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ABSTRACT 
 

In this study, an efficient method is introduced to predict the stability of soil-structure 
interaction (SSI) system subject to earthquake loads. In the procedure of the nonlinear 
dynamic analysis, a number of structures collapse and then lose their stability. The 
prediction of failure probability is considered as stability criterion. In order to achieve this 
purpose, a modified adaptive neuro fuzzy inference system (ANFIS) is proposed by a hybrid 
of fuzzy c-means (FCM) and fuzzy particle swarm optimization (FPSO). To train the 
modified ANFIS, the input–output data are classified by a hybrid algorithm consisting of 
FCM-FPSO clustering. The optimum number of ANFIS fuzzy rules is determined by 
subtractive algorithm (SA). Results of illustrative examples demonstrate high performance 
of the modified ANFIS in comparison with the single ANFIS. 

 
Keywords: Soil-structure interaction; failure probability; adaptive neuro fuzzy inference 
system; Fuzzy c-means; fuzzy particle swarm optimization; subtractive algorithm 

 
 

1. INTROUDUCTION 
 

Performance-Based Design (PBD) approach to structural design subjected to seismic 
loading is based on the principle that a structure should meet performance levels according 
to specified reliabilities over the service life [1, 2, 3]. In fact, the purpose of this approach is 
obtaining designs with a more predictable seismic behavior, quantifying and controlling the 
risk to an acceptable level. In this approach, an acceptable level of the structure depends 
highly on some structural parameters, some soil parameters and characteristics of 
earthquakes which are inherently uncertain. In order to account for possible number of these 
uncertainties, the reliability theory in conjunction with the PBD approach should be 
considered. Calculations of reliability for an acceptable level require the estimation of a 
number of structural responses over the duration of earthquake. These responses are 
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associated with nonlinear behavior of structures, which obtained using a nonlinear dynamic 
analysis for each earthquake record. In procedure of the nonlinear dynamic analysis, it is 
probable that some of structures collapse and then lose their stability.  

The problem of soil-structure interaction (SSI) is a topic of interest in engineering 
practice. During an earthquake, the SSI effects have an important role in determining the 
behavior of structures like dams, bridges, and multi-storey frames constructed on the 
relatively soft soil. The soft soil under structures alters the actual nonlinear dynamic 
behavior of structures. Thus, the interaction effects between soil and structure should be 
considered in the dynamic responses of structure [4, 5]. 

Soft computing-based models have been used in civil and structural engineering 
applications [6-9]. In the recent years, one of the most popular models is adaptive neuro 
fuzzy inference system (ANFIS) [10]. ANFIS introduced by Jang [11] is a fuzzy inference 
system (FIS), whose parameters of rules are tuned by artificial neural networks (ANNs). An 
ANFIS model depends on the number of ANFIS fuzzy rules and membership functions. In 
other words, an important problem for application of ANFIS in predicting problems is to 
determine the structure and the number of fuzzy if–then rules from an input–output data 
[12]. According to the FISs, ANNs tune the shape of membership functions of fuzzy 
variables. Thus, creating an ANFIS model with a minimum number of fuzzy rules can 
eliminate a well-known drawback in this model and predict data with high performance. 

In this study, an efficient method is presented to train ANFIS with high performance. In the 
method, the main idea is to tune the shape of membership functions of fuzzy variables with the 
minimum number of fuzzy rules. These parameters are determined by subtractive algorithm 
(SA) and hybrid of fuzzy c-means (FCM) and fuzzy particle swarm optimization (FPSO). To 
achieve this purpose, first, the input-output data set is classified using a hybrid of FCM and 
FPSO. Here, the hybrid of FCM and FPSO is considered as a clustering algorithm to maintain 
the merits of both FCM and FPSO algorithms. The optimum number of the clusters, i.e. 
optimum fuzzy rules, is determined by SA. Then the number of clusters, the optimum cluster 
centers and membership grades of data are used in FIS to tune fuzzy parameters of ANFIS. 
The computational advantages of the presented method are investigated in the case of 
prediction of failure probability of structure subject to earthquake loads. For more detailed 
explanation of the proposed method, two 2D RC frames with soil under frame subjected 
artificial earthquakes are treated as two numerical examples. The numerical examples show the 
proposed method has better performance than the single ANFIS.  

