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ABSTRACT 
 

A finite element model based on the layerwise theory of Reddy is developed for the analysis 
of delamination in the [90/0]S cross-ply laminated beams. The Heaviside step function was 
adopted in the formulation to express the discontinuous interlaminar displacement fields of 
delaminated layers. Also, to accommodate the moderately large rotations of the beam, the 
von Kármán type nonlinear strain field is used in the formulation. The finite element model 
is verified by comparing the present solutions with those available in the literature. It is 
shown that the present finite element model is able to capture accurate local stress fields and 
the strain energy release rates. Then the model is used to study delaminated cross-ply 
laminates under bending loads.  The influence of boundary conditions and number of layers 
on the strain energy release rates is studied. Also, the growth of delamination is investigated 
for a pure bending case, and the mode of delamination growth is identified. The influence of 
geometric nonlinearity on the delamination growth is also investigated as the delamination 
advances. It is found that geometric nonlinearity does not significantly alter the delamination 
kinematics and strain energy release rates. 

 
Keywords: Delamination; finite element model; geometric nonlinearity; laminated 
composite beams; layerwise theory 

 
 

1. INTRODUCTION 
 

Free-edge delamination is observed in uniaxial tensile tests, and internal delamination is also 
found under various loading conditions. In many cases, interfacial cracks appear to be 
originated from the tips of pre-existing transverse cracks. For cross-ply laminates, 90-degree 
plies are susceptible to transverse cracks and they result in delamination at interfaces of the 
transversely cracked 90-degree plies and the adjacent 0-degree plies.  

Pagano and Pipes [1] provided an analytic solution to the distribution of the interlaminar 
transverse normal stress along the interface of free edge delamination. They also conducted 
an experiment to validate the analytical solution. Kim [2, 3] reported characteristics of free 
edge delamination under tensile loads and attempted to give a criterion for the onset of 
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delamination by a strength criterion [3]. Brewer and Lagace [4] also proposed a quadratic 
stress criterion for initiation of delamination.  

Delamination is often analyzed in terms of the change in strain energy release rate using 
the principles of fracture mechanics because delamination has more similarities to crack 
growth in the framework of fracture mechanics than transverse matrix cracking. Unlike the 
matrix cracking, where the progress of damage is measured by the number of cracks in the 
damaged layer, the crack length is the measure of the damage growth in delamination and it 
is predicted by estimating the strain energy release rate.  

In the frame work of fracture mechanics, Griffith [5] proposed a condition for a crack 
extension using the principle of minimum total potential energy ( )U Vδ δ= − . This condition 

is called Griffith criterion for a crack to grow. Griffith criterion has been mathematically and 
thermodynamically improved by Rice [6], who postulated a contour integral that is path 
independent as the change in potential energy for a virtual crack extension. This special 
integral is known as J-integral under the context of fracture mechanics. Gurtin [7] later 
showed that J-integral is equivalent to the strain energy release rate for the linear elastic 
material. 

Applying the concept of strain energy release rate to delamination phenomenon in 
composite laminates, Wang [8] asserted that the rate of strain energy release during crack 
extension is a material property, which is known as the critical strain energy release rate. 
Wang and his colleagues also intensively investigated delamination phenomena related to 
transverse cracks and produced useful information about the strain energy release rate 
through a series of works [9-11]. The strain energy release rate is suggested as a criterion for 
delamination growth by a number of others [12-14]. Among those, Sih et al. [15] and 
O’Brien [16] addressed different contributions of the strain energy release rate depending on 
the failure mode, and pointed out that the total mixed mode strain energy release rate 
controls the onset of edge delamination under cyclic loads. The strain energy release rates of 
mixed modes are considered by Wilkins et al. [17] and Hahn [18]. 

In the present study, the characteristics of delamination in the laminated beam under 
bending loads are investigated for the [90 / 0]S  cross-ply laminated beams, while accounting 

for von Kármán nonlinearity. The change of strain energy release rate is examined to predict 
the delamination growth. Also, mixture of failure modes in the laminate under bending is 
considered and the contribution of each mode’s strain energy release rate to the total strain 
energy release rate is studied so that the dominant mode in delamination can be identified. 

 
 

2. FORMULATION 
 

2.1 Layerwise Theory with Heaviside Step Function 
The total displacement fields of the laminated beam are assumed to be written as [19] 

 

 
( , ) ( , ) ( , )

( , ) 0

LWT DELu x z u x z u x z

v x z

= +
=

 (1) 

                                             ( , ) ( , ) ( , )LWT DELw x z w x z w x z= +   
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where LWTu  and LWTw  are the longitudinal and the transverse displacement fields using the 
layerwise theory expressed as 

 
1

( , ) ( ) ( )
N

LWT I
I

I

u x z U x z
=

=å Φ  (2a) 

 
1

( , ) ( ) ( )
M

LWT I
I

I

w x z W x z
=

=å Ψ . (2b) 

 
In equations (2a)-(2b), IΦ  and IΨ  are generally different 1-D Lagrangian polynomials 

with 0C  continuity across the layers so that the strain field through the thickness can be 

discontinuous and the stress field can possibly continuous; DELu  and DELw  in equations (1a) 
and (1c) denote the discontinuous longitudinal and transverse displacement, respectively, 
due to delamination. They can be expressed as  

 

 
1

( , ) ( ) ( )
ND

DEL D
I I

I

u x z U x H z z
=

= -å  (3a) 

 
1

( , ) ( ) ( )
ND

DEL D
I I

I

w x z W x H z z
=

= -å  (3b) 

 
where ND  indicates the number of delaminated interfaces and ( )H z  is the Heaviside step 
function 

 

 
1 ,

( )
0 ,

I
I

I

z z
H z z

z z

ì ³ïï- =íï <ïî
. (4)  

 
It should be noted that the Ith nodal values of  ( , )u w  are the combination of ( , )I IU W  and 

( , )D D
I IU W . 

