmark scheme as 
an implicit one can be used instead.

4.3 Interpolation functions and mesh considerations
In the SEM as other typical mesh-based numerical methods, spatial resolution is controlled 
by the typical size of an element, and the polynomial degree used to represent interpolation 
functions on an element,!

n . If the polynomial degree
n is too small (e.g. less than typically 

4), the SEM shows the same inaccuracies that are observed in the FEM applied to wave 
propagation problems [19]. A very large (e.g. greater than 15) degree of the polynomial on 
the other hand, makes the method spatially very accurate, but the computational costs 
become huge. In the SEM for wave propagation problems one typically uses a polynomial 
degree between 5 and 10 to provide the best balance between accuracy and cost. To obtain 
accurate results, h has to be chosen such that the average number of points per minimum 
wavelength (   hn  1min  ) in an element, is roughly equal to 5 for the optimal range of 

polynomial degrees ( 105  n ) [18]. 

For the design of the mesh as in the FEM, the curvature of the elements should be 
modest, such that the Jacobian of the mapping to the reference domain varies smoothly 
across any given element and never vanishes [17].

5. NUMERICAL EXAMPLES

The aforementioned methodology has been implemented in a two-dimensional time-domain 
SEM code in which, a library of spectral quadrilateral elements with various orders is 
provided. In order to validate the nature and general behavior of the method, five numerical 
examples have been considered. A plane stress condition is assumed for all the examples. 
Numerical results are compared with those obtained by exact analytical solutions [20] 
and/or by other numerical methods to assess the stability and the accuracy of the present 
method. No physical damping (i.e., pure elastic material behavior) is considered in all the 
SEM analyses. All quantities are measured in SI units.
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5.1 Rectangular bar subjected to two different loadings
In the first example, verification of the algorithm especially in comparison with analytical 
solutions is the main target. A rectangular bar (see Figure 1a), whose length L is twice its 
width W, is fixed at its left end with traction free on its top and bottom sides. The Poisson’s 
ratio is considered null to impose one-dimensional condition. The right end side of bar is 
uniformly subjected to two various tensile loadings: a Heaviside step function representing a 
suddenly applied load (P0 = 1) as shown in Figure 1b, and a triangular function which 
increases from zero at time t = 0 to P0 at t = 1, and then decreases to zero at t = 2 as depicted 
in Figure 1c. The material constants are as follows: the Young's modulus E = 1, and the 
mass density  = 1. These material properties yield the maximum propagation velocity of 
stress waves c = 1. In the triangular loading, the primary wave front just reaches the fixed 
end at time t = 1, and bounces back to the right end at t = 2.

(a) (b)

(c)

Figure 1. The first example. Rectangular bar subjected to prescribed loading: (a) geometry 
and boundary conditions, (b) Heaviside loading, (c) triangular loading

To show the convergence of the SEM, three different discretized meshes are chosen for 
the same time step t = 0.01. Each mesh includes only two square elements (Figure 2) with 
a specific degree of Lagrange polynomials, n . 

(a) (b) (c)

Figure 2. Various spectral elements with a certain degree of Lagrange polynomials: 
(a) n = 3, (b) n = 5, (c) n = 7
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The time histories of horizontal displacement at point A and horizontal stress at point B 
(see Figure 1a) are investigated. The numerical results by the SEM are compared with that 
of analytical solution. Figure 3 shows the horizontal displacement of point A, for the 
Heaviside step function loading. The results are depicted for three types of spectral elements 
inspected in this example. Also in this figure, the error distributions in the numerical results, 
i.e., the SEM solution-analytical solution, are shown. From this figure, one can see that all 
three types of spectral elements give very good results and that the higher-order elements 
give the better results. 
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Figure 3. The SEM results of horizontal displacement at point A for three types of spectral 
elements with specified degrees of Lagrange polynomials, under Heaviside loading: (a) n = 

3, (b) n = 5, (c) n = 7

The horizontal stress histories at point B, for the Heaviside step function loading is 
shown in Figure 4. The results are drawn for three types of spectral elements. Good 
agreement between the SEM results and the analytical solution can be observed, especially 
with higher-order elements. The FEM results experience small oscillations around the 
analytical solutions at moments when the stress jumps. This type of oscillations are caused 
by the sudden application of the step load, and also observed in other numerical studies such 
as domain boundary element method [5], boundary element method [4], and hybrid BEM-
FEM approach [21,22].
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Figure 4. The SEM results of horizontal stress at point B for three types of spectral 
elements with specified degrees of Lagrange polynomials, under Heaviside 

loading: (a) n = 3, (b) n = 5, (c) n = 7

Figure 5 shows the horizontal displacement of point A, for the triangular loading. The 
results are represented for three types of spectral elements examined in this example. As it is 
obvious from this figure, the results from the SEM and analytical approaches are almost 
identical. Excellent agreement can also be observed in the horizontal stress histories at point 
B as shown in Figure 6. 
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Figure 5. The SEM results of horizontal displacement at point A for three types of spectral 
elements with specified degrees of Lagrange polynomials, under triangular loading: (a) n = 

