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ABSTRACT 
 

An efficient methodology is proposed to detect the multiple damages in structural systems. 
The methodology consists of two main stages. In the first stage, an exhaustive search is 
performed using the adaptive neuro-fuzzy inference system (ANFIS) to quickly identify the 
most potentially damaged elements (MPDE). In the second stage, a particle swarm 
optimization (PSO) is presented to accurately determine the actual damage extents using the 
first stage results. In order to assess the performance of the proposed methodology for 
structural damage detection, two illustrative test examples are considered. The numerical 
results demonstrate the computational efficiency of the proposed methodology when 
comparing with those of the methods found in the literature. 

 
Keywords: Structural damage detection; adaptive neuro-fuzzy inference system; the most 
potentially damaged elements; particle swarm optimization; finite element method 

 
 

1. INTRODUCTION 
 

Health monitoring and damage identification is an interesting issue in structural engineering. 
By using this concept the local damages of a structure can be detected and after 
rehabilitating the damages, the total age of the structure can increase. In recent years, many 
methods have been introduced to detect the sites and extents of damages in the structural 
systems [1-6]. One type of the methods employs the optimization algorithms for detecting 
the multiple structural damages. Many successful applications of damage detection using the 
genetic algorithm (GA) have been reported in the literature [7-9]. Although, the use of an 
optimization algorithm can accurately identify the structural damages, however, they impose 
much computational effort to the process. In order to reduce the computational cost of the 
optimization process, some useful techniques can be employed. A useful technique is to 
reduce the dimension of optimization problem by considering the most potentially damaged 
elements (MPDE) instead of the total ones [5 and 10]. For this, the adaptive neuro-fuzzy 
inference system [11-12] can be utilized as an effective tool.  
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In this study, an efficient methodology is proposed to accurately detect the sites and 
extents of multiple structural damages. The proposed methodology has two main phases 
combining the adaptive neuro-fuzzy inference system (ANFIS) and a particle swarm 
optimization (PSO) as an optimization solver. In the first phase, the ANFIS is employed to 
quickly determine the structural elements having the higher probability of damage from the 
original elements. In the second phase, the reduced damage problem is solved via the PSO to 
truthfully determine the extents of actual damaged elements. In order to assess the 
performance of the proposed methodology, two benchmark examples are considered. 
Numerical results reveal the computational advantages of the proposed methodology for 
precisely identifying the multiple damages. 

 
 

2. STRUCTURAL DAMAGE DETECTION 
 

Structural damage detection techniques can be generally classified into two main categories. 
They include the dynamic and static identification methods requiring the dynamic and static 
test data, respectively. Furthermore, the dynamic identification methods have shown their 
advantages in comparison with the static ones. Among the dynamic data, the natural 
frequencies of a structure can be found as a valuable data. Determining the level of 
correlation between the measured and predicted natural frequencies can provide a simple 
tool for identifying the locations and extents of structural damages [1 and 4]. Two parameter 
vectors are used for evaluating correlation coefficients. A vector consists of the ratios of the 
first nf natural frequency changes F due to structural damage, i.e.  
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where hF and dF  denote the natural frequency vectors of the healthy and damaged structure, 

respectively. Similarly, the corresponding parameter vector predicted from an analytical 
model can be defined as: 
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where )(XF  is a natural frequency vector that can be predicted from an analytic model and 

},...,,...,{ 1
T

ni xxxX   represents a damage variable vector containing the damage extents 

),...,1  ,( nixi   of all n structural elements.  

Given a pair of parameter vectors, one can estimate the level of correlation in several 
ways. An efficient way is to evaluate a correlation-based index called the multiple damage 
location assurance criterion (MDLAC) expressed in the following form [1]: 
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The MDLAC compares two frequency change vectors, one obtained from the tested 
structure and the other from an analytical model of the structure. The MDLAC varies from a 
minimum value 0 to a maximum value 1. It will be maximal when the vector of analytical 
frequencies is identical to the frequency vector of damaged structure, i.e., dFXF )( . 