To accommodate moderately large rotations of the transverse lines but with small strains, 
the von Kármán type nonlinear strains are employed  

 

 
2

1

2xx

u w

x x
ε

æ ö¶ ¶ ÷ç= + ÷ç ÷çè ø¶ ¶ 1 1

( ) ( )
( ) ( )

DN ND
II I

I
I I

dU x d U x
z H z z

dx dx
Φ

= =

= + -å å  

                                 
1 1

( ) ( )1
( ) ( )

2

DM ND
II I

I
I I

dW x d W x
z H z z

dx dx
Ψ

= =

æ ö÷ç ÷+ + -ç ÷ç ÷çè ø
å å  

                                               
1 1

( ) ( )
( ) ( )

DM ND
JJ J

I
J J

dW x d W x
z H z z

dx dx
Ψ

= =

æ ö÷ç ÷´ + -ç ÷ç ÷çè ø
å å   
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1

( )
( )

IM

zz I
I

w d z
W x

z dz
ε Ψ

=

¶
= =

¶ å  (5) 

 xz

w u

x z
γ ¶ ¶

= +
¶ ¶ 1 1 1

( ) ( )( )
( ) ( ) ( )

DIM N ND
II I

I I
I I I

dW x d W xd z
z U x H z z

dx dx dx

ΦΨ
= = =

= + + -å å å   

                                       0yy xy yzε γ γ= = =    

 
For the kth orthotropic lamina, the plane stress-reduced stress-strain relations are 
 

 

( )( ) ( )

11 13

13 33

55

0

0

0 0

kk k

xx xx

zz zz

xz xz

C C

C C

C

σ ε
σ ε
σ γ

é ùì ü ì üï ï ï ïê úï ï ï ïï ï ï ïï ï ï ïê ú=í ý í ýê úï ï ï ïï ï ï ïê úï ï ï ïê úï ï ï ïî þ î þë û

 (6) 

 
where ( )k

ijC  are the transformed elastic coefficients. 

The governing equations of the layerwise beam are derived from the principle of virtual 
displacements 

 
 0 U Vδ δ= +  (7) 

 
where the virtual strain energy Uδ and the virtual work done Vδ  by external forces (Figure 
1 shows a laminated beam under general loads) are given by 

 

 ( )2

2

h
b

h
a

x

xx xx zz zz xz xz
x

U dzdxδ σ δε σ δε σ δγ
-

= + +ò ò  (8a) 

                             2 2( ) ( , ) ( ) ( , )
b

a

x
h h

b t
x

V f x u x f x u x dxδ δ δé ù=- - +ë ûò   

 2 2( ) ( , ) ( ) ( , )
b

a

x
h h

b t
x

q x w x q x w x dxδ δé ù- - +ë ûò  (8b) 

 

Figure 1. Laminated beam model based on the layerwise theory under general loads 
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Applying the stress-strain relations in equation (6) and strain-displacement relations in 
equations (5) to (8a) and (8b), the virtual energy and the virtual work done can be described 
in terms of the nodal displacements as follows: 

 

 
1 1 1

b

a

N N Mx I I IJ I IJI I I
xx x I xx z I x

x
I I J

dWd U d W d W
U N Q U N Q W Q

dx dx dx dx

δ δ δδ δ δ
= = =

é æ öæ ö ÷ç÷ê ç ÷= + + + +÷ çç ÷÷ê ç÷ç ÷çè ø è øêë
å å åò   

 
1 1

b

a

DM NDx
D IJ JI

xx
x

I J

d Wd W
N dx

dx dx

δ
= =

+ ååò  

 
1 1 1

ˆb

a

DD DND M NDx
D JI D IJJ JI I

xx xx
x

I J J

dW d Wd W d W
N N dx

dx dx dx dx

δ δ
= = =

æ ö÷ç ÷+ +ç ÷ç ÷çè ø
å å åò  

 
1 1

b

a

D DND NDx
D I D II I

xx x
x

I I

d U d W
N Q dx

dx dx

δ δ
= =

æ ö÷ç ÷+ +ç ÷ç ÷çè ø
å åò  (9a) 

     ( ) ( )1 1

b b

a a

x x

b t N b t M
x x

V f U f U dx q W q W dxδ δ δ δ δ=- + - +ò ò  (9b) 