 
 

2. PROBABILITY OF FAILURE 
 

Performance-based design (PBD) concept is presented to increase the safety of structures 
against earthquake loads. The safety of structures depends on soil and structural parameters, 
and characteristics of earthquakes which are inherently uncertain. This concept has 
presented the analytical procedures based on linear and nonlinear static and dynamic 
structural response for the structural analysis of buildings subjected to earthquake loading. 
The structural responses are applied in reliability methods which assess the structural 
performance. In the analysis procedure, a number of structures collapse and then lose their 

www.SID.ir



Arc
hive

 of
 S

ID

PREDICTION OF FAILURE PROBABILITY FOR SOIL-STRUCTURE... 
 

 

3

stability. Theses structures should be eliminated in the assessment of structure. For this 
purpose, a failure probability is considered as stability criterion. 

In this study, the nonlinear seismic analysis of SSI system is considered subjected to 
artificial earthquakes. For investigating effect of uncertain parameters, it should be 
considered a set of combinations of the intervening variables and parameters. First, a lower 
and an upper bound are chosen for each variable, and a number of combinations kept at a 
minimal distance apart are generated by Latin hypercube design sampling. Then, the 
nonlinear dynamic analysis is run for a set of combinations of the intervening variables and 
the failure probability is determined for these combinations.  

 
2.1 Latin Hypercube Design Sampling  
Design of computer experiments [13] is used by generating a set of combinations of the 
intervening variables. This set is spread in the entire space of intervening variables by design 
of computer experiments. In this study, Latin hypercube design (LHD) introduced by 
McKay et al. [14] for computer experiments is employed for achieving this purpose. LHD 
generates a Latin Hypercube Sample X containing n values on each of p variables. For each 
column, the n values are randomly distributed with one from each interval ( n/1,0 ), 

( /n/n,21 ), ... , ( 111 /n,- ), and they are randomly permuted. Then, it should be checked that 
the combinations of variables are not too close to each other. Thus, the random assignment 
should be repeated so that the combinations are kept at a minimal distance apart. In this 
study, seven peak ground accelerations (PGA) according to seismic hazard levels are 
selected. Using the steps of LHD sampling, 100 combinations are generated for each one of 
seven values for the PGA. Thus, 700 combinations are used.  

 
2.2 Calculation of Failure Probability 
For each of the 700 combinations, the steel reinforcement ratios of beams and columns 
should obey code requirements of ACI [15] and are sufficient to provide adequate strength 
for gravitational loads. For this purpose, first, the beams of structure are loaded with the 
combination of dead and live loads. This combination is selected according to ACI code as:  

 
 DLLLDLqu 4.16.12.1   (1) 

 
where DLqu , and LL  are the uniform load on beams, dead load and live load, respectively. 

Then, the structure is analyzed and the code requirements of ACI for beams and columns are 
checked as: 
 b

nb
b
u MM   (2) 

 
 ),(),( c

nc
c
nc

c
u

c
u PMPM   (3) 

 
where b

n
b
u MM , and b  are the externally applied moment due to combination of gravity 

loads, nominal flexural strength and strength reduction factor for beams, respectively; 
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c
n

c
u

c
n

c
u PPMM ,,, and c are the externally applied moment due to combination of gravity 

loads, nominal flexural strength subject to axial load, externally applied axial force, nominal 
axial strength and strength reduction factor for beams, respectively. 

Also, based on ACI design code, the weak beam-strong column mechanism is considered 
by the following equation: 

 

 2.1



b
right

b
left

c
bot

c
top

MM

MM
 (4) 

 
where c

topM  and c
botM  are the moment capacity of columns at the top and bottom of 

structural joint; b
leftM  and b

rightM are the moment capacity of beams at the left and right of 

structural joint. The equation must be satisfied for all of structural joints. 
Then, for each of the 700 combinations, a number of artificial earthquakes were obtained 

corresponding to each value of the PGA. These earthquakes were generated using different 
values of random phase angles. The nonlinear dynamic analysis of SSI system is run for 
each of sub-combinations and the responses of SSI system are obtained. In this analysis 
procedure, a number of sub-combinations may collapse and then lose their stability. This 
combination should be eliminated for these combinations. For this purpose, probability of 
failure, fP , for this combination is defined as following: 

 

 
nscombinatio-suboftotal

nscombinatio-subcollapseofnumberthe
fP  (5) 

 
Therefore, an efficient method should be considered to predict the failure probability. A 

powerful tool for this purpose is an ANFIS that modified by combining SA and hybrid of 
FCM and FPSO. In the next sections procedures of the method are discussed. 