3, (b) n = 5, (c) n = 7
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Figure 6. The SEM results of horizontal stress at point B for three types of spectral elements 
with specified degrees of Lagrange polynomials, under triangular 

loading: (a) n = 3, (b) n = 5, (c) n = 7

5.2 Simply-supported beam subjected to concentrated loading
In this example, two-dimensional wave propagation problem of transverse vibration of 
beams is investigated to verify the proposed algorithm in comparison with analytical 
solution. A simply-supported beam, shown in Figure 7, is subjected to a concentrated mid-
span Heaviside step function loading on its upper face. This loading has been introduced in 
Figure 1b. The material and geometrical properties of this example are as follows: the 
Young's modulus E=1, the Poisson's ratio ν = 0.3, the mass density  = 1, and the span 
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length, height, and width of the beam are 5, 1, and 1, respectively. With these material 
properties, primary and secondary wave propagation velocity are 1.1602 and 0.6202, 
respectively. Similar to the first example, three different discretized meshes are chosen for 
the same time step t = 0.1. Each mesh includes five square elements with a certain degree 
of Lagrange polynomials, n . 

Figure 7. The second example. Geometry and boundary conditions of a simply-supported 
beam subjected to the mid-span concentrated loading of Heaviside step function type

The time histories of vertical displacement at point A (see Figure 7), obtained from the 
SEM approach and that of analytical method, are shown in Figure 8. The results are drawn 
for three types of spectral elements inspected in this example. Results of the two approaches 
agree very well. It is worthwhile remarking that the results shown in Figure 8 are pertaining 
to very coarse meshes in which few degrees of freedom are involved. 
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Figure 8. The SEM results of vertical displacement at point A for three types of spectral 

elements with specified degrees of Lagrange polynomials: (a) n = 2, (b) n = 4, (c) n = 6 

(the second example)
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5.3 Rectangular bar subjected to longitudinal support motion
The longitudinal response of a rectangular bar caused by its support motion is examined in 
this example. The material properties of this example are as follows: the Young's modulus 
E=2×105, The Poisson's ratio ν=0, and the mass density =10. These material properties 
yield the maximum propagation velocity of stress waves c=141.42. This bar, whose length 
L=10 is twice its width W, is subjected to a longitudinal support motion at its left end, with 
traction free on its top, right, and bottom sides. 

Assuming that the bar is initially at rest, the left support is subjected to horizontal 
translation of the Ricker type 

(35)!!  2
0

2
0max ))((exp())((21)( ttfttfAtu pp  !!

where the predominant frequency f p and the time shift parameter of the time history t0 are 
selected to be 25 and 0.04, respectively. Amax denotes the maximum amplitude of the time 
history, which is chosen as 0.005.

Again, three different discretized meshes are chosen for the same time step t = 0.0005, 
and each mesh contains two square elements with a specific degree of Lagrange 
polynomials, n . The time histories of horizontal displacement at point A (Figure 1a) are 

investigated. The numerical results by the SEM are compared with that of analytical 
solution as shown in Figure 9. The results are drawn for three types of spectral elements the 
same as the first example. From this figure, one can see that the higher-order elements give 
excellent results. 

5.4 Plane portal frame subjected to lateral loading
In the fourth test, we consider a two-dimensional portal frame in order to demonstrate the 

accuracy of the SEM in modeling more realistic structures. As no analytical solution of this 
problem is available, comparison is made with the results based upon a meshless method 
[23], where they proposed a new method for solving transient elastodynamic problems 
based on the local boundary integral equation method and the moving least square 
approximation. We selected the same geometry (Figure 10a) and material properties as: E
= 10000 and ν = 0.2. The structure is fixed at the two bottom edges and is loaded by a lateral 
uniformly-distributed loading with ramp time dependence (Figure 10b). Similar to 
preceding examples, various meshes were inspected among which, the results 
concerning n =2,4 and 6, are presented here. The mesh consists of five square elements 

whose boundaries are shown by dashed/solid lines in Figure 10a. We have selected the time 
step t = 0.005.
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Figure 9. The SEM results of horizontal displacement at point A for three types 
of spectral elements with specific degrees of Lagrange polynomials: 