 
 

3. ANFIS FOR DETERMINING THE MPDE 
 

The adaptive neuro-fuzzy inference system (ANFIS) is a process for mapping from a given 
input to a single output using the fuzzy logic and neuro-adaptive learning algorithms. Figure 
1 shows the architecture of a typical ANFIS with two inputs In1 and In2, four rules and one 
output out for the first order Sugeno fuzzy model, where each input is assumed to have two 
associated membership functions. After several mathematical works, the relation between 
the inputs and output in the typical ANFIS can be expressed as [11-13]: 
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where ijW are called normalized firing strengths dependent to membership function 

parameters and pij, qij and rij are consequent parameters. The task of the learning algorithm 
for this ANFIS architecture is to tune all the parameters to make the ANFIS output matches 
the training data. The detailed information regarding the ANFIS can be found in Ref [13]. 

 

Figure 1. A typical ANFIS architecture for a two-input Sugeno model with four rules 

 
During the last years, the ANFIS has been widely used for different purposes such as 

prediction, knowledge discovery, medical decision making and disease diagnosis [11-
16].The ANFIS concept can also be effectively utilized to determine the most potentially 
damaged element (MPDE) of an unhealthy structure. For this, some sample structures 
having the damaged elements are randomly generated based on the damage vector X as the 
input and the corresponding MDLAC(X) as the output. Then, an exhaustive search is 
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performed using the ANFIS within the available input-output data to arrange the structural 
elements according to their damage potentiality. Essentially, the exhaustive search technique 
builds an ANFIS network for each damage variable from original ones and trains the 
network for a little epoch and reports the performance achieved. The step by step summary 
of the exhaustive search algorithm for determining the MPDE of an unhealthy structure is as 
follows:  

a) Establish the pre-assigned parameters of the intact structure.       
b) Randomly generate a number of sample structures having some damaged elements 

within the allowed space of damage variables X.       
c) Determine the natural frequencies of the sample structures using a conventional 

finite element analysis. 
d) Estimate the level of correlation between unhealthy structure and each sample 

structure by evaluating the MDLAC(X) index via Eq. (3). 
e) Randomly split the sample structures into two sets with some samples for training 

and remaining samples for testing the ANFIS, respectively. 
f) Build an ANFIS model for each damage variable as the input and the MDLAC(X) 

as the output. This leads to n ANFIS models equal to the total number of structural 
elements as: 
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g) Calculate the root mean square error (RMSE) for training and testing sets as: 
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      where ac and pr represent the actual and predicted values of the MDLAC(X), also 

nt is the number of training or testing samples. 
h) Sort the structural elements according to increasing their training RMSE values 

and select the first m arranged elements, having the least RMSE errors, as the 
reduced damage vector, denoted here by },...,,{ 21

T
rmrrr xxxX  . 

i) End of the algorithm. 
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4. DAMAGE IDENTIFICATION USING OPTIMIZATION ALGORITHMS 
 

As noted in section 2, the MDLAC index will reach to a maximum value 1 when the 
structural damage occurs. This concept can be utilized to estimate the damage vector using 
an optimization algorithm. For this aim, the unconstrained optimization problem with 
discrete damage variables reduced may be stated as: 
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where dR is a given set of discrete values and the damage extents ),...,1( mixri  can take 

values only from this set. Also, w is an objective function that should be minimized. 
The selection of an efficient algorithm for solving the damage optimization problem is a 

critical issue. Needing fewer structural analyses for achieving the global optimum without 
trapping into local optima must be the main characteristic of the algorithm. In this study, a 
particle swarm optimization (PSO) algorithm working with discrete design variables is 
proposed to properly solve the damage problem. 

 
4.1 PSO algorithm 
The particle swarm optimization has been inspired by the social behaviour of animals such 
as fish schooling, insect swarming and bird flocking. It involves a number of particles which 
are initialized randomly in the search space of an objective function. These particles are 
referred to as swarm. Each particle of the swarm represents a potential solution of the 
optimization problem. The particles fly through the search space and their positions are 
updated based on the best positions of individual particles in each iteration. The fitness 
values of particles are obtained to determine which position in the search space is the best. 
In kth iteration, the position and velocity vectors of pn  particles are updated using the 

following matrix equation [17-18]: 
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where iX and Vi represent the current position and velocity vectors of the ith particle, 

respectively; Pi is the best previous position of the ith particle and Pg is the best global 
position among all the particles in the swarm; ∆t is the time step value and throughout the 
present work a unit time step is used; r1 and r2 are two uniform random sequences generated 
from interval [0, 1]; c1 and c2 are the cognitive and social scaling parameters, respectively 
and k  is the inertia weight used to discount the previous velocity of particle preserved. The 

inertia weight k may be defined to linearly decrease from a maximum value max  to a 
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minimum value min . In the algorithm, the velocity vector is also limited to a lower bound 
lV and an upper bound uV . In this study a discrete version of the PSO algorithm is 

presented. The step by step of a discrete coded-PSO algorithm, limited to search only within 
a specified set }...,,{ 21 h

d RRRR   is as follows: 

