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ABSTRACT 
 

We present a new strategy for applying to continuous genetic algorithm for damage 
detection of structures. This strategy pursues two aims: 1) reducing search space by 
elimination of some design variables during optimization process, 2) improving each 
individual by solving the linearized problem using Moore-Penrose pseudo inverse at the end 
of reproduction of genetic algorithm. To these ends, two sub-programs are embedded after 
typical GA operators. This strategy is applied to three different types of problems: damage 
detection by frequencies and by static measurements, and crack identification of a beam 
using frequencies. Numerical results demonstrate the high efficiency of the proposed 
algorithm compared to those found in the literature.  

 
Keywords: Structural damage detection; sensitivity analysis; continuous genetic algorithm 

 
  

1. INTRODUCTION 
 

Damage detection has attracted a lot of interest in recent years. The necessity of industry to 
health monitoring and curing makes damage detection techniques one of the most active 
fields of research in the recent years. These techniques, in which the damages are identified 
through a non-destructive test (NDT) instead of visual or local experimental techniques, 
have been successfully applied to many practical problems. Although damage is a nonlinear 
phenomenon, however, it is widely accepted that the damage can be simulated by changing 
in some parameters such as Young's modulus, cross-sectional area, moment of inertia and/or 
boundary conditions, etc. In this work the general damage is modeled by reduction in the 
Young modulus, while the edge crack as a special damage is simulated using a hinge and 
rotational spring.  

In fact damage detection of structures is solving a system of nonlinear equations. 
Conventionally, such problems can be solved using iterative methods such as Newton-
Raphson, arc-length method … or the optimization methods. Practically, in damage 
detection problems the number of equations (measured parameters) is usually less than the 
unknown variables (elemental damaging). Hence, this is an undetermined problem in 
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mathematics and has infinite solutions. However, there are two useful additional conditions 
for seeking the right damage solution: 1) low 2l  norm condition: the right solution has low 

Euclidean norm (See Section 3), 2) low 0l  norm condition: in the damaged structure most of 

the structural elements are still intact, so the right solution has high sparsity.  
For such problems, if the system of equations is linear, many mathematical solutions are 

available [1]. In the optimization based methods, damaged elements and damage extends are 
searched through an optimization process until the response of a hypothesized damaged 
structure equals to those of a real damaged structure. In recent years, genetic algorithm is 
frequently employed for damage detection and system identification [2]. In the case of large 
structures the optimization-based methods, which use the damaging of all elements as design 
variables, are computationally expensive. Therefore, many efforts have been devoted to 
reduce the size of search space in the optimization-based damage detection problems [2-6]. 
Wang et al. [6] localized the structural damages by matching frequencies and static 
responses of Measured Damage Signatures (MDS) with those of Predicted Damage 
Signature (PDS). And in the second stage a quadratic programming is sequentially iterated 
until the damages detected. Au et al. [3] obtained energy quotient difference by expanding 
the incomplete structural mode shapes, to find the most potentially damaged elements. Then, 
they detected the damages of the limited elements by micro genetic algorithm. For large 
scale structures, they also proposed a two level optimization method in which the subset of 
the damaged elements was searched. Guo and Li [4] restricted the design variables by 
applying evidence theory to frequencies and mode shapes data. Then, micro search genetic 
algorithm was employed for damage detection in which the vicinity points of the elitist of 
the generation is also searched. He and Hwang [5] first reduced the design variable of 
damage detection problem by grey relation analysis and furthermore, introduced an 
improved real coded genetic algorithm with a new mutation operator which merges the merit 
of simulated annealing. In addition, both mutation and crossover probability are increased 
for escaping from the local minimums. Ricardo et al. [7] first reduced the design variables 
by employing damage functions. After that, Strength Pareto Genetic Algorithm (SPGA) is 
used to optimize two selected objective functions. For damage detection with harmonic 
excitation response, Kokot and Zembaty [8] applied genetic algorithm to somewhat 
approach the structural damage situation. In their second stage Levenberg-Marquardt local 
search is applied to detect the damages. Sahoo and Maity [9] detected the damages by 
applying a neural network in order to perform reverse mapping to the faults of the damaged 
sub-structure. Genetic algorithm is utilized for optimal designing of their network 
architecture. A correlation-based damage detection approach has been presented by Messina 
et al. [10] in which multiple damage location assurance criterion (MDLAC) has been 
introduced to detect the multiple damages. The results were shown a good prediction for 
damage locations but with a small error for damage sizes. Further, Koh and Dyke [11] have 
employed genetic algorithm to maximize the MDLAC index for structural damage detection. 
A comparison between the sensitivity-based methods with the optimization-based methods 
has been made by Gomes and Silva [12]. In that study, a modified MDLAC has been used as 
the objective function for their optimization-based method. Both the methods were good to 
detect the damage sites, but not so good to predict the damage extents. 

