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ABSTRACT 
 

This study presents applications of a simulated annealing integrated solution algorithm to 
the optimum design of single-span steel truss bridges subjected to gravity loadings. In the 
optimum design process of a bridge the members are sized simultaneously as the coordinates 
of the upper chord nodes are determined such that the least design weight is attained for the 
structure. The design constraints and limitations are imposed in accordance with serviceability 
and strength provisions of ASD-AISC (Allowable Stress Design Code of American Institute of 
Steel Institution) specification. A numerical example is presented, where optimum designs 
produced according to nine alternative topological forms of single-span truss bridges, namely 
Pratt, Parker, Baltimore, Pettit, K-Truss, Warren, Subdivided Warren, Quadrangular Warren 
and Whipple are compared for a selected span length of 600 ft (182.88 m) to quantify the 
influence of choice of a topological form on the final design weight of the bridge.  

 
Keywords: Structural optimization; simulated annealing; single-span steel truss bridges; 
bridge topological forms; minimum weight design 

 
 

1. INTRODUCTION 
 

Over the years steel truss bridges have kept their popularity amongst bridge engineers. Apart 
from architectural attractiveness, these systems exhibit certain advantages from structural and 
constructional standpoints, such as speed of construction, durability, modification and repair, 
recycling, versatility, etc. They are rigid skeletal structures with straight members configured 
generally in some form of triangles to transfer the design loads from deck to the piers through 
mainly axial forces of the members. Single span steel truss bridges refer to a particular subset 
of these systems where the whole opening is crossed with a single span with generally simply 
supported end conditions. Especially, they are more preferable with respect to multi-span 
bridges in cases where disturbance to the stream bed needs to be avoided. 

The single span truss bridges can be designed in a variety of different topological forms, 
such as Pratt, Parker, Baltimore, Pettit, K-Truss, Warren, Subdivided Warren, Quadrangular 
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Warren, Whipple, etc. The Pratt truss has a topological feature such that the diagonals are all 
sloped in the same direction on each side of the truss around the mid-span. In this form of 
truss bridge, the upper chord and vertical members are subjected to compression whereas the 
diagonals and lower chord members are under tension. The Baltimore truss has additional 
bracing members in the lower section to prevent buckling in the compression members as well 
as to control deflection. Both Pratt and Baltimore trusses have a constant height throughout the 
span length of the bridge. The Parker and Pettit trusses have identical topological forms with 
Pratt and Baltimore trusses, respectively, except that the formers have a polygonal shape with 
the bridge height increasing from the ends towards the mid-span. In the Warren truss alternate 
diagonals sloped in different directions frame into each others at lower chord nodes. The 
Subdivided Warren truss has the topological form of Warren truss with vertical members 
having sub-diagonals and sub-verticals. The Quadrangular Warren is a double intersection 
truss form with alternating tension and compression diagonals. The K-truss is configured in 
the form of letter “K” by the orientation of the vertical member and two oblique members in 
each panel. Finally, the Whipple truss is the one having elongated and usually thin tension 
members which cross two or more members.  

In the present study, optimum design of single-span steel truss bridges is investigated in 
conjunction with simulated annealing (SA) optimization technique. The SA employs a meta-
heuristic numerical optimization procedure, the theory of which extends to the annealing 
process of physical systems in thermodynamics [1]. In this process a physical system (a 
solid or a liquid) initially at a high-energy state is cooled down to reach the lowest energy 
state. The idea that this process can be simulated to solve optimization problems was put 
forward by Kirkpatrick et al. [2] by establishing a direct analogy between minimizing the 
energy level of a physical system and lowering the cost of an objective function.  The 
successful applications of the technique in the fields of structural optimization and 
computational structural mechanics have been reported in a number of publications in the 
literature, such as Refs. [3-8]. 

In the solution process both size and shape variables are employed simultaneously by the 
SA algorithm to minimize the design weight of a bridge. Size variables are used to 
determine the required steel sections for the bridge members to satisfy strength and 
serviceability requirements imposed according to provisions of ASD-AISC [9] standard. 
Shape variables, on the other hand, are utilized to find the best height or shape of the upper 
chord of a bridge. The application of the solution algorithm developed is illustrated with a 
numerical design example, where the optimum designs produced according to 
abovementioned nine different topological forms of single-span bridges are compared for a 
selected span length of 600 ft (182.88 m). This way, the weight efficiency of various 
topological forms is investigated and it is shown that the choice of a topological form has a 
great impact on the final design weight of the bridge.  