(a) n = 4, (b) n = 6, (c) n = 8 (the third example)

(a) (b)

Figure 10. The fourth example. Portal frame subjected to lateral loading: (a) geometry and 
boundary conditions, (b) ramp time dependence function
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The time variation of horizontal displacement at point A (Figure 10a) is shown in Figure 
11a. The time variation of shear stress at point B (Figure 10a) is given in Figure 11b. All 
three meshes give almost converged time variations of numerical results. The results 
corresponding to higher order elements are identical to the results obtained by Sladek et al. 
[23] and are comparable with Figures 7 and 8 in [23]. 
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Figure 11. The SEM results of the fourth example for three types (orders) of spectral elements 
with n = 2, 4 and 6: (a) horizontal displacement at point A, (b) shear stress at point B

5.5 Bi-material rectangular bar subjected to impulsive loading
In the fifth and final example, we study a one-dimensional rectangular bar consisting of two 
different materials loaded by a sinusoidal impulsive loading, in order to check the accuracy of the 
SEM in analysis of impact problems. Solutions based upon a meshless Petrov-Galerkin 
formulation [24] are available for comparison. The segmented bar consists of two materials: one 
half is the steel and the other the aluminum (Figure 12a). This bar is fixed at its left end with 
traction free on its top and bottom sides. The right end side of bar is uniformly subjected to a 
tensile loading of sinusoidal pulse function (Figure 12b). The same geometry and loading 
function as in [24] are employed in this example as: L = 2W = 50 mm, and P0 = 100 MPa. The 
material parameters are as follows: steel Young's modulus E1 = 200 GPa, aluminum Young's 
modulus E2=70GPa, 1=7860 kg/m3, 2=2710 kg/m3, and ν1=ν2= 0. These material properties 
yield the maximum propagation velocity of stress waves c1=5044 m/s and c2=5082 m/s. 

(a) (b)

Figure 12. The fifth example. Bi-material rectangular bar subjected to impulsive loading: (a) 
geometry and boundary conditions, (b) sinusoidal pulse loading.
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To achieve convergence analysis of the SEM, three different discretized meshes are 
chosen for the same time step t = 0.05 μs. Each mesh contains two square elements with a 
certain degree of Lagrange polynomials, n , in which, the results corresponding to n = 2, 4 

and 6, are represented.
The time histories of horizontal displacement at point A (see Figure 12a) are 

investigated. Figure 13 shows the horizontal displacement of point A, for three types of 
spectral elements examined in this example. Again, higher order meshes provide almost 
converged time variations of numerical results. The results corresponding to n = 6 

essentially coincide with the analytical solution presented by Batra et al. [24] and are 
virtually identical to the exact solutions of Figure 13 in [24]. 
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Figure 13. Horizontal displacement at point A concerning the fifth example, for three types 
of spectral elements with (a) n = 2, (b) n = 4, (c) n = 6

Furthermore, in order to realize how time-step size affects the accuracy of the SEM 
approach, three different time-step sizes (t = 0.1, 0.2 and 0.3 μs) are chosen in the solution 
procedure. The results with the three time-step sizes by the SEM approach using the mesh 
of n = 6 are also plotted together in Figure 14. Apparently, the smaller t is used, the better 

results are obtained. The results are consistent with the CFL condition of Eq. (34) in which, 
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simple calculations show that t0.2 μs are recommended. 
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Figure 14. Comparison the SEM results of displacement at point A for (a) t = 0.1, 
(b) t = 0.2, (c) t = 0.3 μs

6. CONCLUSIONS

In this paper, detailed introduction of the spectral element method (SEM) for modeling 
wave propagation problems in time-domain has been presented. As would be realized from 
the detailed formulation to show a general picture of this method, the only difference 
between the SEM and the classical FEM could be summarized in two features: adoption of 
specific shape functions and numerical quadrature. Transient analyses of five examples have 
been successfully carried out using the SEM. In these examples, various dynamic behaviors, 
geometries, materials properties, boundary conditions, and transient load functions have 
been selected to illustrate the applicability and generality of this method. One may note that 
all these examples have been successfully modeled with very small number of DOFs, 
preserving very high accuracy comparing with other analytical and numerical solutions. As 
mentioned in the introduction, considering the applicability and generality of the SEM in 
wave propagation problems, development of this approach for other large-scale engineering 
seismology problems is currently followed by the authors [25]. 
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