Lee [13] proposed a method for multiple crack detection in a beam based on Newton-
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Raphson method in which treat the crack location and size as continuous design variables. 
The number of required natural frequency is declared to be double of number of cracks, and 
the method has been examined until triple cracks. The sensitivity matrix has been created 
using the finite difference method to be used in Newton-Raphson procedure. An application 
of the micro-genetic algorithm to detect a single crack in a real damaged beam has also been 
employed by Vakil-Baghmisheh et al. [14]. In another work, Caddemi and Morassi [15] 
presented analytical method for single crack detection by static measurements, and also 
obtained the required conditions for unique detection of the crack. Khaji et al. [16] proposed 
a closed form solution for single crack detection in Timoshenko beams which was tested by 
various boundary conditions.   

In the present paper, the process of restricting the design variables is done inside the 
genetic algorithm body. In opposite to the works in the literature, at this study the elemental 
damage and crack detection are dealt simultaneously. 

 In the present work two additional operators are embedded inside the genetic algorithm 
which are to operate after usual genetic operators. In the first operator, Sensitivity Based 
Improvement (SBI), for each individual the sensitivity matrix of structural responses with 
respect to elemental damaging is first established to be solved by Moore-Penrose pseudo 
inverse. The individuals are updated by adding their corresponding obtained solutions to 
themselves. Now the updated individuals are ready to go to the second operator, named as 
Micro Search (MS). This operator works just after each several generations. The duty of MS 
is to limit the design variables by eliminating of the low variables of the elites. Therefore, by 
using these new operators, in addition to the structural response approaching to the damaged 
one, low 0l  and 2l norm conditions are automatically satisfied.  

This paper is organized as follows: The application of the sensitivity analysis for the 
damage detection is discussed in Section 2. Sensitivity of static displacements and 
frequencies of structures with respect to damaging is derived in Section 3. In Section 4 
Continuous genetic algorithm is described. The proposed algorithm is presented in Section 5 
and then three illustrative case studies are verified in Section 6. Finally, the conclusions end 
the paper in Section 7. 

 
 

2. DAMAGE DETECTION USING SENSITIVITY-BASED ANALYSIS 
 

To detect damages, the structural natural frequencies, mode shapes and static deflections or 
a combination of them may be used [6]. Due to damages, the stiffness of structure is 
reduced, while its mass is still remained constant. Therefore, its deflections due to external 
loading are increased, and also its natural frequencies are reduced and its mode shapes are 
changed. If the structure become damaged differently, the variations of deflections, natural 
frequencies and mode shapes will occurre in a different way. So, to detect the damages, one 
has to analytically find a damage state results in the same response as real damaged 
structure. 

Thus, the problem of structural damage detection is formally equivalent to finding a set 
of damage variables by which the analytical responses of the structure match the measured 
ones in an optimal way. The mathematical expression of the problem can be defined as:  
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 ( )    ?,d X  R R X  (1) 

 
where T

1 2{  ,   ,... }nx x xX  is called the damage vector, in which 0 1ix  is damage ratio 

of the ith element, and n is the number of structural elements. The values 0ix  and 1ix   

indicate the intact and completely damaged state, respectively. T
1 2{  ,   , ... }d d d dmr r rR is 

the vector of m structural responses (the responses can be natural frequencies, complete and 
incomplete mode shapes, structural deformations due to static loadings or a combination of 
them) of the existing damaged structure and T

1 2( ) { ( ) ,  ( ) , ... ( )}mr r rR X X X X  is the 

vector of m responses of a hypothetically damaged structure that can be evaluated from the 
analytical model.  

