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ABSTRACT 
 

In the present study, an efficient optimization algorithm is proposed to optimal design of 
structures. The proposed algorithm is an improved particle swarm optimization (PSO) which 
its global search performance is enhanced by employing the concept of cellular automata 
(CA). In the so-called improved particle swarm optimization (IPSO) algorithm a new 
cellular automata based term is added to the conventional velocity equation. Also, the real-
values of design variables are used and the artificial evolution is evolved on a small 
dimensioned grid. To show the computational advantages of the IPSO two numerical 
examples are presented. Using the new IPSO, not only the algorithm converges to a better 
solution but also the number of structural analyses is significantly reduced compared with 
the other existing variants of PSO algorithm.   

 
Keywords: Optimization; cellular automata; particle swarm optimization; cellular velocity 
updating equation 

 

 
1. INTRODUCTION 

 
Optimum design of structures is usually achieved by selecting the design variables such that 
an objective function is minimized while all of the design constraints are satisfied. The great 
development of structural optimization took place in the early 1960s, when programming 
techniques were used in the minimization of structure weight [1-2]. From then on, various 
general approaches have been developed and adopted to structural optimization. In the last 
years, advanced algorithms are developed and widely used for solving structural 
optimization problems. Some evolutionary algorithms such as genetic algorithms (GA) [3–
6], particle swarm optimization (PSO) [7-9] and ant colony optimization (ACO) [10–11] 
have been used for optimization of structures. These optimization algorithms are popular 
and widely used due to their high potential for modeling engineering problems and simple 
programming in computers. These optimization algorithms have many similarities. All of 
them explore the design space by a population of potential designs using some artificial 
evolution operators with random nature. They have also some differences in terms of the 
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type of operations used to create new solutions and the mechanism of selecting new 
population. The main drawback of the mentioned advanced algorithms is a slow rate of 
convergence which increases the computational burden of the optimization process.  

An efficient structural optimization algorithm should possess two important 
characteristics: the ability of finding the global optimum without trapping into local optima 
and requiring fewer structural analyses to be performed during the optimization process. 
Some researchers [7,12,13] have developed structural optimization algorithms that can find 
only the global optimum. But they have not considered too much about the structural 
analysis reduction in their works. Therefore, the studies related to analysis reduction in 
structural optimization are comparatively fewer. 

The main objective of the present study is to propose an improved PSO algorithm for 
structural optimization that simultaneously possesses the two mentioned important 
characteristics. For this purpose, the concepts of cellular automata (CA) [14] and PSO are 
hybridized and the resulted hybrid algorithm is termed as improved particle swarm 
optimization (IPSO) algorithm. Basically, CA represents simple mathematical idealizations 
of physical systems in which space and time are discrete and physical quantities are taken 
from a finite set of discrete values. Models based on CA provide an alternative and more 
general approach to physical modeling rather than an approximation. In the proposed IPSO, 
the particles are distributed on a small dimensioned grid and the artificial evolution is 
evolved by a novel velocity updating equation. In the novel equation, the velocity is defined 
by adding a new cellular automata based term to the conventional equation. The original 
PSO can not control the balance between exploration (global investigation of the search 
place) and exploitation (the fine search around a local optimum) [15]. The proposed IPSO 
eliminates this difficulty and also reduces the number of required structural analyses during 
the optimization process compared with the PSO algorithm.   

To demonstrate the computational advantages of the proposed IPSO optimization algorithm 
two benchmark examples, a 10-bar planner truss and a 72-bar space truss structures subject to 
static displacement and stress constraints, are optimized. The numerical results imply that the 
proposed IPSO is an efficient and powerful algorithm for optimal design of structures.  

The organization of the present paper is as follows: In Section 2, the formulation of 
optimization problem is presented. The standard PSO algorithm is briefly described in 
Section 3. The concept of CA is introduced in section 4. In Section 5, IPSO algorithm is 
explained. In Section 6, the numerical results are presented. And finally the concluding 
remarks are mentioned in section 7. 

 
 

2. FORMULATION OF OPTIMIZATION PROBLEM  
 

An optimization problem is usually formulated in the following form: 
 

 Minimize       )(Xf   

                          Subject to     0)X( ig   ,  mi ,,2,1      (1) 
                                             d

j RX    ,  nj ,,2,1   
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where f(X) represents the objective function, g(X) is the behavioral constraint, m and n are 
the number of constraints and design variables, respectively. A given set of discrete values is 
expressed by Rd.  