 
 

3. SSI SYSTEM AND ITS FINITE ELEMENT MODEL 
 

3.1 Dynamic Inelastic SSI System 
Direct method and substructure method have been proposed for modeling of SSI system. 
The direct method is considered in this study. In this method, discredited dynamic equations 
of structure and soil are considered simultaneously. Therefore, the response of the soil and 
structure is determined simultaneously by analyzing SSI system in each of time steps [16]. 
The infinite boundaries of soil containing the structure are modeled by the artificial 
boundaries (Figure 1).  

The nonlinear discredited dynamic equation of SSI system can be formulated in the 
framework of the finite element method (FEM) as: 
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 )()(, tttxgx FumuKuCuM T     (6) 

where CM , and TK are the mass, damping and tangent stiffness matrices of SSI model, 

respectively. u is the incremental vector of the relative displacements for SSI system 

between times t  and tt  . )( tt R  is the vector of the external dynamic loads at time 

tt  ; and )(tF  is the vector of internal forces at t. The term )(, ttxg u is the free-field 

components of acceleration in x direction, if the structure is not present. The column 
matrix, xm , is the directional masses for the structure only. 

 

 

Figure 1. Modeling configuration of SSI system using direct method 
 
The step by step time integration algorithm of Newmark [17] is used in conjunction with 

the following values of its constants: 5.0,25.0   . Assuming that an iterative procedure 

is used to solve Eq. (6) over time step [ ttt , ] by solving a sequence of linearized 
problems of the form: 

 

 ...,2,1,ˆ 1  iii ruKT   (8) 
 
where 
 

 CMKK i
T tt 





2

*

)(

1
 (9) 

 

 i
t

i
txgx

i ba(t)tt uuFumr  ˆˆ)(,    (10) 
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 CMCM )1
2

(
2

1ˆ;
11

ˆ 




tb

t
a  (11) 

By solving Eq. (8), the vector of the relative displacements, 1i
ttu 

 , in (i+1)th step of the 

iterative procedure for SSI system is determined as. 
 

3.2 Finite Element Model of SSI System 
In this study, SSI model consists of a 2D RC frame and soil subjected to artificial earthquake 
excitation. The soil is layered with constant material properties along the depth. The 
foundation is considered as rigid strip footing. The SSI model was implemented by the finite 
element analysis software framework OpenSees [18]. The OpenSees is an open source 
object-oriented software framework for static and dynamic, linear and nonlinear finite 
element analysis of structural and geotechnical systems. 

Beams and columns of the structure are modeled using force-based nonlinear beam 
column element that considers the spread of plasticity along the length of the element. The 
integration along the element is based on Gauss-Lobatto quadrature rule. Section stress 
resultants at the integration points are computed by using fibber sections with concrete and 
reinforcing steel material layers. The concrete material is modeled using the Kent-Scott-Park 
model with no tension stiffening [19]. The concrete constitutive parameters of this model 
are: fc=concrete peak strength in compression; fu=residual strength; 0 =strain at peak 

strength; and u = strain at which the residual strength is reached, Figure 2(a). The 

constitutive behavior of the reinforcing steel is modeled using the one-dimensional J2 
plasticity model with linear hardening. The material parameters defining the J2 plasticity 
model are: E=Young’s modulus; fy=yield strength; H=hardening modulus (Figure 2(b)). 

 

 

Figure 2. Material constitutive models 
 
The soil layer is modeled using isoperimetric four-node quadrilateral finite elements with 

bilinear displacement interpolation. The soil domain is assumed to be under plane strain 
condition with a constant soil thickness, corresponding to the inter-frame distance. The soil 
materials are modeled using a pressure-independent multi-yield-surface J2 plasticity model 
which is shown in Figure 3 [20]. The soil layer is characterized by iG =low strain shear 
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modulus, iB =bulk modulus, i =shear strength, with i=1,…,n corresponding to the 

numbering of the soil layers (from bottom to top). 