Using the first order approximation Eq. (1) can be expressed as follows: 
 

 ( ) ... ~  ,d h d h


         


R

R R X R X R R R S X
X

 (2) 

 
where hR is the structural response vector of the healthy structure, X is damage vector 

change and   S R X  is the sensitivity matrix. Practically, the number of measured 
responses m is usually less than the unknown variables n. Hence, this is an undetermined 
problem in mathematics and its solutions are a subset,  * :S .  z S z R . While S is a full 

rank matrix, we will have *( )dim S n m  . In usual damage detection problems, just a few 

numbers of structural elements are damaged, so 
0

nX , where 
0
  denotes the number 

of nonzero entries. So, we seek for the solutions with high sparsity i.e. 

 0
: , ( )dk X X R R X ,  where k is a value more than expected damages. 

In fact ( )R X is a continuous function of X, i.e. lim ( )
d

d


X X
R X R . This continuity implies 

the correct solution has small distance from the origin. So, among all infinite solutions, the 
solution with minimum Euclidean norm (i.e. * *&S S   X X ) is taken as a primitive 

approximation for damage solution.  

However, when n m , the solution X will not lie exactly in  ( ) : nSpan . R S S z z , 

therefore an unbalanced vector .  r S X R always exist. However, while this 
unbalanced vector is perpendicular to the ( )Span S , its magnitude will be minimized, and 

X can be determined as follows: 
 

 

  1

. ( ) . ( . ) 0

.

T T

T T

T T

Span

or
 

         

   

     

r S X R S S r S S X R

S S X S R

X S S S R  X S R

 (3) 
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In summary, regardless which of the values n or m is greater, the value ~   X S R can 
be an improvement movement for the current point X toward the damage solution. The 
pseudo-inverse of S  (i.e. S ) can be found by singular value decomposition (See Appendix 
I). 

 
 

3. SENSITIVITY OF STRUCTURAL RESPONSES  
 

3.1 Sensitivity of eigenvalues with respect to damaging 
An approach for calculating the derivatives of eigenvalues with respect to damage ratio (or 
any other arbitrary design variable) of an element using the stiffness and mass matrices of 
the structure and the eigenvectors have been presented in Ref. [17], where: 

 

 
 ( )

 ( ) ,
i

T i T
i i i i

j j jx x x

   
 

  
K M

     (4) 

 
in which i  and i denote the ith eigenvector and eigenvalue, and also K and M are the 

stiffness and mass matrices of the structure, respectively. In this study, since damaging is 
considered as reduction in elasticity modules of the elements, it will not affect the mass 
matrix, thus, the second term of the right side of Eq. (4) will be vanished.  

 
3.2 Sensitivity of displacements with respect to damaging 
The static equilibrium equation of the structure can be expressed as follows:  
 
 ,Kd F  (5) 

 
where K is the stiffness matrix, d is the displacements vector and F is the applied loads 
vector. By differentiating Eq. (5) with respect to an elemental damage ratio (or any other 
design variable), the ith column of deformation’s sensitivity matrix is obtained [6]: 

 

 

1' ' ' '    K d Kd 0 d K K d .

1

i ix x
 

  
 

d K
K d .  (6) 

 
It should be noted that for calculation of different columns of sensitivity matrix of 

displacements using Eq. (6), just 
ix




K  is changed and calculation of 1K , which devote 

the most computational effort, is executed once. Therefore, the computational effort of this 
way is so much lower than the conventional finite difference method. 
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4. CONTINUOUS GENETIC ALGORITHM (CGA) 
 

Charles Darwin first inspired the process of natural evaluation and adaptation to 
environmental variation. Further, this idea simulated numerically by Holland as an 
optimization tool referred to as genetic algorithm. Since then, GA has been realized as an 
efficient method for stochastic global search and has been used in various aspects of civil 
engineering [18-19]. 

In the conventional genetic algorithm (discrete version) each solution point is coded as a 
binary string. But CGA also known as real coded genetic algorithm (RGA), directly uses the 
variables themselves which is so better for optimization problems with continuous variables. 
Coding and decoding process is not needed in CGA which saves much computational time. 
Generally in GA, each individual of the population is called chromosome and each variable 
is called gene. CGA is consisting of five main steps as follows: 

1. Initialization: In this part, a set of primitive solutions as initial population is randomly 
created in the feasible region of the search space. For damage detection problems, the 
first generation can be obtained by generating a set of random damage vectors. 