 
where  
 

     11 11 13 11
1 1 1 1 1

1

2

DN M M M ND
I IJ IJK IJ D IJJ J JK
xx J

J J K J J

dU dW d UdW
N A B A W A

dx dx dx dx


= = = = =

= + + +å åå å å  

 11 11
1 1 1 1

1

2

DD DM ND ND ND
D IJK D IJKJ JK K

J K J K

dW d Wd W d W
B B

dx dx dx dx= = = =

+ +åå åå   

    11 11 13 11
1 1 1 1 1

1 ˆ
2

DN M M M ND
IJ KIJ IJKL IJK D IJKK K L K
xx K

K K L K K

dU dW dW d U
N B D B W B

dx dx dx dx


= = = = =

= + + +å åå å å  

 11 11
1 1 1 1

1

2

D D DM ND ND ND
D IJKL D IJKLK L K L

K L K L

dW d W d W d W
D D

dx dx dx dx= = = =

+ +åå åå   

  11 11 13 11
1 1 1 1 1

1 ˆ
2

DN M M M ND
D I D JI D JKI D IJ D IJJ J JK

xx J
J J K J J

dU dW d UdW
N A B A W A

dx dx dx dx


= = = = =

= + + +å åå å å  

 11 11
1 1 1 1

1ˆ̂
2

DD DM ND ND ND
D JIK D IJKJ JK K

J K J K

dW d Wd W d W
B B

dx dx dx dx= = = =

+ +åå åå   

 
11 11 13 11

1 1 1 1 1

1 ˆ̂
2

DN M M M ND
D IJ D KIJ D IKLJ D IJK D IJKK K L K

xx K
K K L K K

dU dW dW d U
N B D B W B

dx dx dx dx


= = = = =

= + + +å åå å å
 

 11 11
1 1 1 1

1

2

D D DM ND ND ND
D IKJL D IJKLK L K L

K L K L

dW d W d W d W
D D

dx dx dx dx= = = =

+ +åå åå   

 11 11 13 11
1 1 1 1 1

1ˆ
2

DN M M M ND
D IJ D KIJ D KLIJ D IJK D IJKK K L K

xx K
K K L K K

dU dW dW d U
N B D B W B

dx dx dx dx


= = = = =

= + + +å åå å å  
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 11 11
1 1 1 1

1

2

D D DM ND ND ND
D KIJL D IJKLK L K L

K L K L

dW d W d W d W
D D

dx dx dx dx= = = =

+ +åå åå   

 55 55 55
1 1 1

DN M ND
I IJ IJ D IJJ J
x J

J J J

dW d W
Q A U B B

dx dx= = =

= + +å å å   

 55 55 55
1 1 1

DN M ND
I JI IJ D IJJ J
x J

J J J

dW d W
Q B U D A

dx dx= = =

= + +å å å   

 31 31 33 31
1 1 1 1 1

1 ˆ
2

DN M M M ND
I JI JKI IJ D JIJ J JK
z J

J J K J J

dU dW d UdW
Q A B A W A

dx dx dx dx
 

= = = = =

= + + +å åå å å    

 31 31
1 1 1 1

1

2

DD DM ND ND ND
D JKI D JKIJ JK K

J K J K

dW d Wd W d W
B B

dx dx dx dx
 

= = = =

+ +åå åå              

 55 55 55
1 1 1

DN M ND
D I D JI D JI D IJJ J

x J
J J J

dW d W
Q B U A A

dx dx= = =

= + +å å å  (10) 

and 

 
1 ( )

1

k

k

Ne z
IJ k I J
ij ij

z
k

A C dz
+

=

=åò Φ Φ   

 
1 ( )

1

k

k

JNe z
IJ k I
ij ij

z
k

d
A C dz

dz

+

=

=åò ΨΦ   

 
1 ( )

1

k

k

I JNe z
IJ k

ij ij
z

k

d d
A C dz

dz dz

+

=

=åò
Φ Φ

  

 
1 ( )

1

ˆ k

k

I JNe z
IJ k
ij ij

z
k

d d
A C dz

dz dz

+

=

=åò
Ψ Ψ

  

 
1 ( )

1

k

k

INe z
IJ k J

ij ij
z

k

d
B C dz

dz

+

=

=åò
Φ Ψ   

 
1 ( )

1

k

k

Ne z
IJ k I J
ij ij

z
k

D C dz
+

=

=åò Ψ Ψ   

 
1 ( )

1

k

k

Ne z
IJK k I J K
ij ij

z
k

B C dz
+

=

=åò Φ Ψ Ψ   

 
1 ( )

1

k

k

KNe z
IJK k I J
ij ij

z
k

d
B C dz

dz

+

=

=åò ΨΨ Ψ   

 
1 ( )

1

k

k

Ne z
IJKL k I J K L
ij ij

z
k

D C dz
+

=

=åò Ψ Ψ Ψ Ψ   

 
1 ( )

1

k

k

Ne z
D IJ k I J

ij ij
z

k

A C H dz
+

=

=åò Φ   

 
1 ( )

1

k

k

Ne z
D IJ k I J

ij ij
z

k

A C H dz
+

=

=åò Ψ   
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1 ( )

1

k

k

JNe z
D IJ k I

ij ij
z

k

d
A C H dz

dz

+

=

=åò Ψ
  

 
1 ( )

1

k

k

Ne z
D IJ k I J

ij ij
z

k

A C H H dz
+

=

=åò   

 
1 ( )

1

k

k

INe z
D IJ k J

ij ij
z

k

d
B C H dz

dz

+

=

=åò
Φ

  

 
1 ( )

1

k

k

Ne z
D IJK k I J K

ij ij
z

k

B C H dz
+

=

=åò Φ Ψ   

 
1 ( )

1

k

k

Ne z
D IJK k I J K

ij ij
z

k

B C H H dz
+

=

=åò Φ   

 
1 ( )

1

k

k

Ne z
D IJK k I J K

ij ij
z

k

B C H H H dz
+

=

=åò   

 
1 ( )

1

ˆ k

k

Ne z
D IJK k I J K

ij ij
z

k

B C H dz
+

=

=åò Ψ Ψ   

 
1 ( )

1

ˆ̂ k

k

Ne z
D IJK k I J K

ij ij
z

k

B C H H dz
+

=

=åò Ψ   

 
1 ( )

1

k

k

KNe z
D IJK k I J

ij ij
z

k

d
B C H dz

dz

+

=

=åò ΨΨ   

 
1 ( )

1

k

k

KNe z
D IJK k I J

ij ij
z

k

d
B C H H dz

dz

+

=

=åò Ψ
  

 
1 ( )

1

k

k

Ne z
D IJKL k I J K L

ij ij
z

k

D C H dz
+

=

=åò Ψ Ψ Ψ   

 
1 ( )

1

k

k

Ne z
D IJKL k I J K L

ij ij
z

k

D C H H dz
+

=

=åò Ψ Ψ   

 
1 ( )

1

k

k

Ne z
D IJKL k I J K L

ij ij
z

k

D C H H H dz
+

=

=åò Ψ   

 
1 ( )

1

k

k

Ne z
D IJKL k I J K L

ij ij
z

k

D C H H H H dz
+

=

=åò . (11) 

 
where, Ne  is the number of physical layers in the laminate. The laminate stiffness 
coefficients with three or four superscripts are introduced to include nonlinear strains. The 
superscript D  in front of the laminate stiffness coefficients indicates that the terms 
correspond to delamination. 