 
 

2. OPTIMUM DESIGN PROBLEM FORMULATION 
 

In the optimum design process of a single-span steel truss bridge, it is required to select the 
structural members from a standard steel section table as well as to determine the height or 
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shape of the upper chord of the bridge such that the structure satisfies the strength and 
serviceability limitations imposed by a code of practice, while the minimum weight of the 
bridge is attained. The formulation of design constraints according to ASD–AISC [9] yields 
the following mixed discrete programming problem. 

Find a vector of size design variables A and a vector of shape design variables S,  
 

  
mN

T AAA ,...,, 21A and  
sN

T SSS ,...,, 21S  (1) 

 
to minimize the weight of the bridge (W), 
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In Eqns. (1)-(5),  mN  is the total number of bridge members; mA mmL ,  are the cross-

sectional area, length and unit weight of the m-th bridge member, respectively; jS  is the  j-

th shape variable; sN  is the total number of shape variables associated with the coordinates 

of the upper chord nodes of the bridge;  the functions mg , ms  and kj ,  are referred to as 

constraints being bounds on stresses, slenderness ratios and displacements, respectively; m  

and allm )(  are the computed and allowable axial stresses for the m-th member, 

respectively; m  and allm )(  are the slenderness ratio and its upper limit for m-th member, 

respectively; jN  is the total number of nodes in the bridge; and finally kjd ,  and allkjd )( ,  are 

the displacements computed in the k-th direction of the j-th node and its permissible value, 
respectively.  

According to ASD-AISC [9], the maximum slenderness ratio is limited to 300 and 200 
for tension and compression members, respectively. Therefore, the slenderness related 
design constraints can be formulated as follows: 
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members)n compressio (for200

members)tension  (for300


m

mm
m r

LK  (6) 

 
where mK  is the effective length factor of m-th member ( 1mK  for all members), and mr  is 

its minimum radii of gyration.  
The allowable tensile stresses for tension members are calculated as in Eqn. (7).  
 

 ualltyallt FF 50.0)(and    60.0)(    (7) 

 
where yF  and uF  stand for the yield and ultimate tensile strengths, and the smaller of the 

two formulas is considered to be the upper level of axial stress for a tension member.  
The allowable stress limits for compression members are calculated depending on two 

possible failure modes of the members known as elastic and inelastic buckling, Eqn. (8)   
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where E  is the modulus of elasticity, and yc FEC /2 2  is the critical slenderness ratio 

between elastic and inelastic buckling.         
 
 

3. SIMULATED ANNEALING ALGORITHM 
 

The basic computational steps of simulated annealing algorithm are outlined in the 
following. The further enhancement of the algorithm that results in additional performance 
of the technique can be found in Hasançebi et al. [10].  

 
Step 1. Cooling schedule: The first step is the setting of an appropriate cooling schedule. 

After choosing suitable values for the starting acceptance probability ( sP ), the final 

acceptance probability ( fP ), and the number of cooling cycles ( cN ), the cooling schedule 

parameters are calculated as follows: 
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In Eqn. (9), sT , fT  and   are referred to as starting temperature, final temperature, and 

cooling factor, respectively. The starting temperature is assigned as the current temperature 
of the process, i.e., sTT  .   

 
Step 2. Initial Design: Next, an initial design is originated via random initialization in a 

way such that size variables are set to arbitrary ready sections selected from a standard 
profile list and shape variables are assigned to any values between their lower and upper 
bounds. The analysis of the bridge is then performed and the force and deformation 
responses are obtained under the applied loads. If all the constraints are satisfied, the 
objective function value ( ) of the design is directly computed from Eqn. (2), i.e., W . 
If, however, the design violates some of the problem constraints, it is penalized and its 
objective function value is calculated from Eqn. (10).  
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In Eqn. (10), ic  is the i-th problem constraint of the problem at hand, and   is the 

penalty coefficient used to tune the intensity of penalization as a whole. It is set to an 
appropriate static value, such as 1 . 

 
Step 3. Generating candidate designs: A number of candidate designs are generated in 

the close vicinity of the current design. This is carried out as follows: (i) either a size or 
shape design variable is selected, (ii) the selected variable is given a small perturbation in a 
predefined neighborhood, and (iii) finally, a candidate design is generated by assuming the 
perturbed value of the variable, while keeping all others same as in the current design. It 
follows that a candidate design differs from the current one in terms of one design variable 
only. It is important to note that each design variable is selected only once in a random order 
to originate a candidate design. Hence, the total number of candidate designs generated in a 
single iteration of the cooling cycle is equal to the number of design variables.  