 
Step 1: Initialize. 
a) Set counter 0k . 

b) Randomly generate the particle positions 0
iX (

pn,...,i 1 ) where each component of 

a position vector can have an ordinary value 1 or 2 or …or h. 

c) Randomly generate the particle velocities 0
iV (

pn,...,i 1 ) where each component of 

a velocity vector can have a real value from 2)1(  h  to 2)1(  h . 

d) Decode the particle positions to their actual values using the set dR and evaluate the 
objective function values 0

iw  for actual particle positions. 

e) Set 0
i

best
i ww   and 00

ii XP  for
pn,...,i 1 . 

f) Set )(min best
i

best
g ww   and 0

gP  to corresponding 0
iX . 

 
Step 2: While maxkk   or the convergence is not met.  

a) Update the velocity vector k
iV and position vector k

iX  for all particles using 

equation (7). 
b) If 1k

iV and 1k
iX for any component exceeds its critical values, then set that 

component to its minimum and maximum allowable value. Also, round each 
components of 1k

iV to an integer value. 

c) Decode the particle positions to their actual values using the set dR and evaluate 
objective function values 1k

iw  using 1k
iX for

pn,...,i 1 . 

d) If 1 k
i

best
i ww then 111 ,   k

i
k

i
k
i

best
i XPww  for

pn,...,i 1 . 

e) If 1 k
g

best
g ww then 111 ,   k

i
k

g
k
g

best
g XPww . 

f) Increment k . 
g) Save 1 k

gopt PX as the optimal solution and best
gopt ww  as the minimum objective 

function. 
End while. 
 
 

5. TEST EXAMPLES 
 

In order to show the capabilities of the proposed methodology for identifying the multiple 
structural damages, two illustrative test examples are considered. The first example is a 
cantilever beam discussed in detail and the second one is a bending plate discussed in brief. 
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5.1 Cantilever beam 
A finite element model of a cantilever beam with 15 elements as shown in Figure 2 is 
considered as the first example [4]. The length, thickness and width of the beam are 2.74, 
0.00635, and 0.0760 m, respectively. The mass density is 7860 kg/m3 and the elasticity 
modulus is 210 GPa. In this example, the first 5 natural frequencies are used for identifying 
the damage. Damage variables are simulated through a relative reduction of elasticity 
modulus in each element as: 

 n,...,i,
E

EE
x i

i 1      


  (8) 

 
where E is the original modulus of elasticity and Ei is the final modulus of elasticity of ith 
element. The relative reduction of elasticity modulus 0.30 is induced at elements 4 and 12 of 
the structure as shown in Figure 2.  

 

 

Figure 2. A cantilever beam with 15 elements and two damages induced at elements 4 and 12 

 
5.1.1 Building the ANFIS models for determining the MPDE 
In order to build the ANFIS models for determining the MPDE of the beam, 200 sample 
beams are generated randomly based on the damage variables selected from the set 

}5.0 ,4.0 ,3.0 ,2.0 ,1.0 ,0{dR and the first five natural frequencies of the sample structures 
are computed using the finite element analysis. Then, the MDALC index is evaluated for 
each sample structure. The exhaustive search algorithm described is employed to arrange the 
beam elements according to their damage potentiality. Figure 3 shows this ordering, where 
the element number (damage variable) versus its RMSE in training the ANFIS model is 
depicted. As shown in the figure, the elements 12, 4 and 10 of the beam are the best 
candidates for selecting them as the MPDE. It should be noted that the process of 
determining the MPDE takes in a very short clock time. It takes about 5 second by a coreTM 
2 Duo 2 GHz CPU. 