In constrained optimization problems, constraints are mostly handled by using the 
concept of penalty functions, which penalize infeasible solutions as follows: 
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where )(Xfs  and )( Xf p are supplemental and penalty functions, respectively. Also, ~  and rp 

are the feasible search space and an adjusting coefficient, respectively.  
 
 

3. PARTICLE SWARM OPTIMIZATION ALGORITHM 
 

The PSO has been proposed by Kennedy [16] to simulate the graceful motion of bird 
swarms as a part of a socio-cognitive study. The PSO involves a number of particles, which 
are randomly initialized in the search space. These particles are referred to as swarm. Each 
particle of the swarm represents a potential solution of the optimization problem. The 
particles fly through the search space and their positions are updated based on the best 
positions of individual particles and the best of the swarm in each iteration. The objective 
function is evaluated for each particle at each grid point and the fitness values of particles 
are obtained to determine the best position in the search space [17]. In iteration k, the swarm 
is updated using the following equations: 
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where Xi and Vi represent the current position and the velocity of the ith particle, 
respectively;

iP is the best previous position of the ith particle (called pbest) and 
gP is the best 

global position among all the particles in the swarm (called  gbest); 
1r  and 

2r  are two 

uniform random sequences generated from interval [0, 1]; c1 and c2 are the cognitive and 
social scaling parameters, respectively. Each component of 

iV  is constrained to a maximum 

value defined as max
iV  and a minimum value defined as min

iV . The inertia weight used to 

discount the previous velocity of particle preserved is expressed byω .  
Due to the importance of ω  in achieving efficient search behavior the optimal updating 

criterion is taken as: 
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where 
maxω and 

inmω are the maximum and minimum values of ω , respectively. Also,
maxk , and 

k are the number of maximum iterations and the number of present iteration, respectively. 
 
 

4. CELLULAR AUTOMATA 
 

Cellular automata (CA) were firstly introduced by von Neumann [14] and subsequently 
developed by other researchers in many fields of science. Basically, CA represents simple 
mathematical idealizations of physical systems in which space and time are discrete, and 
physical quantities are taken from a finite set of discrete values. Models based on CA provide an 
alternative and more general approach to physical modeling rather than an approximation. The 
CA shows a complex behavior analogous to that associated with complex differential equations, 
but in this case complexity emerges from the interaction of simple entities following simple 
rules. 

In its basic form, a cellular automaton consists of a regular uniform grid of sites or cells 
with a discrete variable in each cell which can take on a finite number of states. The state of 
the cellular automaton is then completely specified by the values )(tss ii   of the variables at 

each cell i. During time, cellular automata evolve in discrete time steps according to a 
parallel state transition determined by a set of local rules: the variables )( 1

1


  ki
k
i tss at each 

site i at time tk+1 are updated synchronously based on the values of the variables k
nc

s  in their nc 

neighborhood at the preceding time instant tk. The neighborhood nc of a cell i is typically 
taken to be the cell itself and a set of adjacent cells within a given radius r; rinri c  . 

Thus, the dynamics of a cellular automaton can be formally represented as follows [18]:  
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where the function θ  is the evolutionary rule of the automaton.  

 

 

Figure 1. Cellular Automata Moore neighborhood 
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One of the most important features of CA is the neighborhood structure. For updating the 
value of a cell, its own value and the values of neighboring cells should be considered. 
Configuration of the neighborhood structure is highly problem dependent and depends on 
the nature of the physical phenomenon that should be modeled. Clearly, a proper choice of 
the neighborhood plays a crucial role in determining the effectiveness of such a rule. In this 
paper, the widely used Moore neighborhood of interaction [18], by r=1, is adopted and 
shown in Figure 1 for a 2D grid. 