 
2.2 Finite Element Model 
In the finite element method, the beam is divided into a number of finite elements, and over 
each beam element the displacements are approximated by expansions of the form 
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                               (1)

1

( ) ( )
p

j
I I j

j

U x U xϕ
=

=å ,        (2)

1

( ) ( )
q

j
I I j

j

W x W xϕ
=

=å  (12a) 

 (3)

1

( ) ( )
r

D D j
I I j

j

U x U xϕ
=

=å ,   (4)

1

( ) ( )
s

D D j
I I j

j

W x W xϕ
=

=å  (12b) 

 
where p and q  are the number of nodes per 1-D element used to approximate the 
longitudinal and transverse deflections, respectively, and r and s  are the number of nodes 
per 1-D element used to approximate the discontinuous longitudinal and transverse 
deflections due to delamination, respectively; j

IU , j
IW , D j

IU  and D j
IW  are the amplitudes 

of displacements at the jth node along the longitudinal ( x ) direction of the Ith beam 

element. The interpolation functions ( )m
jϕ ( 1,2,3,4m = ) denote the 1-D Lagrangian 

polynomials associated with jth node of the element. 
Substituting the approximated displacement fields (12a)-(12d) in the longitudinal 

direction and their variational forms into  Uδ  and Vδ of equations (9a) and (9b) yields the 
finite element equations for a typical element as 

 

 

{ }
(11) (12) (13) (14)

(21) (22) (23) (24)

(31) (32) (33) (34)

(41) (42) (43) (44)

e

K K K K U

K K K K

K K K K

K K K K

é ùé ù é ù é ù é ùê ú ê ú ê ú ê úê úë û ë û ë û ë û
ê ú
é ù é ù é ù é ùê úê ú ê ú ê ú ê úë û ë û ë û ë ûê ú
ê úé ù é ù é ù é ùê úê ú ê ú ê ú ê úë û ë û ë û ë ûê ú
ê úé ù é ù é ù é ùê úê ú ê ú ê ú ê úë û ë û ë û ë ûë û

{ }
{ }
{ }

{ }
{ }
{ }
{ }

1

2

0

0

ee

D

D

F

W F
U

W

ì üì ü ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ïï ï ï ï=í ý í ýï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïî þ î þ

 (13)   

 
where  

 

         
(1)(1)

(11) (1) (1)
11 55

b

a

x
jIJ IJ IJi

ij i j
x

dd
K A A dx

dx dx

ϕϕ ϕ ϕ
æ ö÷ç ÷ç= + ÷ç ÷÷çè ø

ò   

 
(2) (2)(1) (1)

(12) (2) (1)
11 13 55

1

1

2

b

a

Mx
j jIJ IJK IJ IJi iK

ij j i
x

K

d dd ddW
K B A B dx

dx dx dx dx dx

ϕ ϕϕ ϕ ϕ ϕ
=

é ùæ ö÷ê ç ú= + +÷ç ÷ê úç ÷è øê úë û
åò       

 
(2)(1)

11
1

b

a

DNDx
jD IJK iK

x
K

ddd W
B dx

dx dx dx

ϕϕ
=

æ ö÷ç ÷+ ç ÷ç ÷çè ø
åò   

 
(3)(1)

(13)
11

b

a

x
jIJ D IJ i

ij
x

dd
K A dx

dx dx

ϕϕ
= ò   

        
(4) (4)(1)

(14) (1)
11 55

1

1

2

b

a

DNDx
j jIJ D IJK D IJiK

ij i
x

K

d ddd W
K B B dx

dx dx dx dx

ϕ ϕϕ ϕ
=

é ùæ ö÷çê ú÷= +ç ÷ê úç ÷çè øê úë û
åò   
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(1) (1)(2) (2)
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x

K

d dd ddW
K B A B dx
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ϕ ϕϕ ϕϕ ϕ
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Note that the coefficient matrices contain nonlinearity in such a way that they are 

functions of the unknowns ( )U x , ( )W x , ( )DU x , ( )DW x  and their derivatives with respect 

to the coordinate x.  
Equations (13)−(15) are used to compute the nonlinear response of laminated beams. The 

nonlinear finite element equations are solved using Newton-Raphson iterative method [20]. 
The tangent matrix coefficients for the nonlinear layerwise beam model are  
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The tangent stiffness matrix is symmetric. 