2. Fitness evaluation: In this part, the objective function for the individuals of current 
population is calculated. Here, for damage detection ( ) dR X R  is selected as the 

objective functions, where  indicates the Euclidean norm. 

3. Selection: Herein, a set of individuals of the current population are copied and stored 
in a set referred to as math pool for reproduction process. The individuals possessing 
better fitness will have more copy in the math pool. The mat pool is also likening to 
routing wheel. 

4. Reproduction: The reproduction process simulates the biological creation of a new 
generation. Reproduction process is usually consisting of two main stages: 1) Cross 
over and 2) Mutation.  

Cross over is simulating marriage and generation of offspring by combining two 
individuals (chromosomes). Assume that 1 21 ( , , , )nChrom x x x   and 

1 22 ( , , , )nChrom y y y   are two individuals from the current population, then one can 

gain the offspring, 1 21 ( , , , )nChrom x x x     and 1 22 ( , , , )nChrom y y y     , by cross over 

operation from Eq. (7) : 
 

 (1 )i i i i ix x y     , (1 )i i i i iy y x     , (7) 
 

where i  is a random number between 0 and 1. 

Mutation is an additional operator executed after cross over in some of the individuals. A 
certain number of genes are randomly selected to change their values. This process is 
simulating biological genetic mutation. This is a preventive operation form trapping of the 
solution in local minimums. 

In addition, the elitist strategy, in which the best solution of each generation is copied to the 
next generation, is applied to insure improvement of the best individual generation by generation. 

5. Termination: The algorithm is stopped based on the maximum number of generations. 
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Start
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CGA

Step 

 

Figure 1. Flowchart of continuous genetic algorithm 

 
 

5. THE PROPOSED STRATEGY: CGA-SBI-MS 
 

In the proposed strategy, after each CGA step (i.e. fitness evaluation, selection, crossover 
and mutation) two sub-programs, SBI and MS, playing different roles, are executed. The 
flowchart of this method is outlined in Figure 2. Addition of these two sub-programs 
effectively specialize the standard CGA for damage detection.  
These two subprograms are as follows:  
1) Sensitivity based improvement (SBI): this sub-program improves individuals by using 

sensitivity analysis. To this end, for each individual of the generation its sensitivity 
matrix, S, is first established, then   X S R is added to it.   

2) Micro search (MS): In this sub-program design variables of the optimization are 
reduced. After each N2 generations of genetic algorithm the low variables of the best 
chromosome are set to zero and eliminated from optimization procedure.  
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Yes 

No 

Start 

One CGA step 

SBI

MS 

Stop criteria 

satisfied?

End 

Generate first population 

 

Figure 2. General flowchart of CGA-SBI-MS 

 
It is noteworthy that; in usual damage detection problems just a few numbers of structural 

elements are damaged. In the other hand, it is expected after several generations of CGA the 
best individual of the population somewhat approaches the real damaging [4, 19], which is 
commonly a sparse vector. Therefore, the low variables of best individual can be considered 
as intact elements and be fixed to zero to eliminate from design variables and accelerate 
damage detection. 

 
The step by step summary of the SBI sub-program process is as follows: 
1. Predefine required values, R , i and j. i and j are initially unity, however  j may 

increase in MS part during the optimization process.  
2. For each individual evaluate its sensitivity matrix, which is the derivatives of the 

structural responses with respect to structural damaging. For this purpose use the 
corresponding formulas presented in Section 3.   

3. Improve each individual by adding   X S R to it. It is obvious that for each 
individual its corresponding sensitivity matrix must be used. 

4. if i is equal to j end the sub-program and go to MS, otherwise; increase i one unit and 
repeat this sub-program from step one.  

The step by step procedure of micro search (MS) is as follows: 
1. Predefine these values: N2, Iter, b, a. 

