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ABSTRACT 
 

A solution for Laplace partial differential equation by using Spline basis functions is 
presented. The formulation is derived and its differences with the finite element method are 
explained. The effect of some of parameters such as the knot vector and grid of control points 
on the solution is investigated. Finally, a few examples are presented to demonstrate the 
efficiency of the method. 
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1. INTRODUCTION 
 

Most of problems faced in different disciplines of science and engineering are engaged with 
solving differential equations. Since only a very limited of these equations can be solved 
analytically, several numerical methods have been developed in the last few decades. Amongst 
the most popular of these methods the finite difference, finite element and the wide range of so 
called mesh-free methods can be mentioned. One of the drawbacks of all of these methods, 
less or more, is that some approximation is involved in the geometrical definition of the 
boundaries of the problem domain. Furthermore, the imposition of the essential boundary 
conditions on the boundaries cannot be accomplished exactly, especially in the mesh free 
methods. Another problem is adaptivity and refinement of the solution where in the finite 
element method requires several communications between the discretized geometry and the 
analysis tool which is quite costly [1]. 

To overcome these problems, and inspired by the developments in geometrical modeling 
and CAD (Computer Aided Design) description of complicated shapes, the idea of 
isogeometric analysis, following the research on using splines in finite element analysis [2],  
has recently been proposed by Hughes et al [3,9-13]. Due to some interesting properties of 
splines and NURBS (Non-Uniform Rational B-Splines) beside accurate definition of 
geometry, their basis functions can be employed in place of interpolation and approximation 
functions of finite elements and meshfree methods [20]. Especially when adaptive solution is 

                                                   
* E-mail address of the corresponding author: b_hassani@iust.ac.ir (B. Hassani) 

www.SID.ir

mailto:b_hassani@iust.ac.ir
www.SID.ir


Arc
hive

 of
 S

ID

B. Hassani, N.Z. Moghaddam and S.M. Tavakkoli 580 

intended, there are several ways to increase the accuracy of the solution with a complete 
control over the geometry, e.g. degree elevation of the basis functions, increasing the size of 
knot vectors by knot insertion and knot refinement, increasing the number of control points 
and modification of their position, or a combination of them which needs further research [4]. 
This is similar to the h and p adaptivity in the finite elements. 

In this paper, based on the concept of isogeometrical analysis, an algorithm is developed 
for solving the Laplace equation with its application in the heat conduction problem, to study 
its performance. In this case, the solution might be imagined as a surface which can be 
generated by using Splines and NURBS. The x and y coordinates of the control points are 
assumed a priori and the z coordinates are calculated by using one of the conventional 
weighted residual or variational methods.  

In Section 2, the main concepts of surface definition by Splines are briefly explained. 
Section 3 is devoted to the derivation of the formulation and the system of equations. In 
Section 4 the effect of different parameters on the solution of a typical example is investigated. 
Finally, Conclusions and proposed further research is the subject of Section 5. 

 
 

2. SURFACE DEFINITON BY SPLINES 
 

The formulation of Splines and NURBS can be found in several references such as [5,14, 
15,18,19] and is briefly pointed here. Defining a B-spline surface, in its general form, requires 
the following [5]: 

 
• A set of  control points  
• Two knot vectors  and  for each direction with  and  components,            

respectively, where  and . 
• Basis functions of degrees  and in horizontal and vertical directions. 

 
The B-Spline surface is parametrically constructed as follows: 
 

  (1) 
        

where u and v are the parameters. 
 

2.1 Knot Vectors 
The knot vectors are defined as  and  where  
and  are a non-decreasing sequence of real numbers; i.e.,   and 

. The  and are called knots, and  and  are the knot 
vectors. When, for instance, for every i we have  then  is a uniform 
knot vector and non-uniform vice versa. 
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2.2 Basis Functions 
The i-th B-Spline basis function of degree p (order p+1), denoted by , is defined 
recursively as: 

  (2) 
 

  (3) 
 
For example, for   and using a uniform knot vector  the basis 
functions are shown in the Figure 1. For more details Reference [5] can be consulted. 