 
 

5. IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM 
 

In the field of structural optimization, a number of researchers tried to enhance the 
performance of PSO algorithm. The followed computational strategies in this regard 
include two main classes. In the first class, researchers have combined PSO with the 
other optimization algorithms. Such hybrid optimization algorithms may be found in 
Refs. [8,19,20]. In the second class, basic velocity equation of the standard PSO has been 
enhanced by adding some terms to it. In Ref. [7] such modified equation has been 
proposed. In the present paper, following the idea of the second class to discover a novel 
optimization mechanism through simulation of a social model, a new term is added to 
Eq. (3) based on concepts of CA. The CA technique can be combined with the 
evolutionary algorithms to solve numerical optimization problems. In the field of 
structural optimization some of researchers [21-22] have combined the concepts of CA 
and GA to create cellular genetic algorithms (CGA) but combination of CA with the 
other types of the evolutionary algorithms have not been yet reported.   

In the present paper CA and PSO are integrated and a cellular automata-based PSO 
algorithm is proposed to optimal design of structures. In the proposed IPSO algorithm, 
particles are set on discrete locations of a 2D grid. The state variables associated with 
each cell site are simply the design variables of the optimization problem. In the 
traditional PSO, the evolution is accomplished by applying Eqs. (3) and (4). In the IPSO, 
this type of evolution is substituted by an evolutionary rule of the automaton or the local 
rules of interaction among neighboring members of the grid which are simultaneously 
applied to all particles of the swarm. In other words, in the IPSO the evolution process is 
accomplished locally, with probabilistic interaction rules applied synchronously to each 
central site, and using information from members of its Moore neighborhood. When the 
swarm has been updated, the evolutionary rules of the automaton are repeated until one 
of the stopping criteria is met. In both the PSO and IPSO, the objective function of the 
optimization problem is employed to define the fitness of each design vector. In this 
paper, a new velocity updating equation the so-called cellular velocity updating equation 
is presented. Also, the real-values of design variables, instead of their binary codes, are 
considered. In the proposed IPSO algorithm, the evolutionary rule of the automaton 
includes the cellular velocity updating equation and after this the Eq. (4) are applied to 
the sites. 
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START

Initialize swarms: 
a. Random position 

b. Random velocities

Update particle velocities using Eq. (8) 

Update particle positions using Eq. (9) 

Perform structural analysis and score 
solution represented by new positions 

Is this particle  
the best found by this 

particle so far? 

Yes
Update local best 

Is this particle  
the best found by any 

particle so far? 

No

Yes
Update global best 

No 

termination? 
No 

When an iteration finish

Solution is final global best 

Distribute the particles on a discrete 
2D grid 

Define the Moore neighboring cells of 
each site 

Find the best cell in the Moore 
neighborhood of each site 

Yes

END
 

Figure 2. Flowchart of the proposed IPSO algorithm  
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5.1 Cellular Velocity Updating Equation  
In the proposed IPSO algorithm, a swarm of potential designs is structured on a 2D grid. In 
this case, each site contains a real-valued vector describing of a design and therefore the 
state of the cellular automaton in each site is a design vector of design variables. 

 

 cnii nixxxXs 1,2,...,,},...,,{ T
21   (7) 

 
The proposed cellular velocity updating equation acts on the design variables and 

combines the information available at the central site and its immediate neighbors. In this 
study, in each discrete time step, the proposed cellular velocity updating equation produces a 
new design at each site using existing information in immediate neighbors of each central 
site as follows: 
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where r3 is a uniform random number generated from interval [0, 1]; c3 is a scaling 
parameter. best

iX is the best particle in immediate neighbors of ith central cell. Xi,j is the jth 
particle in immediate neighbors of ith central cell. 

In each iteration or in each discrete time step, the proposed equation produces a new 
design at each site according to the following equation: 
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In comparison with Eq. (3) of standard PSO algorithm, Eq. (9) in IPSO uses more 

information to update the velocity of particles. Therefore it is expected that the IPSO 
possesses better performance than the standard PSO. The flowchart of the proposed IPSO 
algorithm is shown in Figure 2. 

 
 

6. NUMERICAL RESULTS  
 

In the present paper two numerical examples, a 10-bar planar truss and a 72-bar space truss 
structures, are optimized by PSO and IPSO to investigate the computational advantages of 
the proposed optimization algorithm. The selected test examples have been optimized by 
other researchers and the results obtained in this paper are compared with their results. For 
both examples, a small dimensioned grid of 5×5 (25 particles) is considered and the 
maximum iterations are 500. This means that the maximum number of analyses is 12500. 
The value of ωmax and ωmin are considered to be 0.9 and 0.4, respectively. Also the value of 
c1 and c2 are set 0.5 and c3 is taken as 0.65. To achieve optimization processes a personal 
Pentium IV 3000MHz is employed.  