 
5.1.2 Damage identification using the PSO  
At this stage the reduced damage problem having only 3 damage variables (elements 12, 4 and 
10) instead of 15 original ones can be solved via the PSO algorithm. The optimization 
algorithm with the specifications listed in Table 1 is applied to the problem and the identified 
damages, expressed in ratios of elasticity modulus reduction, are shown in Figure 4.  
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Figure 3. The element ordering with respect to their damage potentiality for 15-element beam 
 

Table 1: The specifications of the PSO algorithm 

Parameter Description Value 

np The number of particles 10 

ni 
The maximum number of 

iterations 
10 

c1 Cognitive parameter 2.0 

c2 Social parameter 2.0 

ρmin Minimum of inertia weight 0.40 

ρmax Maximum of inertia weight 0.90 
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Figure 4. The final identified damage for cantilever beam 
 
It can be observed that the optimization is properly achieved to sites and extents of 

hypothetical damages, while the method presented in Ref. [4] could not identify the damage 
extents accurately. The convergence history of the PSO can also be seen in Figure 5 where 
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the MDLAC value versus iteration number during the optimization process is shown. It can 
be observed that the optimization converges to true damages after only 3 iterations. It means 
that at optimization stage only 30 FEA are needed to find the damages properly. 

 
5.2 Bending plate 
A bending plate shown in Figure 6 is selected as the second test example [19]. The structure 
is a rectangular steel plate of 0.3 by 0.6 m with 3 mm thick, density of 8179 kg/m3 and 
Young modulus of 200 GPa fixed at one of its short edge. For this test example, three 
different damage cases defined in Table 2 are studied: Cases 1 and 2 are single damages 
while Case 3 is a two-site-damage. For this example, the first 5 natural frequencies are also 
used for identifying the damage. 
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Figure 5. The convergence history of the PSO for 15-element beam 

 

Figure 6. A rectangular steel bending plate with 18 elements 
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Table 2: Three different damage cases induced in 18-element bending plate 

Case 1 Case 2 Case 3 

Element 
number 

Damage 
ratio 

Element 
number 

Damage 
ratio 

Element 
number 

Damage 
ratio 

5 0.20 10 0.20 3 0.30 

- - - - 15 0.30 

 
In order to build the ANFIS models for determining the MPDE of the structure, 200 

sample plates are randomly generated having damage elements with extents of selected from 
the set }5.0 ,4.0 ,3.0 ,2.0 ,1.0 ,0{dR and then the MDLAC of all the sample structures are 

evaluated. The exhaustive search algorithm described is employed to arrange the plate 
elements according to their damage potentiality. Figures 7a-c shows the element ordering 
with respect to their damage probability for damage cases 1 to 3, respectively. 

As shown in Figures 7a-c, the MPDE for damage case 1 are elements 5, 11 and 17; for 
damage case 2 are elements 10, 8, 9 and 17; and for damage case 3 are elements 10, 15 and 
3. It is reveled that the damage variables are reduced from 18 to 3 or 4 numbers. The PSO is 
now employed to solve the reduced damage detection problem having only three or four 
damage variables. The damage identification for Cases 1 to 3 is shown in Figures 8a-c, 
respectively. It can be observed that the optimization process converges truthfully to the 
sites and extents of damages. 
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Figure 7a. The element ordering with respect to their damage potentiality for Case 1 
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Figure 7b. The element ordering with respect to their damage potentiality for Case 2 
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Figure 7c. The element ordering with respect to their damage potentiality for Case 3 
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Figure 8a. The final identified damage of bending plate for Case 1 
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Figure 8b. The final identified damage of bending plate for Case 2 
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Figure 8c. The final identified damage of bending plate for Case 3 

 
 

6. CONCLUSIONS 
 

In this study, a two-stage procedure is proposed to properly identify the sites and extents of 
multiple damages in structural systems. In the first stage, an exhaustive search algorithm 
based on the adaptive neuro-fuzzy inference system (ANFIS) is utilized to recognize the 
most potentially damage elements (MPDE) of a damaged structure. In the second stage, the 
damage identification problem, having a lower numbers of damage variables compared to 
original ones, is transformed into an optimization problem. The optimization problem is 
solved using a particle swarm optimization (PSO) to identify the actual damages. In order to 
show the effectiveness of the proposed methodology, two illustrative test examples are 
considered. The numerical results demonstrate that the combination of the ANFIS and PSO 
can produce an efficient tool for correctly detecting the locations and sizes of damages 
induced. 
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