 

   

(a) (b) (c) 

Figure 1. Basis Functions of  (a): orders 0,  (b): order 1 and (c): order 2 

 
 

3. DERIVATION OF NUMERICAL FORMULATION  
 

Let’s consider the following single valued partial differential equation to solve 
 

  (4) 
 

Following a conventional weak formulation procedure, the bilinear and linear part of the weak 
form can be constructed as 

 

  (5) 
and 

  (6) 
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respectively, where is the weight function and is  

  (7) 
 

choosing  as a variation of  and having symmetry in  a functional  can be constructed as 

  (8) 
 

which its stationary condition is equivalent to solving the Equation (4). Substituting from (5) 
and (6) into (8) it follows  
 

  (9) 
 
 
Now, following a procedure analogous to the isoperimetric finite elements or meshfree 

methods, the geometrical variables, as well as the unknown function, are approximated by 
using the spline basis function as below 

 

  (10) 

  (11) 

  (12) 
 

where  and  are parameters with their values between zero and one. Here,  and  are 
the x- and y- coordinates of the control points of the solution surface and  are their z- 
coordinates. 

As it is noted, in the equations above, all of the variables are written in terms of the 
parameters   and , which is similar to mapping in finite elements with the concept of the 
base or master element. However, calculation of the partial differentials is somehow different 
and needs special care. With some simple calculus the following relations can be derived: 

 

  (13) 
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In addition, the Jacobian determinant   might be defined as  
 

  (14) 
where 

  (15) 

  (16) 

  (17) 
and 

  (18) 
 

Considering that , and in the absence of the boundary terms and assuming 
, it follows 

  (19) 
 

By substitution of (10)-(18) into (19), and differentiating it with respect to  the matrix of 
coefficients and a linear system of equations are obtained.  

 
 

4. SOME EXPERIENCES WITH THE METHOD  
 

To study performance of the method, as an example, solution of the Laplace equation over a 
square domain is here considered 

 

  (20) 
 

This equation is a special case of Equation (4), with   The 
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boundary conditions are assumed to be 
 

 
,0)1,();1()0,(

0),1(;0),0(
=−=

===
xuxxxu

yuyu
 (21) 

 
The exact solution of this problem is known and is given by the following infinite series [6]: 

  (22) 
 

4.1 Comparison with the finite element method 

In order to compare the performance of the method with finite elements, Equation (20) with 
boundary conditions as in (21) is considered. A grid of 5×5 control points (n=4), as depicted 
in Figure 2, is employed. We call this grid regular, although a couple of control points on the 
bottom edge are moved to meet the boundary conditions. The degree of spline basis functions 
is taken as p=2 and a uniform knot vector with m=7 is employed for both directions with the 
uniform knot vectors U=V={0,0,0,0.333,0.666,1,1,1}. The obtained solution is illustrated in 
Figure 3 and the results for a few specified points of the domain is shown in Table 1 and are 
compared with the Exact solution, which is obtained by using (22) with sufficient terms. The 
results of the finite element method, together with the error percentages, are also included in 
the Table. 

 

 

Figure 2.  A grid of regular control points 
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Figure 3.  Isogeometrical solution with the regular control points of Figure 2 

 
This problem is also solved by the finite element method for comparison. For this purpose, 

the quad element of ANSYS software is used and the obtained result is illustrated in Figure 4-
(a). Figure 4-(b) shows the result obtained by the current method for the sake of 

 

 
0 0.0278 0.0556 0.0833 0.1111 0.1389 0.1667 0.1944 0.2222 0.25

 

(a) (b) 

Figure 4. (a) Finite element solution with 16 elements by ANSYS and (b) Isogeometrical 
solution with a gird of regular control points. 