 
 

3. VERIFICATION OF THE FINITE ELEMENT MODEL 
 

3.1 Stress Analysis 
A laminated beam of [90 / 0 / 90 / 0 ]m n m n s  lay-ups with pre-delamination through the width 

in the mid-plane is considered as an example to demonstrate the accuracy of solutions using 
the layerwise theory taking into account delamination (LWTDEL). The laminated beam is 
subjected to three-point-bending and the problem definitions are taken from Zhao et al.[21]. 
The configurations and the boundary conditions of the problem are displayed in Figure 2. 
The delaminated interface is assumed to preexist in the mid-plane and the interfacial crack 
length, a, is set to 10mm. The total length of the beam, L, is 90mm, and the total thickness of 
the laminate, h, is 4mm. Noting the beam is symmetric about the beam center, half of the 
beam shown in Figure 2 is modeled. The material properties of NCT-301 graphite/epoxy 
composite used in this numerical example are same as in [21], which are  

 

1 145E = GPa          2 3 10.7E E= = GPa 

12 13 4.5G G= = GPa     23 3.6G = GPa 

12 13 0.3ν ν= =                      23 0.49ν =  

 
The interlaminar shear stress distributions near the delaminated mid-plane along the 

beam length for the case of 4m n= =  and the static bending load 0q  applied at the beam 

center are presented in Figure 3. The stress values are normalized by 0τ  = 03 / 4q h , where h  

is the total thickness (4mm) of the laminated beam. 
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Figure 2. Configurations of laminated beam under three-point bending 

 

 

 

Figure 3. Nondimensional interlaminar shear stress 0 0/ (4 / 3 )xz xz xzh qτ τ τ τ= = distribution 

near the delaminated mid-plane along the beam length  (simply supported beam). 
[ ( , 0.014088)xz xτ -  when 0 400 /q N mm= ] 

-2

-1

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40

X

τ x
z/τ

LWTDEL Linear

LWTDEL Nonlinear

Zhao & et al.(1999)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

DELAMINATION IN CROSS-PLY LAMINATED BEAMS USING... 

 

465

In discretizing the domain, 36 linear beam elements are used along the beam length 
direction. Since each angle ply’s thickness is uniform, 4 layers of each 0  ply and 90  ply 
are modeled as a single numerical layer using one quadratic interpolation function through 
the numerical layer’s thickness. The selective reduced numerical integration scheme [20] is 
used for the transverse shear and transverse normal components of the coefficients in 
equations (14) and (16) to avoid shear locking. The solutions are obtained at the Gauss 
points nearest to the mid-plane of beam elements along the beam length.   

As can be seen in Figure 3, a very good agreement is found between the solutions of 
LWTDEL and those of Zhao et al. [21]. The solution based on the linear strain fields and the 
solution of Zhao et al show a symmetric stress distribution about the interlaminar crack 
center, whereas the nonlinear solution of LWTDEL shows an unsymmetric stress 
distribution owing to the hardening effect caused by the nonlinearity.  

 
3.2 Stress Intensity Factor 
Once the delamination occurs in the composite beam, its growth is predicted by the fracture 
criterion such as the energy required to create the new surface. In the frame work of fracture 
mechanics, the strain energy release rate is often used to estimate the growth of the existing 
crack. The stress intensity factor, K, is invoked in his work for the plane stress case, and the 
relationship with the strain energy release rate, G,  has been shown as 

 

 
2K

G
E

=  (17) 

 
Poisson’s ratio ν  has to be taken into account for the case of plane strain [23] 
 

 
2

2(1 )
K

G
E

ν= −  (18)  

 
Fedderson [24] discussed analytical solutions for the finite width correction of the stress 

intensity factor( 0/K aσ π ). He compared the various analytical solutions in tabular form 

and he concluded the solution of Isida [25] as the most precise expression.  
In order to demonstrate the accuracy of computing the strain energy release rate using the 

layerwise theory, two numerical examples are considered here. The stress intensity factor is 
computed from equation (17), and the strain energy release rate G is obtained using the 
finite element model by following the virtual crack closure technique of Raju [26]. 

The cracked models are depicted in Figure 4. Plane stress boundary conditions are 
imposed on the single edge crack model and the center crack model. Since the examples are 
dealing with two dimensional plate models, the layerwise beam model developed in the 
previous chapter is attempted to compute the stress intensity factor. For the single edge 
crack model, the length of the crack a is varied in the computation from 0.2b to 1.0b, and for 
the center crack model, the crack a is varied from 0.1b to 0.5b while b and L are fixed to be 
same (b=L). 
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Figure 4. Single edge crack model (a) and center crack model (b) 

 
As for the mesh using the layerwise beam finite element model, the thickness of the beam 

is considered as 2L and the length of the beam is treated as 2b. Since the material is 
homogeneous in the problem, material properties of each layer in the layerwise beam finite 
element model are treated as the same. The smallest elements are placed at the crack tip and the 
thickness of the layer which includes the crack face is set to be the smallest element length. The 
thickness of the layers and the size of the elements are varied in the computation in order to see 
how the numerical values are dependent on the mesh size. The quadratic shape functions are 
used for each beam element along the length (2b) and also the quadratic approximation 
functions are used for computing the coefficients through the thickness (2L) [14].   

The results obtained from layerwise beam finite element model with other solutions 
available from the literature are presented in Table 1. The strain energy release rate has been 
converted to the stress intensity factor using equation (17), and again the stress intensity 

factor, K, is divided by a factor, 0 aσ π  [24]. 

Compared to the analytical solutions of Gross and Bowie[27], the stress intensity factors 
computed based on the virtual crack closure technique using the layerwise beam model 
shows less than 6% or 8% of discrepancy  for all element sizes at the crack tip. Overall, the 
numerical values of the present model tend to overestimate slightly more when compared to 
the analytical values except for the case of / 0.2a b = . Further, the sensitivity of the stress 
intensity factor to the finite element size does not appear significant.  