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

S. Gholizadeh 

 

784 

6.1 Example 1: 10-bar planar truss structure    
The 10-bar truss structure is shown in Figure 3. The loads applied to the truss are P1 = 105 
lbs, P2 = 0. The material density is 0.1 lb/in3 and the modulus of elasticity is 10,000 ksi. The 
members are subjected to stress limitations of ±25 ksi. All nodes in both directions are 
subjected to displacement limitations of ±2.0 in [7].  

 

 

Figure 3. 10-bar truss structure 

 
There are 10 design variables and two design cases in this example are 

considered. In case 1: the discrete variables are selected from the set D = {1.62, 
1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 
3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 
13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 
30.00, 33.50} (in2);  

In case 2: the discrete variables are selected from the set D = {0.1, 0.5, 1.0, 
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 
10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 
17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 
24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 
31.5} (in2). 

The comparison of optimal designs for the 10-bar planar truss structure under two 
load cases are given in Tables 1 and 2, respectively. In these tables the maximum 
nodal deflection and element stress are shown by |dmax| and |σmax|, respectively. To 
investigate the computational performance of the proposed IPSO in this example, 50 
independent runs are implemented and statistical results of these runs are given in 
Table 3 for both cases. 
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Table 1: Comparison of optimal designs for the 10-bar truss structure (case 1) 

Li et al. [7] Present study 
Design variables No. 

PSO PSOPC HPSO PSO IPSO 

1 30.00 30.00 30.00 30.00 33.50 

2 1.62 1.80 1.62 1.62 1.62 

3 30.00 26.50 22.90 26.50 22.90 

4 13.50 15.50 13.50 13.50 14.20 

5 1.62 1.62 1.62 1.62 1.62 

6 1.80 1.62 1.62 1.62 1.62 

7 11.50 11.50 7.97 11.50 7.97 

8 18.80 18.80 26.50 19.90 22.90 

9 22.00 22.00 22.00 22.00 22.00 

10 1.80 3.09 1.80 3.09 1.62 

Weight 5581.76 5593.44 5531.98 5570.96 5490.74 

Number of analyses 50000 50000 50000 10000 4512 

|dmax| 1.999 1.995 1.999 2.000 1.999 

|σmax| 11534.40 11482.38 14871.33 11383.05 14196.93 

 
Table 2: Comparison of optimal designs for the 10-bar truss structure (case 2) 

Li et al. [7] Present study 
Design variables No. 

PSO PSOPC HPSO PSO IPSO 

1 24.5 25.5 31.5 31.5 29.5 

2 0.1 0.1 0.1 0.1 0.1 

3 22.5 23.5 24.5 29.0 24.0 

4 15.5 18.5 15.5 13.5 15.0 

5 0.1 0.1 0.1 0.1 0.1 

6 1.5 0.5 0.5 0.1 0.5 

7 8.5 7.5 7.5 8.0 7.5 

8 21.5 21.5 20.5 25.5 21.5 

9 27.5 23.5 20.5 16.5 21.5 

10 0.1 0.1 0.1 0.1 0.1 

Weight 5243.71 5133.16 5073.51 5225.47 5067.33 

Number of analyses 50000 50000 50000 12500 5600 

|dmax| 1.999 2.000 1.999 2.000 1.999 

|σmax| 24843.65 24713.85 24393.65 23570.62 24604.07 
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Table 3: Investigation on the performance of IPSO for the 10-bar truss in 50 runs 

 Case 1 Case 2 

Best weight 5490.74 5067.33 

Worst weight 5513.32 5098.96 

Average weight 5492.09 5074.38 

Standard deviation 3.66 8.67 

Minimum number of analyses 3968 5600 

Maximum number of analyses 8000 8000 

Average number of analyses 5408 7715 

 
It can be observed from the tables that the best weight of the IPSO and HPSO [7] 

algorithms in Case 1 are 5490.74 lb and 5531.98 lb, respectively and in Case 2 are 
5067.33lb and 5073.51 lb, respectively. Also the best number of required structural 
analyses during the optimization processes by IPSO in Cases 1 and 2 are 4512 and 5600, 
respectively while in the case of HPSO [7] this number is equal to 50000. Therefore, 
IPSO algorithm considerably reduces the computational burden of the optimization 
process in Case 1 (4512/50000 ≈ 0.09) and Case 2 (5600/50000 ≈ 0.11) with respect to 
the other variants of PSO. 