N2 is an integer number (e.g. 10), Iter is initially unity, but it changes during the 
optimization process, b is a small value (e.g. 0.1), where the elements with damage ratio 
lower than b are assumed to be undamaged, and a is a constant equal to zero or one. 
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If Iter is not equal to N2 increase Iter one unit and end the sub-program, otherwise; 
continue the following steps. 
2.  Set Iter=1 and increase j by the amount of a.  
3. Find ix b  in the best chromosome. Fix the corresponding variables in the current 

population to zero, and eliminate them from the proceedings of optimization process. 
Choosing a= 0 leads j remains unity during optimization process. Therefore, the 

condition in step 4 of SBI is always satisfied and i.e. the step 4 of SBI can be omitted. 
However, choosing a=1 leads to repetition of   X S R in SBI part, which causes rapid 
convergence, but more computational time in each step. 

The parameters a, b and N2 may be adjusted to improve CGA-SBI-MS performance. For 
more description, the detailed flowchart of the proposed strategy is presented in Figure 3.  

 

Yes

No

Yes 

No 

Yes 

No 

Start 

1i  ,  1j  , . 1Gen  , 

1Iter  , Set N1, N2, b, a 

Generate first 
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matrix for all chromosomes 
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  X S R  

new  X X X  

i=j ? 

Iter= N2 ? 

1Iter  , j j  a 
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A 

Find ix b  in the best 

chromosome. Fix the 
corresponding variables in 
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from the design variables. 

Gen.=N1 ? 

Stop 

One CGA step 

. . 1Gen Gen   

SBI 

MS 

1i i 

1Iter Iter 

 

Figure 3. Detailed flowchart of CGA-SBI-MS 
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6. CASE STUDIES 
 

In this part, the proposed method is applied to three different types of problems. These problems 
which all have been previously studied by other researchers are summarized in bellow:  
1) Damage detection in a cantilever beam using natural frequencies. Damages are modeled 

as reduction in Young modulus of elements. 
2) Multiple crack detection in a cantilever beam using natural frequencies. The cracks are 

modeled as a hinge and rotational springs in nodes.  
3) Damage detection in a truss using static displacements affected by applied loads.  Here, 

damages are also modeled as reduction in Young modulus of the elements. 
Damage detection optimization problems usually have many local minimums, so there 

are different solution points with approximately the same structural response. This is the 
reason of defining a new index, referred to as error in 

detection, 2
0

1

( )
nv

i id
i

ED x x


   X X , where nv, ix  and idx are the number of design 

variables, ith design variable of the solution point and ith design variable in the real 
damaged state, respectively. In all following case studies, for genetic algorithm, the 
population size is set to 50, the crossover probability is set to 0.8, and the mutation 
probability is set to 0.015.  

 
6.1 Case study 1: A fifteen-element cantilever beam 
A fifteen-element cantilever beam which was previously studied by Koh and Dyke [11] is 
considered to assess the efficiency of the proposed algorithm. The length, thickness and 
width of the beam are 2.74, 0.00635 and 0.0760 m, respectively and the elements are 
numbered from the fixed end as shown in Figure 4. In Ref. [11] the elements 4 and 12 have 
been assumed to be damaged by the extent of 30% and the process of damage detection has 
been proceed using the first five frequencies with three different ways from which the 
solution of genetic algorithm with the MDLAC criterion has been led to the best result. 
Here, the best result of Koh and Dyke is selected to be compared with those obtained by the 
proposed algorithm. For this case study, the parameters b and N2 in the presented algorithm 
are set to 0.1 and 9, respectively. 

 

1 2 3 5 6 7 8 9 10 11 13 14 15

 

Figure 4. Cantilever beam having 15 elements, two damages are located in elements 4 and 12 

 
The bar chart in Figure 5-a represents the final result of the proposed algorithm. As it can 

be seen, unlike Koh and Dyke method, the proposed algorithm is led to the exact solution.   
The convergence histories of the error in detection and the fitness function in both states 
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of a=0 and a=1 are illustrated in Figure 5-b and Figure 5-c, respectively. As it is expected, 
when a=1, it is led to more rapid convergence. The design variables used during 
optimization process are listed in Table 1.  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element no.

D
am

ag
e 

ra
ti

o

Actual Damage

CGA-SBI-MS

Koh & Dyke

 

(a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Generation no.

E
rr

o
r 

in
 d

e
te

c
ti

o
n

a=0

a=1

Search 
space 3

Search 
space 1

Search 
space 2

Search 
space 4

 

(b) 

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Generation no.