 
comparison. It should be noted that the number of elements is chosen in such a way that the 
number of equations, i.e. the size of the matrix of coefficients, is the same as the 
isogeometrical solution. This enables us to compare the accuracy of the results. As it is noticed 
from Table 1, where at some specific points the values of the unknown function with different 
methods are shown, better results are obtained with the current method.  
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Table 1.  Comparison of Exact, Finite Elements and Isogeometrical solutions for a regular grid 

X Y Exact FE Isogeom. FE Err. % Iso.  Err. % 

0.25000 0.25000 0.08320 0.07880 0.08156 5.28 1.97 

0.50000 0.25000 0.11593 0.11211 0.11257 3.30 2.90 

0.75000 0.25000 0.08320 0.07880 0.08156 5.28 1.97 

0.25000 0.50000 0.03642 0.03348 0.03604 8.05 1.03 

0.50000 0.50000 0.05133 0.04732 0.05197 7.81 -1.24 

0.75000 0.50000 0.03642 0.03348 0.03604 8.05 1.03 

0.25000 0.75000 0.01373 0.01227 0.01343 10.62 2.16 

0.50000 0.75000 0.01940 0.01735 0.01882 10.55 2.99 

0.75000 0.75000 0.01373 0.01227 0.01343 10.62 2.16 

Absolute error average = 7.73 1.93 

 
4.2 Effect of irregularity in the grid of control points 

To study the effect of irregularities in the grid of control points, the same problem is solved 
with two different grids. In the first one a so named semi-regular grid of control points, as  

 

 0 0.0278 0.0556 0.0833 0.1111 0.1389 0.1667 0.1944 0.2222 0.25  
(a) (b) 

Figure 5. (a) Semi-regular grid of control points; (b) Non-regular grid of control points 
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 0 0.0278 0.0556 0.0833 0.1111 0.1389 0.1667 0.1944 0.2222 0.25  

(a) (b) 

Figure 6. Isogeometrical solution with (a) Semi-regular grid and (b) Non-regular grid of 
control points 

 
Shown in Figure 5-(a), is considered. The knot vectors and degrees of the basis functions 

are chosen as before. The answers at a few points are tabulated in Table 2 and the isothermal 
contours are illustrated in Figure 5-(b). As it is observed, the irregularity has very little effect 
on the obtained results. 

Table 2.  Accuracy of results with semi-regular grid of control points 

X Y Exact FE Isogeom. FE Err. % Iso. Err. % 

0.25000 0.25000 0.08320 0.07880 0.08252 5.28 0.82 

0.50000 0.25000 0.11593 0.11211 0.11452 3.30 1.21 

0.75000 0.25000 0.08320 0.07880 0.08252 5.28 0.82 

0.25000 0.50000 0.03642 0.03348 0.03531 8.05 3.02 

0.50000 0.50000 0.05133 0.04732 0.05221 7.81 -1.72 

0.75000 0.50000 0.03642 0.03348 0.03531 8.05 3.02 

0.25000 0.75000 0.01373 0.01227 0.01308 10.62 4.69 

0.50000 0.75000 0.01940 0.01735 0.01869 10.55 3.64 

0.75000 0.75000 0.01373 0.01227 0.01308 10.62 4.69 

Absolute error average = 7.73 2.62 

In the next experiences, a grid of control points with more irregularities, as is illustrated in 
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Figure 6-(a), is taken into account. This may occur in the application of the method in some 
problems such as large deformation analysis of solids when solved in a Lagrangian frame. 
Similar to the finite element method, larger errors are normally expected with irregular 
meshes. However, as it can be noticed from Table 3 and Figure 6-(b), the grid irregularity has 
a limited effect on the accuracy of the obtained results. 