 
6.2 Example 2: 72-bar Space truss structure    
The 72-bar spatial truss structure is shown in Figure 4. The material density is 0.1 lb/in3 
and the modulus of elasticity is 10,000 ksi. The members are subjected to stress 
limitations of ±25 ksi. The uppermost nodes are subjected to displacement limitations of 
±0.25 in both in x and y directions [7]. Two load cases are listed in Table 4. There are 72 
members, which are divided into 16 groups, as follows: (1) A1–A4, (2) A5–A12, (3) 
A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 (7) A31–A34, (8) A35–A36, (9) 
A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 
(15) A67–A70, (16) A71–A72.  

Two optimization cases are considered. Case 1: The discrete variables are selected from 
the set D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9,1.0, 1.1,1.2, 1.3,1.4, 1.5,1.6, 1.7, 1.8, 1.9, 
2.0, 2.1,2.2, 2.3,2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1,3.2} (in2). Case 2: The discrete variables 
are selected from Table 5.  

Optimal design results for the 72-bar space truss structure are compared in Tables 6 
and 7. In these tables the maximum nodal deflection and element stress are shown by 
|dmax| and |σmax|, respectively. 
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Figure 4. 72-bar space truss structure 

 
Table 4: The load cases for the 72-bar space truss structure 

Load Case 1 Load case 2 
Nodes 

Px (kips) Py (kips) Pz (kips) Px (kips) Py (kips) Pz (kips) 

17 5.0 5.0 –5.0 0.0 0.0 –5.0 

18 0.0 0.0 0.0 0.0 0.0 –5.0 

19 0.0 0.0 0.0 0.0 0.0 –5.0 

20 0.0 0.0 0.0 0.0 0.0 –5.0 
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Table 5: The available cross-section areas of the ASIC code for example 2 

No. Cross-sectional area (in2) No. Cross-sectional area (in2) 

1 0.111 33 3.840 

2 0.141 34 3.870 

3 0.196 35 3.880 

4 0.250 36 4.180 

5 0.307 37 4.220 

6 0.391 38 4.490 

7 0.442 39 4.590 

8 0.563 40 4.800 

9 0.602 41 4.970 

10 0.766 42 5.120 

11 0.785 43 5.740 

12 0.994 44 7.220 

13 1.000 45 7.970 

14 1.228 46 8.530 

15 1.266 47 9.300 

16 1.457 48 10.850 

17 1.563 49 11.500 

18 1.620 50 13.500 

19 1.800 51 13.900 

20 1.990 52 14.200 

21 2.130 53 15.500 

22 2.380 54 16.000 

23 2.620 55 16.900 

24 2.630 56 18.800 

25 2.880 57 19.900 

26 2.930 58 22.000 

27 3.090 59 22.900 

28 1.130 60 24.500 

29 3.380 61 26.500 

30 3.470 62 28.000 

31 3.550 63 30.000 

32 3.630 64 33.500 
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Table 6: Comparison of optimal designs for the 72-bar truss structure (case 1) 

Li et al. [7] Present study Design variables 
No. 