 
Step 4. Evaluation of a candidate design: Each time when a candidate design is 

generated, its objective function value ( ) is computed first and then it is set to compete 

with the current design. If the candidate provides a better solution, it is accepted 
automatically and it replaces the current design. Otherwise, the so-called Metropolis test is 
employed to determine the winner, in which case the probability of accepting a poor 
candidate (P) is assigned as follows: 

 
 )/exp( KTP  , where  0 ca   (11) 

 
In Eqn. (11), c  and a  are the objective function values of the current and candidate 

designs, respectively; T is the current temperature of the process; and K is the Boltzman 
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parameter which is manipulated as the working average of positive   values. 
 
Step 5. Iterations of a Cooling Cycle: A single iteration of a cooling cycle is referred to 

the case where all design variables are selected once and perturbed to generate candidate 
designs. Generally, a cooling cycle is iterated a certain number of times in the same manner 
to ensure that the objective function is reduced to a reasonably low value associated with the 
temperature of the cooling cycle. Having selected the iterations of the starting and final 
cooling cycles ( si  and fi ), the iteration of a cooling cycle ( ci ) at a given temperature T is 

determined by a linear interpolation between si  and fi , as follows:   
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(12) 

 
Step 6. Reducing Temperature: After the cooling cycle is iterated a number of times,  the 

temperature is reduced by the ratio of the cooling factor η, and the temperature of the next 
cooling cycle is set as in Eqn. (13) 

 

 kk TT 1
 (13) 

 
where kT  and 1kT  denote the temperature at the k and (k+1)-th cooling cycles, 
respectively. 

 
 

4. NUMERICAL EXAMPLE 
 

A numerical design example is studied here, (i) to verify and demonstrate the applicability 
of the solution algorithm to the optimum design of single-span steel truss bridges, (ii) to 
explore the weight efficiency of various topological forms of a bridge under gravity loads, 
and finally (iii) to emphasize the significance of a bridge topological form on its final design 
weight. 

 

Figure 1. A single-span steel truss bridge design example 

  
In the example it is intended to build up a single-span steel truss bridge to cross an 

opening  of 600 ft (182.88 m). Only the lower chord of the bridge is geometrically defined 
as shown in Figure 1, and it consists of 25 panel points equally spaced at 25 ft (7.62 m). The 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

OPTIMIZING SINGLE-SPAN STEEL TRUSS BRIDGES WITH... 

 

769

design loads are calculated according to the provisions of ASCE 7-05 [11]. Live loads 
resulted from traffic are combined with dead loads of the deck and floor systems, which are 
later on transmitted to the lower chord, resulting in equivalent panel point loads of 60 kips 
(267 kN) each in each model.  

 

 

a) Pratt truss 

 

b) Parker truss 

 

c) Baltimore truss  

 

d) Pettit truss 

 

e) K-truss 
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f) Warren truss 

 

g) Quadrangular Warren truss 

 

h) Subdivided Warren Truss 

 

i) Whipple truss 

Figure 2. Bridge topological forms: a) Pratt, b) Baltimore, c) Pettit, d) Baltimore, e) K-truss, f) 
Warren, g) Quadrangular Warren, h) Subdivided Warren, i) Whipple 

 
To comprise the superstructure, nine alternative topological forms of single-span truss 

bridges shown in Figure 2 are considered. In the optimum design process with each 
topological form, both size and shape design variables are employed together. Size variables 
are used to determine the required steel sections for bridge members and are grouped 
considering the symmetry of the structures around mid-span. Hence, the number of 
independent size variables used in a model is equal to half of the total number of members in 
the model. The size variables are selected from a total of 83 wide-flange ready sections 
ranging between W10x12 and W14x730. The shape variables are chosen to define the height 
or shape of the upper chord of a bridge model, again considering a desired symmetry of the 
structure about mid-span. The number of shape variables used in a model depends on the 
bridge topological form. For instance, a single shape variable is used to define the height of 
the truss in Pratt, Baltimore, Warren, Subdivided Warren, Quadrangular Warren, Whipple 
and K-truss forms, since these forms have straight upper chords. In Parker and Pettit forms, 
however, the y-coordinates of all upper chord nodes are allowed to vary, resulting in 12 and 
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6 independent shape variables, respectively. The ranges of shape variables are chosen 
between zero and half of the span length (L/2 =150 ft = 91.44 m). In all the bridge models, 
the strength and stability requirements of the designs are specified as per ASD-AISC [9] 
provisions, plus the maximum displacements of panel points in any direction are restricted to 
1/600 of the total span length. The following material properties of the steel are used in all 
the models: Fy (yield stress) = 36 ksi (2531 kg/cm2) and E (modulus of elasticity) = 29,000 
ksi (2,038,936 kg/cm2). 