  

(a) Octahedral shear stress-strain (b) Von Mises multi-yield surfaces 

Figure 3. Yield surfaces of multi-yield-surface J2 plasticity model 
 
One of the major problems in dynamic SSI system in infinite media is related to the 

modeling of domain boundaries. As an accurate representation of SSI system this boundary 
has to absorb all outgoing waves and reflect no waves back into the computational domain. 
One way to eliminate waves propagating outward from the structure is the standard viscous 
boundary, which has been proposed for the 2D case by Lysmer and Kuhlemeyer [21]. This 
boundary can be described by two series of dashpots oriented normal and tangential to the 
boundary of the FEM mesh (Figure 1) as following: 

 
 pn VaC   (12) 

 
 ss VbC   (13) 

 
where nC and sC  are the normal and shear damping of the boundary, respectively;  is the 

mass density of soil; a and b are dimensionless parameters to be determined, and pV  and sV  

are the dilatational and shear wave velocity of  propagation which are given by: 
 

 2/1]
)21(

)1(2
[

v

vG
Vp 





 (14) 

 

 2/1][

G

Vs   (15) 

 
where v  is Poisson ratio of soil. In this study, the standard viscous boundary improved by 
White et al. [22] with the dimensionless parameters a and b is used. The ZeroLength 
element is used for modeling of the standard viscous boundary with the normal and shear 
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damping. 
The material damping matrix, C, in the Eq. (6) of the SSI system is constructed by 

assembling the corresponding damping matrices of the structure and the soil and using the 
Rayleigh method [23]. The two factors of proportionality for structure and soil are computed 
by assuming that there is a 5% and 10% viscous damping for the structure and the soil, 
respectively. The P  effects are considered in nonlinear time history analysis. The 
accelerated Newton algorithm based on Krylov subspaces [24] is applied to solving 
nonlinear equations of structural equilibrium. 

 
 

4. ARTIFICIAL EARTHQUAKES 
 

For seismic design of structures, either response spectrum or dynamic time history analysis 
subjected to earthquake is required. The dynamic time history analysis has shown its 
superiority both in accuracy and efficiency as compared to other methods [25]. It is then 
necessary to have accelerograms that has compatible characteristics and seismic excitation 
with desired site. Therefore, it is often difficult or may be impossible in some cases to 
choose a proper record for a site, because historically recorded accelerograms for the given 
site are scare. Hence, artificial earthquakes that are statistically influenced by desired 
properties of the given site are very useful for seismic design of structures. A number of 
approaches based on time domain and frequency domain have been proposed for the 
generation of synthetic ground motion records. In this paper, spectral representation method 
based on time domain procedure is used. The non-stationary ground motion is simulated 
using this method as [26]: 

 

 )2sin(}]1[)(4{)()( 2/1

1
n

NFR

n
NSKTm tfnfRfnStIta   



 (16) 

 
where )(,)( tIta m and (.)KTS  are the non-stationary ground motion, the modulation function 

and the specific power spectral density function (PSDF), respectively. NFR  is the number 
of sine functions or frequencies included, between 0 and maxf , S  and NR  are the coefficient 

of variation and a standard normal variable that used in ordinates of PSDF, f is frequency 

step, and n  are random phase angles with a uniform distribution between 0 and 2 . In this 

study, the modulation function expressed in Ref. [27] is used: 
 

 














 TtTe

TtT

TtTt

tI
Ttc

d

m

2
)(

21

11

2

1

0)/(

)(  (17) 

 
where 1T , 2T  and T are specific times and the duration of the simulated record, d and c are 
constants. Also, the PSDF of the non-stationary ground motion suggested by Clough and 
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Penzien [28] is considered as: 

 ]
)/(4))/(1(

)/(
[]

)/(4))/(1(

)/(41
[)(

2222

4

2222

22

0
fff

f

ggg

gg
KT ffff

ff

ffff

ff
SfS







  (18) 

where 0S  is the constant PSDF of input white-noise random process; gf and g are the 

characteristic ground frequency and the ground damping ratio; ff and f are parameters for 

a high-pass filter to attenuate low frequency components. The parameters for the generation 
of simulated ground motion are selected according to values that proposed by Moller et al. 
[29] as following: 