F
it

n
es

s 
fu

n
ct

io
n

a=0

a=1

Search 
space 1

Search 
space 2

Search 
space 3

Search 
space 4

 

(c) 

Figure 5. Solution results for 15 element cantilever beam: (a) Damage identification result (b) 
Convergence history of error in detection (c) Convergence history of fitness function  
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Table 1: Design variables of CGA-SBI-MS during optimization process 

Design variables CGA-SBI-MS 

 a=0  a=1 

Search space 1 1,2, …,15  1,2, …,15 

Search space 2 2 4 5 11 12 14 15  4 5 8 11 12 14 15 

Search space 3 4 12 15  4 12 

Search space 4 4 12  4 12 

 
As it is shown in Figure 6, various combinations of CGA with SBI and MS sub-programs 

are investigated. The results shows, only CGA-SBI-MS is led to the exact solution, therefore 
in order to reach the exact solution by means of CGA, simultaneous utilization of both SBI 
and MS is inevitable.  
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Figure 6. Comparison between various combinations of SBI and MS with CGA   

 
6.2 Case study 2: A multiple cracked beam 
6.2.1 Beam-spring model: A modeling of cracked beam 
When a crack is occurred in a beam continuity of slops in the sides of the crack does not 
hold. Therefore, in a beam modeled by several beam elements, if the ith node has a crack it 
will have three degrees of freedom: deflection, right and left rotations ( , , )L R

i i iw   , otherwise 

two degrees of freedom: deflection and rotation ( , )i iw  . The rotations R
i  and L

i  are 

related through a rotational spring with stiffness matrix as follows: 
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 ,t t
c

t t

K K

K K

 
   

K  (8) 

 
where tK , the torsional stiffness per unit width of the crack, is given by Nandwann and 

Maiti relation [13] as: 
 

 
2

2
,

72 ( )t

h E
K

f 
  (9-a) 

 
 2 3 4 5 6( ) 0.6384 1.035 3.7201 5.1773 7.553 7.332 2.4909 ,f               (9-b) 

 
where h is the height of the cross section and   is the ratio of crack depth to the height of 
the cross section.  

Consider a cantilever beam produced by n same size beam elements with length of l 
connected by n rotational springs and hinges as shown in Figure 7. This cantilever beam is a 
model of the beam with n cracks locating in 0, l, 2l, 3l, …, (n-1)l positions from the fixed 
end. However, each of the cracks can be omitted by approaching the stiffness of its 
corresponding spring infinity. So, this beam-spring model can be used for modeling 
1 i n  cracks locating in some of 0, l, 2l, 3l, …, (n-1)l positions, by getting very large 
magnitude for the spring stiffness associated with the intact nodes.  

 

 

Figure 7. The beam-spring structure for modeling multiple cracks 

 
The elemental displacement vector of the ith ( i n ) and the nth elements are 

 1 1 1, , , , ,
Te L R L R

i i i i i i iw w     W and  1, , , ,
Te L R

i i i i i iw w  W , respectively. The mass 

and stiffness matrices of the elements are given in the Appendix II. 
 

6.2.2 A multiple cracked cantilever beam 
The proposed strategy is experienced on a multiple cracked cantilever beam which was 
previously investigated by Lee [13]. The length and the height of the beam are L = 0.5 m, h 
= 0.02 m. Material Young’s modulus and the density are E = 210 GPa and 

37860 Kg m  , respectively. In the present work, this beam is modeled with ten beam 

elements which are connected with hinges and rotational springs as it is expressed in 
previous and showed in Figure 7.  
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 Two values * *
10 max minlog ( )PL    and 2 2 2