The optimum design of the bridge under each of the nine topological forms was sought 
by running the solution algorithm five times independently due to stochastic nature of the 
SA technique. The control parameters are set to the following values in these runs in line 
with recommendations of the former studies [10, 12-14]: 50.0sP , 310 fP , 1si , 

5fi , 300cN , resulting in the cooling schedule parameters sT = 1.4427, fT = 0.1448 

and  = 0.9923 from Eqn. (10). The average computing time for a single run takes about 12 
min on a serial computer with  Intel Quad Core Q9300 2.5GHZ LGA775 processor.  

The best (optimum) designs obtained for the bridge under nine different topological 
forms are tabulated in Table 1 with section designations attained for each member group and 
the resulting values of shape variables in conjunction with design variable numbering shown 
in Figure 2 for each model. The minimum weight design for the bridge is produced by Pettit 
truss with a design weight of 624,277.4 lb (283,172.2 kg). This design is followed by Parker 
truss with the corresponding design weight of 722,558.3 lb (327,752. 4 kg). It is interesting 
to note that both of these truss forms have a varying bridge height. Although a polygonal 
shape is not enforced by any sort of constraints, the resulting shapes of the bridges generated 
in the optimum design process confirm with this particular shape naturally. As compared to 
Parker model, Pettit truss results in smaller member lengths, in which intermediate panel 
points are defined between upper and lower chords to keep the member lengths within 
reasonable limits, and thereby increasing the buckling strength of the members significantly. 
Nevertheless, both truss forms outperform all the others with straight upper chords (constant 
bridge height models). Amongst the trusses with straight upper chords, the subdivided forms 
(K-truss, Subdivided Warren and Baltimore) perform more efficiently with the 
corresponding design weights of 830,048.1 lb (376,509.8 kg), 855,874.5 lb (388,224.7 kg) 
and 869,646.4 lb (394,471.6 kg), respectively owing to the increased buckling strength of 
the members in these models. The largest design weights for the bridge are produced by 
Pratt and Whipple trusses with design weights of 1,379,721.2 lb (625,841.5 kg) and 
1,384,147.8 lb (627,849.4 kg), respectively. The design history curve representing the 
variation of the best feasible obtained thus far in the optimum design process is plotted in 
Figure 3 for each model.  
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Table 1: Optimum designs obtained for the bridge under each topological form. 

Bridge topological forms Variable 
Pratt    Parker Baltimore Pettit K_truss Warren Q_Warren S_Warren Whipple