 
Table 1: parameters for the generation of simulated ground motion 

Parameter 
2/350 scmaG   2/700350 scmaG   2/700 scmaG   

T (sec) 5.12 10.24 20.48 

T1 (sec) 0.50 1.50 2.00 

T2 (sec) 4.00 8.00 16.00 

c 2.0 1.0 0.7 

d 2.0 2.0 2.0 

NFR 100 200 300 

fmax (Hz) 12 15 15 

S  0.40 0.40 0.40 

 
Numerical integration of artificial ground motions in the time domain often results in 

non-physical shifts in velocity and displacement time histories. Many methods are available 
to perform correction of artificial ground motion and eliminate the unrealistic velocity or 
displacement drift. In this paper, the method proposed by Yang et al. [30] is used for this 
purpose. The PGA values are obtained corresponding to hazard curves and produced for a 
specific region. In this work the hazard curves presented by Moller et al. [29] (Table 2) are 
used. An artificial earthquake generated based on Eq. (16) is shown in Figure 4. 

 
Table 2: The PGA values of Seismic hazard levels 

Probability of exceedance Recurrence interval PGA(g) 

50% in 50 years 73 0.27 

10% in 50 years 475 0.6 

5% in 50 years 975 0.8 
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Figure 4. An artificial earthquake for PGA=0.8g 
 
 

5. FUZZY C-MEANS CLUSTERING ALGORITHM  
 

Fuzzy c-means (FCM) clustering presented by Bezdek [31] is a useful method that classified 
sample points into several clusters. These clusters are characterized by cluster center. Each 
sample point S

n RZ  },...,,{ 21 zzz belongs to a cluster center with a degree which is 

determined by the membership grade. This purpose is attained by minimizing the objective 
function as follow: 

 
 


nc

i

n

k
ik

m
ikuJ

1 1

2

2
),( ozOU  (19) 

with the constraint of 

 n,...,,k,u
nc

i
ik 211

1



  (20) 

 

where T
skkkk zzz ],...,,[ 21z is an object datum, and jkz is jth attribute value of kz ; io is the 

ith point cluster center, and let the matrix of cluster center 
CS

ncji Ro  ],...,[][ 21 oo,oO for convenience; iku is the membership that represents the 

degree to which kx  belongs to the ith cluster, ]1,0[:,  ikuki , and let the partition matrix 
CS

ji Ru  ][U for convenience; m is a fuzzification parameter, ),1[ m ; and
2

. denote 

Euclidean norm. 
In the FCM, the objective function is minimized by the Lagrange multiplier method as: 
 

  
  


nc

i

n

k
ikk

nc

i

n

k
ik

m
ika uuJ

1 11 1

2

2
)1(),( ozOU  (21) 

 

where T
n ],...,,[ 21   is the Lagrange multiplier; and the conditions updated by 
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following equations are used for minimizing Eq. (19) with the constraint of Eq. (20) [31]: 
 

 nci
u

u
n

k

m
ik

n

k k
m
ik

i ,...,2,1,

1

1 






z

o  (22) 

 

 nknciu m
nc

t tk

ik
ik ,...,2,1;,...,2,1,)(

1

1

1

1
2

2

2

2 
























oz

oz
 (23) 

 
The FCM algorithm is executed in the following steps: 
Step 1: Choose nc,m  and certain threshold; then initialize the partition matrix )0(U . 

Step 2: Calculate the matrix of cluster center (l)O  in lth iteration using Eq. (22) 

and )1( lU . 

Step 3: Update the partition matrix )(lU using Eq. (23) and (l)O . 
Step 4: If the improvement in ),( OUaJ is less than  , then stop and the partition matrix 

U and the matrix of cluster center O ; otherwise go to step 2. 
 
 

6. FUZZY PARTICLE SWARM OPTIMIZATION FOR CLUSTERING 
 

In FCM clustering, the objective function is nonlinear in many practical application systems, 
so it is difficult to optimize by using the Lagrange multiplier method. It is necessary to apply 
a robust optimization method, which explores the whole data space in order to reach global 
optimization of the problem in the data space. Recently, genetic algorithm (GA), ant colony 
optimization (ACO) and particle swarm optimization (PSO) have been used for clustering 
problems [32-34].  