The numerical values show a good agreement with the analytical values within 5% of 
error even with the same length for all elements including the crack tip region. However the 
relationship between the crack tip element length ( Δ ) with the crack length ratio to the total 
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length of the model (a/b) is worth studying in order to find a criterion for constructing the 
meshes. When the ratio of /( / )a bΔ  is around 0.1, the computed values show a good 
agreement with the results from the literature. Hence, the effort to build extremely fine 
meshes does not seem to be required to obtain acceptable values of the strain energy release 
rate or the stress intensity factor.  

 

Table 1. Finite width corrections of stress intensity factor 
0

K

aσ π
 for a single edge crack 

 
 
Comparison between the stress intensity factors computed from layerwise beam finite 

element model with the ones available from the literature is presented in Table 2.  

Table 2. Finite width corrections of stress intensity factor 
0

K

aσ π
 for a center crack 

 

 
Analytical solutions for an infinitely long strip with center crack are found in many 

works and the solution of Isida was tabulated as a representative analytical solution. As for a 
finite L, Hellen [28] obtained the numerical solutions for the case of b L= based on the 
virtual crack extension method, and his solutions are compared in Table 2. The present 
analysis shows underestimated values relative to the solutions of Hellen by about 4 to 8% 
except for a/b=0.2. Considering that the numerical solutions in the literature calculated with 
a different ratio of L/b and they are often compared to the analytical solutions which are 
based on the case of L → ∞ , the discrepancy of the present analysis appears to be accurate 
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enough to be used for computing the strain energy release rate or the stress intensity factors. 
In addition, underestimation of the stress intensity factor using the virtual crack closure 
technique has been also observed by Raju in his study and his optimized meshes shows 
about 4% discrepancy [26]. The size of the crack tip elements, again, does not appear to 
affect the numerical values drastically when the crack tip element size is relatively small 
enough. In the present study, the optimal size of the crack tip element appears to be 0.1a and 
the smaller element size makes little change in accuracy of the stress intensity factors. 

 
 

4.  DELAMINATION AND BOUNDARY CONDITIONS 
 

The combination of load type and boundary condition appears to affect the response of 
delamination analysis under bending loads. Four types of bending tests are considered to 
evaluate the influence of boundary conditions on the delamination behavior in composite 
laminated beams. The beams are composed of [90 / 0 ]m n S  cross ply laminates and an 

interlaminar crack with the length of a  is assumed to exist at the tip of pre-existing 
transverse crack (see Figure 5).  
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Figure 5. Laminated beam with a delamination originated from a transverse crack 
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The single transverse crack is assumed to be aligned with the z-axis in the 90-degree 

layers on the tensile side of the beam and it is also assumed to run through the width of the 
beam completely. As shown in Figure 5, an interlaminar crack at the interface of the cracked 
90-degree layer and the adjacent 0-degree layer is assumed to be located symmetrically 
about the z-axis. One can expect to simulate a crack similar to the delamination originated 
from a free edge of the beam under bending. 

The material properties of the composite are taken from [29] and they are as follows: 
 

1 156E = GPa          2 3 9.09E E= = GPa 

12 13 6.96G G= = GPa     23 3.24G = GPa 

12 13 0.228ν ν= =                      23 0.4ν =  

 
The numerical computation to obtain the strain energy release rate for each boundary 

condition is performed using the LWTDEL code, which has been developed based on the 
layerwise beam theory including delamination. In the numerical model, half of the beam is 
modeled using the geometric symmetry and the assumption of symmetric crack growth.  

Four different boundary conditions are considered to impose bending loads on the 
specimen: a) 3-point bending, b) clamped-ends with center load, c) distributed load with 
simply supported ends and d) 4-point bending (see Figure 6). The applied load in each case 
is such that the maximum bending moment produced in the beam is the same for all four 
boundary conditions. For lay-ups of 2 2[90 / 0 ]S , the thickness of each ply is assumed to be 

0.5mm, total thickness of the beam as 4mm, and the length of the beam as 150mm. The 
moment arm, S, for the case of 4-point bending is taken as 5mm. 

 
4.1 Role of Bending Moment 
Figure 7 presents the strain energy release rate versus the delamination length for each 
boundary condition. Unlike the axial extension test in which the strain energy release rate 
usually increases and approaches an asymptotic value as the delamination length increases 
[8, 11, 15], the strain energy release rate shows different patterns in the bending test 
according to the type of boundary condition.  

For the case of distributed load with simply supported ends and 3-point bending, the 
strain energy release rate keeps decreasing as the delamination length grows. For the case of 
clamped ends, the strain energy decreases until the delamination length reaches a little less 
than half of the beam length, then it starts increases again. Only for the case of 4-point 
bending, the strain energy remains almost constant except for the very short delamination 
length. Based on this observation, the length of the delamination crack does not seem to 
directly contribute to the variation of strain energy release rate. Rather, the strain energy 
release rate is governed by the location of the delamination crack tip at which the amount of 
bending moment is determined by the boundary condition. 

 
 
 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Wook Jin Na and J.N. Reddy 470 

(a)

L/2P

x

z

a

L
 

   (b)

L/2P

x

z

a

L
 

(c)

q

x

z

a

L
 

(d) 

L/2

P

x

z

a
P

s

L

s

 

 