Size variables, ready sections  

A1 W12x136 W14x176 W12x152 W12x152 W10x68 W14x145 W14x74 W12x190 W14x109
A2 W12x79 W12x279 W12x210 W14x193 W10x77 W12x79 W12x96 W12x170 W12x152
A3 W12x279 W12x230 W14x120 W14x159 W12x136 W14x455 W14x211 W12x190 W12x305
A4 W14x342 W14x398 W14x145 W14x159 W12x210 W12x252 W14x311 W14x132 W14x370
A5 W14x426 W12x336 W14x257 W12x170 W12x252 W14x370 W14x370 W12x336 W14x730
A6 W14x605 W14x426 W12x279 W12x170 W14x342 W14x665 W14x455 W12x305 W14x730
A7 W14x550 W14x455 W14x342 W12x190 W14x398 W12x279 W14x426 W12x336 W14x665
A8 W14x730 W14x605 W14x370 W12x190 W14x455 W14x605 W14x605 W14x257 W14x283
A9 W14x730 W14x426 W14x500 W14x211 W14x455 W14x730 W14x500 W14x426 W14x730
A10 W14x730 W14x500 W14x730 W12x190 W14x550 W14x730 W14x730 W14x550 W14x730
A11 W14x730 W14x500 W14x730 W14x193 W14x550 W14x605 W14x730 W14x398 W14x730
A12 W14x730 W14x605 W14x500 W12x190 W14x550 W14x730 W14x730 W14x730 W14x730
A13 W14x550 W14x342 W14x311 W14x311 W12x26 W14x550 W14x550 W14x342 W14x455
A14 W12x53 W14x74 W10x26 W14x43 W12x136 W12x79 W12x53 W14x34 W10x49
A15 W14x257 W14x132 W10x49 W10x60 W14x99 W14x233 W14x211 W10x100 W14x176
A16 W14x426 W12x79 W10x49 W10x88 W14x120 W14x132 W14x145 W12x170 W14x176
A17 W12x336 W12x120 W12x26 W12x35 W14x90 W14x500 W14x90 W12x65 W12x152
A18 W14x398 W12x87 W12x210 W12x65 W10x112 W14x74 W14x342 W14x193 W14x90
A19 W14x311 W12x65 W10x49 W12x65 W14x90 W12x252 W12x87 W14x233 W12x210
A20 W14x370 W12x40 W12x26 W10x39 W10x112 W14x90 W12x53 W14x30 W14x90
A21 W14x257 W10x49 W12x170 W10x45 W12x79 W14x455 W10x112 W12x87 W12x65
A22 W14x311 W10x49 W10x54 W14x90 W10x100 W12x65 W14x211 W12x65 W10x88
A23 W12x252 W14x74 W12x26 W10x39 W12x72 W14x159 W10x49 W12x30 W12x65
A24 W14x257 W14x90 W12x170 W12x58 W10x100 W14x233 W14x233 W14x176 W10x49
A25 W14x211 W12x65 W10x49 W14x109 W12x65 W14x311 W12x96 W12x190 W12x65
A26 W14x233 W10x60 W12x26 W10x68 W14x82 W10x88 W10x49 W10x26 W10x49
A27 W12x190 W12x65 W12x120 W14x82 W10x54 W12x120 W12x96 W10x68 W12x210
A28 W14x193 W12x72 W10x49 W14x99 W12x79 W14x90 W14x176 W14x109 W12x65
A29 W14x211 W12x65 W10x39 W10x54 W10x49 W14x233 W10x49 W10x39 W14x99
A30 W14x159 W12x65 W12x40 W10x60 W10x60 W10x68 W14x176 W14x48 W12x252
A31 W12x210 W12x72 W12x65 W12x45 W10x49 W14x176 W12x72 W12x136 W12x65
A32 W14x120 W12x72 W14x342 W10x49 W14x48 W14x120 W10x49 W12x136 W14x90
A33 W12x120 W14x109 W14x283 W14x99 W12x26 W14x176 W12x72 W12x87 W12x65
A34 W14x159 W12x65 W14x193 W14x90 W10x33 W12x65 W14x145 W14x211 W14x455
A35 W12x96 W14x90 W14x176 W14x145 W14x665 W14x120 W12x53 W12x120 W10x49
A36 W12x305 W14x342 W14x283 W14x283 W12x230 W14x283 W14x145 W14x283 W12x65
A37 W14x283 W14x370 W12x210 W12x45 W14x159 W12x190 W12x65 W14x145 W14x455
A38 W14x370 W14x550 W12x252 W10x77 W14x109 W14x398 W10x49 W12x279 W10x49
A39 W14x730 W14x426 W14x145 W10x33 W14x109 W14x342 W12x65 W14x193 W14x109
A40 W14x730 W14x426 W14x109 W12x58 W14x109 W14x730 W14x145 W14x193 W12x65
A41 W14x730 W14x455 W10x88 W10x54 W14x145 W14x500 W10x49 W12x136 W12x65
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Bridge topological forms Variable 
Pratt    Parker Baltimore Pettit K_truss Warren Q_Warren S_Warren Whipple