 
6.1 Particle Swarm Optimization 
Particle swarm optimization (PSO) introduced by Kennedy and Eberhart [35] proved to be 
robust, effective and easy to apply [7, 9]. The PSO has been inspired by the social behavior 
of animals such as fish schooling, insects swarming and birds flocking. It involves a number 
of particles, which are initialized randomly in the search space of an objective function. 
These particles are referred to as swarm. Each particle of the swarm represents a potential 
solution of the optimization problem. The particle fly through the search space and its 
position is updated based on its velocity, the best position particle )( pbest and the global 

best position )(gbest that swarm has visited since the first iteration as follows: 
 

 )(rc)(rc l
i

ll
i

l
i

l
i

ll
i XgbestXpbestVV 

2211
1   (24) 

 
 11   l

i
l
i

l
i VXX  (25) 
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where l
iX  and l

iV represent the position and the velocity vectors of the ith particle in lth 

iteration, respectively; 1r  and 2r  are two uniform random sequences generated from interval 

[0, 1]; c1 and c2 are the cognitive and social scaling parameters, respectively and l  is the 
inertia weight used to discount the previous velocity of particle preserved.  

 
6.2 Fuzzy Particle Swarm Optimization Algorithm 
Mehdizadeh et al. [34] proposed a fuzzy particle swarm optimization (FPSO) using PSO to 
overcome the shortcomings of the FCM algorithm. In fact, the FPSO algorithm is developed 
by integrating and embedding PSO into the FCM algorithm. In FPSO, a particle represents 
the matrix of cluster center. In other words, the pth particle ,, pX is expressed as follows: 

 
 ],...,[ 21 ncp , oooX   (26) 

 
Also, the objective function using the penalty function method is calculated as: 
 

 PSO

nc

i

n

k
ik

nc

i

n

k
ik

m
ikj NjuuJ ...,,2,1,)0,1max(),(

1 11 1

2

2
  

  

ozOU  (27) 

 
The FPSO algorithm is executed in the following steps: 
Step 1: Choose ,, 21 cc , population size )( PSON  and the maximum iteration )( maxl . 

Step 2: Randomly initialize positions )( 0
iX and velocities )( 0

iV  for PSONj ...,,2,1 . 

Step 3: Update the partition matrix and calculate the objective function using Eqs. (23) 
and (27), respectively. 

Step 4: If l
pbestj

l
j JJ ,

1   then 111
, ,   l

j
l
j

l
j

l
pbestj JJ Xpbest   for PSONj ,...,2,1 . 

Step 5: If l
gbest

l
j JJ  )min( 1  then 1

min,
11 ),min(   l

j
ll

j
l
gbest JJ Xgbest  for 

PSONj ,...,2,1 . 

Step 6: Update particle velocity 1l
jV  and particle position 1l

jX using Eqs. (24) and (25), 

respectively. 
Step 7: If maxll  , then stop; otherwise go to step 3. 

 
 

7. SUBTRACTIVE ALGORITHM  
 

Subtractive algorithm (SA) is an efficient algorithm for finding the optimal number of data 
clusters. In SA the center candidates are the data samples themselves. So, let 

S
n RZ  },...,,{ 21 zzz  be a set of n data samples that must be clustered. It is admitted that 

each of the samples defines a possible cluster center. Therefore, the potential associated 
to iz  is defined as follows [35]: 
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 ni
r

ZP
a

n

j
jiii ,...,2,1,

4
,)(exp),

2
1

2

2
 



 zz(z  (28) 

 
where ra is radii, a constant which defines the neighborhood radius of each point. After 
computing the potential for each point, the one with the highest potential is selected as the 
first cluster center. Next, the potential of all the remaining points is reduced as: 

 

 
2

2

2

*
1

4
,)(exp

b
jiii r

PPP   zz  (29) 

 
where *

1z and *P1 are the first group center and its potential; the constant ab r.r 51  defines 

the neighborhood radius with sensible reductions in its potential. After performing potential 
reduction for all the points, the one with highest potential is selected as the second center, 
after what the potential of the remaining points is again reduced as:  

 

 )(exp
2

2

*
ririi PPP zz    (30) 

 
The procedure of center selection and potential reduction is repeated until the stopping 

criterion is met. The pseudo-code of SA is as follows: 
Step 1: If *up*

k PP 1 : accept *
kz as the next cluster center and continue 

Step 2: Otherwise, if *down*
k PP 1 : reject *

kz  and finish the algorithm 

Step 3: Otherwise, let mind  be the shortest distance between *
kz and all the centers already 

found 

Step 4: If 1
1


*

*
k

a

min

P

P

r

d
: accept *

kz as the next cluster center and continue 

Step 5: Otherwise, reject *
kz and assign it the potential 0.0 

Step 6: Select the point with higher potential as new *
kz  and repeat the process 

In the above algorithm up specifies a threshold above which the point is selected as a 

center with no doubts and down specifies the threshold below which the point is definitely 

rejected. Typically, 50.up  , and 150.down   [36]. It is mentioned in [37] that good 
values for radii are usually between 0.2 and 0.5.  