Figure 6. Four boundary conditions (a) 3-point bending (b) clamped-ends with center load (c) 
distributed load with simply supported ends (d) 4-point bending 
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It is clear from Figure 7 that the strain energy curve pattern resembles the bending 
moment along the beam (see Figure 8). As the crack tip moves from the beam center toward 
the beam ends, the bending moment at the position of the crack tip varies and the strain 
energy release rate varies proportionally to the bending moment. In particular, the bending 
moment for the case of four-point bending is uniform in between the inner supports, which 
gives the uniform strain energy release rate throughout the range of delamination length. In 
that perspective, the four-point bending test can be seen as a method to provide the boundary 
condition in which the delamination under bending can be analyzed without the boundary 
effect. Another interesting observation from Figure 7 is that the maximum value of the strain 
energy release rate obtained for the clamped ends is significantly larger than those of other 
three boundary conditions even though the vertical loads are applied so that the maximum 
bending moment can be the same for all four boundary conditions. 
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Figure 7. Strain energy release rate versus nondimensional delamination length 
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Figure 8. Bending moement distribution along the beam 
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4.2 Fracture Modes 
Mixture of fracture Mode I and II in delamination have been observed and analyzed in the 
literature [11, 13, 17]. In order to make a distinction between the two modes, the strain 
energy components IG  and IIG  are computed separately at a crack tip and then the total 

strain energy release rate G  is obtained by the algebraic summation of IG  and IIG  

 I IIG G G= +  (19)  

Depending on the configuration of the laminate lay-ups or the loading conditions, a 
predominant mode is considered as the main mechanism to drive the delamination in the 
situation. More often than not, the total strain energy release rate is replaced by the 
predominant mode’s strain energy release rate [10, 17, 30]. This simplification can be made 
to save the computational effort when the contribution of the other mode is negligibly small. 
To investigate the possibility of applying this simplification to the bending case, the 
following results are discussed. 

For the four boundary conditions given in Figure 6, the fraction of the fracture modes to 
the total strain energy release rate is quantified in Figure 9. As seen in Figure 9, the fracture 
Mode I appears to be the main mechanism of the delamination for the given situation. 
Except for the case of clamped ends, IG  commonly takes up about 78% of the total strain 

energy release rate regardless of the delamination length. The remaining 22% of the total 
strain energy release rate can be seen as a contribution of the fracture Mode II. In this case, 
whether IIG  is negligible is questionable. The error of 22% in evaluating the total strain 

energy release rate to predict the growth of delamination can result in a considerable 
underestimation. Thus, the mixture of Mode I and II should be taken into account to 
compute the total strain energy release rate, G , at the delamination crack tip under the given 
bending loads. A similar observation has been made by Murri and Guynn [30]. In their 
work, they tried to find the critical strain energy release rate at which the growth of 
delamination occurs, under different bending test conditions. However, they failed to 
connect the strain energy release rate to the bending moment. More importantly, the 
contribution of Mode II to the total strain energy release rate was underestimated and they 
argued that the critical strain energy release rate could be regarded as the value of Mode I. 
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Figure 9. Strain energy release rate fraction of (a) Mode I  (b)  Mode II 
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5. DELAMINATION UNDER PURE BENDING 

 
In most of the studies related to the delamination damage, geometric nonlinearity in the 
specimen is neglected. The effect of the von Kármán type nonlinear strain field will be 
examined in this section by comparing the analysis based on the conventional linear strain 
fields. Since the computer code LWTDEL has been developed in a way that the nonlinear 
strain fields can be included in the delamination analysis, the influence of the geometric 
nonlinearity on the interlaminar cracks will be considered. In this study, the linear analysis 
refers to the numerical analysis based on the linear strain fields and the nonlinear analysis 
refers to the one based on the von Kármán type nonlinear strain fields. Also, as seen in the 
previous section, the four-point bending appears to be the boundary condition that can 
simulate the behavior of delaminated beam under the pure bending load. Based on these 
ideas, the lay-ups of 2 2[90 / 0 ]S  are employed to model the laminated beams and the pre-

existing interlaminar crack with length a is assumed at the interface of 90-degree and 0-
degree on the tension side. 

  
5.1 Delamination Growth   
The change of strain energy release rate is presented in Figure 10 as the delamination length 
increases. The solid lines indicate the values computed from linear analysis and the dotted 
lines indicate the results from nonlinear analysis. As seen in the figure, the difference 
between the linear and nonlinear solution is negligible. Taking into account the von Kármán 
type nonlinearity in the delamination growth has little influence on the strain energy release 
rate G  for the examples presented herein.  
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Figure 10. Strain energy release rate VS delamination growth under pure bending 
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When the delamination length a is less than 0.05L, the strain energy release rate sharply 
decreases until it reaches a certain bounded value. The interlaminar crack length 0.05L is 
also approximately same as twice the thickness of one ply. Wang et al.[11] introduced the 
concept of effective flaw for analysis of the delamination onset in the axial tensile test and 
they made use of the asymptotic value that the strain energy release rate reaches, to 
determine the minimum size of the embedded delamination crack as the effective flaw in the 
analysis. Wang et al. [11] suggested twice the ply thickness as the size of effective flaw. The 
size of crack at which the strain energy release rate reaches a certain asymptotic value 
coincides with the present result under the bending load.  

The primary fracture mode leading the delamination growth can be found in Figure 11 
displaying the strain energy release rate fraction of Mode I and Mode II. Mode I has been 
identified as the primary fracture mode responsible for the delamination with transverse 
crack in 90-degree layer in the previous section. The strain energy release rate fractions 
remain constant even the interlaminar crack runs more than half of the total beam length.  
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Figure 11. Strain energy release rate fraction VS delamination growth under pure bending 

 
Next, influence of nonlinearity developed in the laminated beam, if any,  under bending 

loads, is studied. The strain energy release rate ratios are defined as the ratios of the strain 
energy release rate from the linear analysis to the strain energy release rate from the 
nonlinear analysis. That is 

 
N

L

G
R

G
= ,   

N
I

I L
I

G
R

G
= ,   

N
II

II L
II

G
R

G
=  (20) 

 
where the superscripts L and N stand for the values from the linear and the nonlinear 
analysis, respectively.  