 

Table 3. Accuracy of results with irregular grid of control points 

X Y Exact FE Isogeom. FE Err. % Iso. Err. % 

0.25000 0.25000 0.08320 0.07880 0.08109 5.28 2.54 

0.50000 0.25000 0.11593 0.11211 0.11235 3.30 3.09 

0.75000 0.25000 0.08320 0.07880 0.07956 5.28 4.38 

0.25000 0.50000 0.03642 0.03348 0.03587 8.05 1.50 

0.50000 0.50000 0.05133 0.04732 0.05113 7.81 0.38 

0.75000 0.50000 0.03642 0.03348 0.03474 8.05 4.60 

0.25000 0.75000 0.01373 0.01227 0.01441 10.62 -4.93 

0.50000 0.75000 0.01940 0.01735 0.02005 10.55 -3.38 

0.75000 0.75000 0.01373 0.01227 0.01422 10.62 -3.59 

Absolute error average = 7.73 3.15 

 
4.3 Effect of the knot vector 

In order to study the effect of the knot vector on the isogeometrical solution, the regular grid of 
control points of Section 4.1, as illustrated in Figure 2, is again considered. The degree of the 
basis functions are as before. Instead of the uniform knot vector in both directions, the 
following knot vectors are here employed:  and . 

The obtained results are shown in Table 4. As is noticed, having non-uniform knot vectors 
with different knot spans in horizontal and vertical directions does not have a negative 
influence on the solution.   
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Table 4.  Comparison of FE and exact with the Isogeometrical solution with a regular grid and 
non-uniform knot vectors 

X Coord Y Coord Exact Sol. FE Sol. Isogeom. %FE Err %Iso. Err 

0.25000 0.25000 0.08320 0.07880 0.08086 5.28 2.81 

0.50000 0.25000 0.11593 0.11211 0.11166 3.30 3.69 

0.75000 0.25000 0.08320 0.07880 0.08191 5.28 1.55 

0.25000 0.50000 0.03642 0.03348 0.03554 8.05 2.41 

0.50000 0.50000 0.05133 0.04732 0.05103 7.81 0.57 

0.75000 0.50000 0.03642 0.03348 0.03588 8.05 1.47 

0.25000 0.75000 0.01373 0.01227 0.01335 10.62 2.77 

0.50000 0.75000 0.01940 0.01735 0.01883 10.55 2.95 

0.75000 0.75000 0.01373 0.01227 0.01346 10.62 1.98 

Absolute error average = 7.73 2.24 

 
4.4 Non-rectangular domain 

To study the performance of the method when applied to domains with more general shapes, 
the Laplace equation is considered again on the assumed domain as illustrated in Figure 7. 
The boundary condition are considered as: u(x,0)=x(1-x), and u=0 on other boundaries.   

 

Figure 7. Problem domain  
The used control net together with the contours of the solution is shown in Figure 8. This 
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problem is also solved with ANSYS software by using the finite element mesh of Figure 9-(a) 
and the solution is illustrated in Figure 9-(b). It is interesting to note that here the matrix of 
coefficients in isogeometrical analysis is a 9 by 9 matrix and much smaller in comparison with 
the finite element solution. 

  

(a) (b) 

Figure 8. (a) Control net (b) Isogeometrical solution 

  

(a) (b) 

Figure 9. (a) Finite element mesh (b) Temperature contours by ANSYS 
 
Again, to see the effect of having irregularities in the control net, this problem is solved 

with the net of control points of Figure 10-(a) and the obtained result is shown in Figure 10-
(b). As can be observed, this irregularity has little effect on the obtained result. 
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(a) (b) 

Figure 10.  (a) non-regular control net (b) Isogeometrical solution  

 
 

5. CONCLUSIONS 
 

According to this research, it seems that the isogeometrical analysis potentially has the 
capability to substitute the finite element and meshfree methods. By this method the 
boundaries can be defined with more precision and the boundary conditions can be satisfied all 
along the boundary, not just at a few descretization boundary points. When applied to the 
solution of Laplace equation, better results in comparison with the finite element method are 
obtained. Furthermore, the results are not sensitive to the position of control points as well as 
the knot vectors. Therefore, this method is quite suitable for an adaptive solution and 
applicable to finite strain problems with geometrical nonlinearity. More research is needed to 
get a better understanding of the performance of the method in its application to multivariable 
partial differential equations encountered in different fields of science and engineering. 
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