 
 

8. ADAPTIVE NEURO FUZZY INTERFACE SYSTEM (ANFIS) 
 

A fuzzy inference system (FIS) can be used as a nonlinear mapping from the input space to 
the output space [38]. The mapping mechanism is based on the conversion of inputs from 
numerical domain to fuzzy domain with using the three functional components: a rule base, 
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which contains a selection of fuzzy rules; a database, which defines the membership 
functions (MF) used in the fuzzy rules and a reasoning mechanism, which performs the 
inference procedure upon the rules to derive an output. ANFIS is developed by Jang [15], 
which is a FIS implemented in the framework of adaptive networks. For simplicity a typical 
ANFIS shown in Figure 5 consists of two fuzzy if–then rules based on Takagi and Sugeno’s 
type [39]: 

 
222222

111111

,:2

,:1

ryqxpfthenBisyandAisxIfRule

ryqxpfthenBisyandAisxIfRule




 (31) 

 
where A1, A2, B1 and B2  are labels for representing MFs for the inputs x and y, respectively. 
Also, pi, qi and ri ( 2,1i ) are parameters of the output MFs. 

 

 

Figure 5. The architecture of ANFIS model 
 
The general structure of ANFIS shown in Figure 5 consists of fixed square nodes and 

adaptive circle nodes whose parameters are changed during the training process. A hybrid 
learning algorithm of ANFIS is employed by the parameters of MFs of input variables and 
linear parameters of the output variable. These parameters are optimized using a steepest 
descent algorithm and a least-square method. The final output of the given network with two 
inputs and one output in terms of the above parameters can be calculated as follows: 

 

 2,1,2

1

2

1 





 ifor
w

fw
fwf

i i

i ii

i
ii  (32) 

 
 2,1)()(  iforxBxAw iii   (33) 

 
where iw  is the firing strength of rule i, )(xAi and )(xBi are the membership degrees of x 

and y in Ai and Bi, respectively. Gaussian functions with maximum equal to 1 and minimum 
equal to 0 are selected for the membership degrees as:  
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ib

i

i
i

a

cx
xA

2)(1

1
)(




  (34) 

 
ig

i

i
i

e

dy
yB

2)(1

1
)(




  (35) 

 
where {ai, bi, ci} and {di, ei, gi} is the premise parameter set used to adjust the shape of the 
membership function.  

 
 

9. PROPOSED MODEL  
 

In this study an efficient method is presented to train the failure probability with high 
performance. This method is a modified ANFIS by combining SA and hybrid of FCM and 
FPSO. The main idea is to tune the shape of membership functions of fuzzy variables with 
the minimum number of fuzzy rules that determined by SA and hybrid of FCM and fuzzy 
particle FPSO. 

 
9.1 Hybrid of FCM and FPSO for Clustering 
The FCM algorithm has been extensively studied and is known to converge to a local 
optimum in nonlinear problems. Moreover, the FPSO algorithm is robust method to increase 
the probability of achieving the global optimum in comparison with the FCM algorithm. The 
FCM algorithm is faster than the FPSO algorithm because it requires fewer function 
evaluations. This shortcoming of FPSO can be dealt with selecting an adequate initial 
swarm.  

In this study, a hybrid clustering algorithm called FCM-FPSO is presented to use the 
merits of both FCM and FPSO algorithms and increase the procedure of convergence. In this 
way, the FCM algorithm finds an adequate initial swarm FPSO algorithm for commencing 
the FPSO. For this purpose, first, the FCM algorithm is employed to find a preliminary 
optimization that shown by FCMX . This optimum solution is copied NFCM times to create the 

some part of the initial swarm FPSO. Other particles of the initial swarm, 
i.e. )...,,2,1(, FCMPSOjrnd NNjX  , are selected randomly to complete the initial swarm. 