PSO PSOPC HPSO PSO IPSO 

1 2.6 3.0 2.1 3.2 2.0 

2 1.5 1.4 0.6 0.5 0.5 

3 0.3 0.2 0.1 0.1 0.1 

4 0.1 0.1 0.1 0.1 0.1 

5 2.1 2.7 1.4 1.4 1.2 

6 1.5 1.9 0.5 0.4 0.5 

7 0.6 0.7 0.1 0.1 0.1 

8 0.3 0.8 0.1 0.1 0.1 

9 2.2 1.4 0.5 0.7 0.6 

10 1.9 1.2 0.5 0.5 0.5 

11 0.2 0.8 0.1 0.1 0.1 

12 0.9 0.1 0.1 0.1 0.1 

13 0.4 0.4 0.2 0.2 0.2 

14 1.9 1.9 0.5 0.5 0.6 

15 0.7 0.9 0.3 0.4 0.4 

16 1.6 1.3 0.7 0.7 0.6 

Weight 1089.88 1069.79 388.94 403.47 385.54 

Number of analyses 50000 50000 50000 8000 4176 

|dmax| 0.1 0.1 0.25 0.25 0.25 

|σmax| 5463.48 5726.65 3293.67 20595.03 20368.78 
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Table 7: Comparison of optimal designs for the 72-bar truss structure (case 2) 

Li et al. [7] Present study 
Design variables No. 

PSO PSOPC HPSO PSO IPSO 

1 7.220 4.490 4.970 2.130 1.800 

2 1.800 1.457 1.228 0.391 0.563 

3 1.130 0.111 0.111 0.111 0.111 

4 0.196 0.111 0.111 0.111 0.111 

5 3.090 2.620 2.880 1.266 1.228 

6 0.785 1.130 1.457 0.442 0.442 

7 0.563 0.196 0.141 0.250 0.111 

8 0.785 0.111 0.111 0.111 0.111 

9 3.090 1.266 1.563 0.785 0.563 

10 1.228 1.457 1.228 0.602 0.563 

11 0.111 0.111 0.111 0.250 0.111 

12 0.563 0.111 0.196 0.141 0.111 

13 1.990 0.442 0.391 0.141 0.196 

14 1.620 1.457 1.457 0.602 0.563 

15 1.563 1.228 0.766 0.391 0.442 

16 1.266 1.457 1.563 0.602 0.602 

Weight 1209.48 941.82 933.09 403.21 388.56 

Number of analyses 50000 50000 50000 12500 5968 

|dmax| 0.1 0.1 0.1 0.25 0.25 

|σmax| 2373.795 9491.242 10272.405 24996.14 20709.51 
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The computational performance of the proposed IPSO in this example is investigated 
through the 50 independent runs and the results are given in Table 8. 

 

Table 8: Investigation on the performance of IPSO for the 72-bar truss in 50 runs 

 Case 1 Case 2 

Best weight 385.54 388.56 

Worst weight 398.81 398.75 

Average weight 387.23 391.51 

Standard deviation 2.79 1.95 

Minimum number of analyses 4000 4832 

Maximum number of analyses 9800 12500 

Average number of analyses 5468 7002 

 
The results given in Tables 6 to 8 indicate that the best weight of the IPSO and HPSO [7] 

algorithms in Case 1 are 385.56 lb and 388.94 lb, respectively and in Case 2 are 388.56 lb 
and 933.09 lb, respectively. Also the best number of required structural analyses during the 
optimization processes by IPSO in Cases 1 and 2 are 4176 and 5968, respectively while in 
the case of HPSO [7] this number is equal to 50000. Therefore, IPSO algorithm 
considerably reduces the computational burden of the optimization process in Case 1 
(4176/50000 ≈ 0.08) and Case 2 (5968/50000 ≈ 0.12) compared with the other variants of 
PSO. 

The given results in both the numerical examples indicate that employing the IPSO 
results in better solution by spending lower computational costs. 

 
 

7. CONCLUSIONS  
 

An efficient optimization algorithm is proposed for optimal design of structures. The new 
developed optimization algorithm, called IPSO, has capability of finding global optima 
using few structural analyses. In the IPSO algorithm the advantages of the CA and PSO are 
combined. In this case a cellular automata-based new term is added to the conventional 
velocity updating equation to employ more information in the evolution process. In the 
IPSO algorithm, particles are distributed on a 2D grid. The state variables associated with 
each cell site are simply the design variables of the optimization problem. The evolution 
process is accomplished locally, using more information from members of Moore 
neighborhood of each site. The process is continued until the algorithm converges. As the 
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IPSO employs more information than the standard PSO, it increases the probability of 
finding the global optimum while requiring lower structural analyses. In order to assess the 
effectiveness of the developed IPSO algorithm two benchmark structural optimization 
examples are presented. The numerical results demonstrate the efficiency and computational 
advantages of the IPSO.  
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