1 1 2 2 4 4( ) ( ) ...( )I I INR             are 

defined, where i ’s , I
i ’s and *

i ’s are the eigen-values (square of frequencies) of beam-

spring, eigen-values of intact beam and the eigen-values of stiffness matrix of beam-spring 
structure, respectively. The value PL represents the conditioning of stiffness matrix, i.e. the 
lower PL means the better conditioning [20]. The value NR represents the difference in the 
structural behavior of the intact and the beam-spring model. Logically, it is expected when 
the stiffness of rotational springs approach infinity the structural natural frequencies equalize 
the intact ones and the value NR approach zero. However, in practice numerical problems 
prevent it. To represent this fact, the stiffness of all rotational springs are simultaneously 
increased to verify the PL and NR values. As it can be observed from Figure 8, because of 
conditioning problems, the values higher than 10log tK =11.5 in the horizontal axis, disturb 

the NR diagram. Therefore, we set 1 11tK e Nm  as the upper bound of rotational springs’ 

stiffness to prevent ill-conditioning. To verify the influence of this upper bound, the first 
four frequencies of intact beam and the beam-spring model with springs’ stiffness 
of 1 11tK e Nm are compared in Table 2. As it can be seen from the results, the beam-spring 

model can estimate the frequencies of intact beam until three digits after point with 
reasonable approximation. 
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Figure 8. The effect of stiffness of rotational springs in numerical results 
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Table 2: Comparison of first four frequencies of real intact and beam-spring intact model 

Intact models Frq. 1 Frq. 2 Frq. 3 Frq. 4 

Real intact model 66.497 405.218 1086.367 2004.819 

Beam-spring intact model 66.497 405.218 1086.365 2004.817 

 
The depth and location of the ith crack is represented by ia  and is , respectively (Figure 9).  

The parameters i ia h   and i is L  , are the normalized size and the normalized 

location of the ith crack, respectively, where h and L are the beam height and length, 
respectively. 

 

s

L

h
a

s

a1 2

1
2

 

Figure 9. Cantilever beam with double cracks 
 
For this case study, the parameters b and N2 in CGA-SBI-MS are set to 0.05 and 10, 

respectively. Table 3 demonstrates the results of a scenario with three damages.  As it can be 
seen, the proposed algorithm by using 2 frequencies lower than Lee’s method leads to much 
better results. In the Lee’s method the number of required frequencies for damage detection 
is a function of the number of damages. The results of another scenario with two damages is 
presented in Table 4. In the Lee’s method the crack locations are considered as continuous 
variables. This cause  as it can be observed from Tables 3 and 4 the crack locations in the 

Lee’s results become inaccurate. Error in detection is evaluated from 2

1

( )
nd

i di
i

ED  


  , 

where i , id and nd are the normalized crack depths of solution points, normalized crack 

depth of the real damaged structure and number of damages, respectively. So, for evaluation 
of error in detection of Lee’s method, the error of crack locations is ignored. Error in 
detection using CGA-SBI-SM in the states of a=0 and a=1 are given in Table 5. A general 
comparison between CGA-SBI-SM and Lee’s method is presented in Table 6. The 
convergence histories of error in detection and fitness function just for the first scenario in 
the state of a=0 is presented in Figure 10. Here, for convergence history of error in 
detection, we just consider the error exposed from crack depth.  
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Table 3: Comparison of detected cracks between CGA-SBI-MS and Lee’s work for scenario1 

Scenario 1 Utilized Info. 1  2  3  1  2  3  

Actual damage  0.1 0.1 0.1 0.2 0.4 0.8 

Lee (after 20 iterations) 6 Frqs. 0.1011 0.1024 0.0975 0.2094 0.401 0.8076 

CGA-SBI-MS (a=0) 4 Frqs. 0.0997 0.1006 0.0996 0.2 0.4 0.8 

CGA-SBI-MS (a=1) 4 Frqs. 0.0998 0.1005 0.0997 0.2 0.4 0.8 

 
Table 4: Comparison of detected cracks between CGA-SBI-MS and Lee’s work for scenario2 

Scenario 2 Utilized Info. 1  2  1  2  

Actual damage  0.2 0.2 0.4 0.6 

Lee (after 10 iterations) 4 Frqs. 0.2029 0.1971 0.4028 0.6028 

CGA-SBI-MS (a=0) 4 Frqs. 0.20012 0.1999 0.4 0.6 

CGA-SBI-MS (a=1) 4 Frqs. 0.19999 0.20001 0.4 0.6 

 
Table 5: Comparison of error in detection between CGA-SBI-MS and Lee’s work  

Error in detection Lee CGA-SBI-MS (a=0) CGA-SBI-MS (a=1) 