A42 W14x730 W14x455 W14x398 W14x550 W12x96 W14x730 W14x145 W14x426 W14x370
A43 W14x730 W14x398 W14x550 W14x550 W14x132 W14x605 W12x72 W14x398 W14x550
A44 W14x730 W14x550 W14x605 W14x500 W10x88 W14x730 W10x49 W14x730 W14x550
A45 W14x730 W14x605 W14x665 W14x500 W14x109 W14x730 W12x65 W14x605 W14x500
A46 W14x730 W14x550 W14x730 W14x500 W10x88 W14x730 W14x145 W14x730 W14x550
A47 W10x49 W12x65 W12x65 W14x176 W14x99 W10x100 W14x145 W12x72 W14x730
A48 N/A N/A N/A N/A W12x72 N/A W12x210 N/A W14x730
A49 N/A N/A N/A N/A W14x99 N/A W14x311 N/A W14x730
A50 N/A N/A N/A N/A W10x68 N/A W14x426 N/A W14x730
A51 N/A N/A N/A N/A W12x87 N/A W14x398 N/A W14x730
A52 N/A N/A N/A N/A W12x53 N/A W14x665 N/A W14x730
A53 N/A N/A N/A N/A W12x65 N/A W14x550 N/A W14x455
A54 N/A N/A N/A N/A W12x53 N/A W14x730 N/A W14x455
A55 N/A N/A N/A N/A W12x65 N/A W14x730 N/A W14x455
A56 N/A N/A N/A N/A W12x40 N/A W14x730 N/A N/A 
A57 N/A N/A N/A N/A W12x65 N/A W14x730 N/A N/A 
A58 N/A N/A N/A N/A W12x79 N/A W12x53 N/A N/A 
A59 N/A N/A N/A N/A W12x152 N/A N/A N/A N/A 
A60 N/A N/A N/A N/A W14x211 N/A N/A N/A N/A 
A61  N/A N/A N/A N/A W14x283 N/A N/A  N/A N/A 
A62  N/A N/A N/A N/A W14x342 N/A N/A  N/A N/A 
A63  N/A N/A N/A N/A W14x398 N/A N/A  N/A N/A 
A64  N/A N/A N/A N/A W14x455 N/A N/A  N/A N/A 
A65  N/A N/A N/A N/A W14x500 N/A N/A  N/A N/A 
A66  N/A N/A N/A N/A W14x550 N/A N/A  N/A N/A 
A67  N/A N/A N/A N/A W14x550 N/A N/A  N/A N/A 
A68  N/A N/A N/A N/A W14x665 N/A N/A  N/A N/A 
A69  N/A N/A N/A N/A W12x65 N/A N/A  N/A N/A 

Shape variables (in.)  

y1 739 222 802 450 867 726 733 810 638 
y2 N/A 363 N/A 736 N/A N/A N/A N/A N/A 
y3 N/A 445 N/A 956 N/A N/A N/A N/A N/A 
y4 N/A 549 N/A 1110 N/A N/A N/A N/A N/A 
y5 N/A 640 N/A 1157 N/A N/A N/A N/A N/A 
y6 N/A 704 N/A 1167 N/A N/A N/A N/A N/A 
y7 N/A 769 N/A N/A N/A N/A N/A N/A N/A 
y8 N/A 817 N/A N/A N/A N/A N/A N/A N/A 
y9 N/A 860 N/A N/A N/A N/A N/A N/A N/A 
y10 N/A 887 N/A N/A N/A N/A N/A N/A N/A 
y11 N/A 895 N/A N/A N/A N/A N/A N/A N/A 
y12 N/A 900 N/A N/A N/A N/A N/A N/A N/A 

Weight,lb 
(kg) 

1379721.2 

(625841.5) 

722558.3 

(327752.4) 

869646.4 

(394471.6)

624277.4 

(283172.2)

830048.1 

(376509.8)

1150368.2

(521807.0)

1090091.5 

(494465.5) 

855874.5 

(388224.7) 

1384147.8

(627849.4)
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Figure 3. The design history curve of the best solution for each topological form. 
 
 

5. CONCLUSIONS 
 

This study concerns with application of a SA integrated solution algorithm to the optimum 
design of single-span steel truss bridges. In the study, a bridge with a certain span length is 
first configured according to nine topological forms commonly used for single-span steel 
truss bridges, and the resulting structures are sized and shaped simultaneously for the 
minimum design weight subject to strength, stability and displacement provisions of ASD-
AISC [9]. The optimum design produced for the bridge is 624,277.4 lb (283,172.4 kg) with 
the most favourable model (Pettit) and 1,384,147.8 lb (627,849.4 kg) with the most 
unfavourable model (Whipple), indicating that an appropriate choice of the bridge 
topological model may lead to savings in material as much as 62 %.  However, it should be 
kept in mind that the cost of construction of the bridge cannot directly be related to its 
weight; rather it is influenced by many other factors, including the type and number of joints 
used in the structure, etc. For the design example considered here, Pettit and Parker trusses, 
which have polygonal upper chords, turn out to be the most weight-effective models, 
outperforming all the other forms with straight upper chords. Additional studies are required 
to investigate the cost-efficiency of the bridge models with respect to a set of parameters, 
such as span length, design loads, constraints, etc. 
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