The strain energy release rate ratios for the two cases of delamination are plotted as a 
function of delamination length in Figure 12. The strain energy release rate ratio of the 
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primary fracture mode, Mode I, decreases as the delamination length advances. On the other 
hand, the strain energy release rate ratio of the other fracture mode increases while the total 
strain energy release rate ratio is almost unchanged. This result implies that the nonlinearity 
is developed in the bending beam as the delamination crack grows, even if the change in the 
strain energy release rate due to nonlinearity is less than 5% for each fracture mode. 
However, the total strain energy release rate is found to be nearly unchanged during the 
delamination growth. 
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Figure 12. Strain energy release rate ratio VS delamination growth under pure bending 

 
5.2 Applied Bending Moment 

Figure 13 presents the relationship between the strain energy release rate and the applied 
bending moment when the interlaminar crack length is fixed. Again, the difference between 
the linear and nonlinear solutions appear negligible even when the strain energy release rate 
reaches a considerably high value. The strain energy release rate G  is not much affected by 
including the nonlinearity throughout the whole range of the applied bending moment. This 
result can be related to the previous observation that the total strain energy release rate is 
little changed by the nonlinearity developed in the beam even though the strain energy 
release rate ratios of Mode I and Mode II are slightly changed. In that regard, the general 
perception that the delamination analysis is performed using the linear elasticity theory is 
justified.  

Figure 14 shows information about the main fracture mode to drive the delamination as 
the applied bending moment is increased by displaying the strain energy release rate 
fractions of Mode I and Mode II. As seen previously, the primary fracture mode for the 
delamination is found to be Mode I throughout the range of applied bending moment for a 
fixed delamination length a =10mm. The contribution of the minor fracture mode to the 
whole delamination mechanism is not negligible. It deserves an attention that the strain 
energy release rate fraction is nearly constant for any value of applied bending moment if 
the delamination length is fixed. 
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The strain energy release rate ratio is plotted in Figure 15. Even though the change is 
small, it can be noticed that the strain energy release rate ratios increase as more bending 
moment is applied to the beam. This is due to the fact that the nodal force at the crack tip 
increases as the nonlinearity is introduced in the stiffness. It is worth remarking that the 
minor fracture mode, Mode II, shows more increase than the primary fracture mode, Mode I, 
as the applied moment increases. 
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Figure 13. Strain energy release rate VS applied moment under pure bending (a=10mm) 
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Figure 14. Strain energy release rate fraction VS applied moment crack under pure bending 
(a=10mm) 
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Figure 15. Strain energy release rate ratio VS applied moment under pure bending (a =10mm) 

 
Overall, very little geometric nonlinearity in the beam is developed under the given 

bending load until the strain energy release rate reaches a very high value. The material used 
in this analysis is T300/976 graphite-epoxy composite and its critical strain energy release 
rate is reported in the range of 87.5 2/J m  (for Mode I) to 282.6 2/J m  (for Mode II) [31]. 
Although the strain energy release rate computed is well above these values, the nonlinear 
analysis shows almost the same G values as the linear analysis. Therefore, the interlaminar 
crack under a pure bending load is expected to grow before the applied bending moment 
gets large enough for the significant geometric nonlinearity to be prominent.  

 
 

6. CONCLUSIONS 
 

The layer-wise beam model is extended to consider interlaminar discontinuity in the 
displacement through the thickness. The Heaviside step function is incorporated in the 
formulation of layer-wise beam model, which successfully evaluates the local stresses 
around the interfacial crack. This model enables the strain energy release rate to be 
computed with a good accuracy. 

The virtual crack closure method in the frame work of fracture mechanics is regarded as a 
simple and accurate way to compute the strain energy release rate or the stress intensity 
factor of the cracked strip. In particular, the application to the beam finite element model 
based on the layer-wise theory has been attempted and the accuracy of the solutions is 
satisfactory within a certain percentage of error comparing to the analytical values. The size 
of the finite elements at the crack tip usually shows a low sensitivity to the stress intensity 
factor, but to achieve a better accuracy without losing the modeling efficiency for the 
various case studies, the ratio of the crack tip element to the crack length ratio should be 
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considered. In this study, only the homogeneous material has been examined for the sake of 
verifying the accuracy by comparing to the well known analytical results from the literature. 
However, the application of the virtual crack closure method combined with the layer-wise 
beam finite element model is capable of predicting the progress of delamination damage. 

Two cases of delamination in [90 / 0 ]m n S  cross plies subjected to bending loads are 

investigated using the finite element method based on the layer-wise beam theory. The 
boundary conditions imposed on the beam to be subjected to the bending causes a 
significant effect on the delamination growth and the strain energy release rate strongly 
depends on the location of the delamination crack tip because the bending moment 
distribution along the beam is determined by the boundary condition. The effect of boundary 
condition can be avoided by applying four-point bending which simulates a pure bending 
condition. 

An interlaminar crack originated from a transverse crack in the 90-degree ply on the 
tensile side is primarily led by the fracture Mode I and the strain energy release rate is nearly 
constant under pure a bending condition if the delamination length is larger than a critical 
size. However, the contribution of Mode II is not negligible, and, unlike the progression of 
delamination under a tensile load, mode mixture should be considered for analysis of 
delamination under a bending load. 

Very little effects are induced to the behavior of the delaminated beam by taking into 
account the von Kármán type nonlinearity in the numerical analysis. In this regards, the 
growth of delamination can progress in a laminated beam under a bending load before 
nonlinearity due to a large rotational deformation is prominent. Thus, the general idea of 
linear analysis on delamination is numerically justified by comparing the results from linear 
and nonlinear analyses. 
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