Scenario 1 0.003636 0.000729686 0.000615362 

Scenario 2 0.004101 0.000156205 1.41421E-05 

 
Table 6: Comparison of CGA-SBI-MS for beam-spring model with Lee’s method 

Comparison of the proposed algorithm  with respect to Lee's 

Advantages:  Disadvantage: 

More accurate  Treats the cracks locations as discrete variables 

The  required information is independent of 
no. of damages 
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(b) 

Figure 10. Solution results of crack detection obtained by CGA-SBI-MS (a=0) for scenario1 of 
the cantilever beam: (a) Convergence history of error in detection (b) Convergence history of 

fitness function 

 
6.3 Case study 3: A planar truss  
A two-dimensional truss, shown in Figure 11, has been previously studied by Bakhtiari-
Nejad et al. [21]. Here, those case studies are used to assess the ability of CGA-SBI-MS in 
static cases.  
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Figure 11. Geometry of bowstring truss 

 
Bakhtiari-Nejad et al. judiciously select the positions of applied loads and measurement 

locations to facilitate damage detection. Here, the load cases and measurement locations are 
adopted from their work as it is shown in Figure 12 and Figure 13, respectively. Axial 
rigidity of truss members is given in Table 7. 

 
Table 7: Axial rigidity of bowstring truss members 

Member Axial rigidity (kN) 

1-6 3.6e5 

7-12 3e5 

13-17 2e5 

18-25 2.4e5 
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Figure 12. Applied loading (a) load case 1 (b) load case 2 
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For this case study, the parameters b and N2 in the present algorithm are set to 0.1 and 9, 
respectively. Here, two scenarios from Bakhtiari-Nejad et al. work are considered. The 
damage identification results and the convergence histories of error in detection and fitness 
function of CGA-SBI-MS (a=0) for both scenarios are presented. As it can be observed from 
the bar charts, unlike Bakhtiari-Nejad et al.’s method, CGA-SBI-MS is led to the exact 
solution. Therefore, it has been realized that the proposed algorithm can also be utilized in 
damage detection by static measurements. 
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Figure 13. Measurement locations (a) load case1 (b) load case 2 
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(c) 

Figure 14. Solution results obtained by CGA-SBI-MS(a=0) for scenario 1 of the planar truss: (a) 
Damage identification result (b) Convergence history of error in detection (c) Convergence 

history of fitness function 
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(c) 

Figure 15. Solution results obtained by CGA-SBI-MS(a=0) for scenario 2 of the planar truss: (a) 
Damage identification result (b) Convergence history of error in detection (c) Convergence 

history of fitness function 

 
 

7. CONCLUSION 
 

Damage detection problems are equivalent to a nonlinear system of equations in which 
practically the number of equations is less than the number of unknowns. Such problems 
have infinite solutions, however a solution with low 0l  and 2l norms is the right one. In this 

paper, the conventional CGA is developed to be specialized for damage detection. This 
development is done by adding two sub-programs after typical CGA reproduction process. 
The first sub-program, SBI, improves the individuals depart from the CGA’s reproduction 
by solving the linearized problem about each individual using Moore-Penrose pseudo 
inverse. The second sub-program is reducing the search space after each several generations 
by elimination of low variables of the best individual. This strategy is applied to three 
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different type case studies, and in all states its merit has been proved.  
 
 

APPENDIX I 
 

Matrix S, can be factorized as m n m m m n n n   S U V (singular value decomposition of S), 

where the columns of V (right singular vectors) are the eigenvectors of TS S , the columns of 

 U (left singular vectors) are the eigenvectors of TSS and m n is a diagonal matrix in which 

ii s (the singular values of S ) are the square roots of the eigenvalues of TSS and TS S that 

correspond with the columns in U and V. The pseudo inverse of S can be calculated by 
 S V U , where the matrix   is created by replacing every nonzero entry of   by its 

reciprocal and transposing the resulting matrix. 
 
 

APPENDIX II 
 

In the beam-spring model with n elements, the stiffness matrix of the Euler–Bernoulli beam 
elements are changed from its typical state presented in Eq. (I) to Eq. (II-a) for ith element 
( i n ) and to Eq. (II-b) for nth element. The mass matrix of the beam elements for ith 
element ( i n ) and nth element are presented in Eqs. (III-a) and (III-b), respectively. 
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