Then, the FPSO algorithm is used by using this initial swarm. The algorithm flow of the 
FCM–FPSO strategy is shown in Figure 6.   
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FCM algorithm 

Optimum solution: 

FCMX

Particle 1: 

FCMX  

Particle NFCM: 

FCMX  
… 

Particle NFCM+1: 

1, FCMNrndX  
Particle NPSO: 

PSONrndX ,  
… 

Initial swarm 

FPSO 

algorithm

Cluster center 1 

and 
membership grade 

… 

Optimum solution 

Cluster center 2 
and 

membership grade 

Cluster center nc 
and 

membership grade 

 

Figure 6. The algorithm flow of the FCM–FPSO for clustering  
 

9.2 Modified ANFIS 
An ANFIS model depends on the number of ANFIS fuzzy rules and membership functions. 
In other words, creating an ANFIS model with a minimum number of fuzzy rules can 
eliminate a well-known drawback. Therefore, for overcoming of this drawback, this study 
proposes a modified ANFIS to predict the probability of failure. In this model, the number 
of clusters, the cluster centers and membership grades is considered as parameters which 
optimized by SA and the hybrid of FCM-FPSO and used in FIS for tuning ANFIS. The 
algorithm flow of the proposed model is shown in Figure 7. The proposed method is 
executed in the following steps: 

Step 1:  The subtractive algorithm finds the optimum number of the clusters (nc). 
Step 2: The hybrid FCM-FPSO algorithm partitions training data to nc clusters and 

determines membership grades each of clusters. This parameters is used for optimizing the 
center of rules and membership functions for the input and output data. 

Step 3: The FIS structure with a minimum number of fuzzy rules and membership 
functions is generated by using the SA and the hybrid FCM-FPSO algorithm. The FIS uses 
Gaussian function and linear function for membership function of input and output, 
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respectively. These parameters are tuned for the ANFIS. 
Step 4: The ANFIS is employed for training data. The ANFIS uses a hybrid learning 

algorithm to identify parameters of Sugeno-type fuzzy inference systems. In this study, it 
applies a combination of the least-squares method and the backpropagation gradient descent 
method for training FIS membership functions. 

 

Training data 

Cluster center 1 
and 

membership grade 
… 

Hybrid FCM-FPSO  

Cluster center 2 
and 

membership grade 

Cluster center nc 
and 

membership grade 

Generate Fuzzy Inference System (FIS) structure 

Train Adaptive Neuro Fuzzy Inference System (ANFIS) 

Finding the optimal number of the clusters (nc) by SA 

 

Figure 7. The algorithm flow of the proposed method 
 
 

10. NUMERICAL EXAMPLES 
  

In order to investigate the computational efficiency of the proposed method for predicting 
the failure probability of SSI system subject to artificial earthquakes, 2D SSI system is 
considered, as shown in Figure 1. The structure is a RC frame with four-bay. In the frame, 
the length of each bay and the height of stories are 4m and 3m, respectively. The soil 
consists of three-layer of sand with material properties varying along the depth. The height 
of each soil layer is considered 10m.  

 
10.1 Discrete Database 
The nonlinear seismic responses of SSI system depend on soil and structural parameters; and 
characteristics of artificial earthquakes. For investigating effect of these uncertainties, it 
should be considered a set of combinations of the intervening variables and parameters. 
First, a lower and an upper bound are chosen for each variable, and then a number of 
combinations kept at a minimal distance apart are generated by LHD.  

www.SID.ir



Arc
hive

 of
 S

ID

M. Khatibinia, J. Salajegheh, M.J. Fadaee and E. Salajegheh 

 

18 

As indicated in Figures 2 and 3 for nonlinear modeling of concrete, reinforcing steel and 
soil, the lower and upper bounds of parameters of these materials are presented in Table 3.  

 
Table 3: Range parameters of the materials 

 Material Variable Lower bound Upper bound 

Concrete    

 fc (Mpa) 20 35.0 

 u  0.003 0.004 

Steel    

 fy (Mpa) 280 400 

 E (Mpa) 189103 231103 

 H 0.019 0.021 

Soil    

   

Vs (m/s) 500 550 Layer 1 

  35 40 

   

Vs (m/s) 400 500 Layer 2 

  35 40 

   

Vs (m/s) 350 400 Layer 3 

  30 34 

 
The other parameters of soil layers as GB, and pV depend on the shear wave velocity of 

soil layers. For this, first, the shear wave velocity of soil layers according to their upper and 
lower bounds are selected, and then these parameters are calculated by the shear wave 
velocity. 

Two cross-section databases with the lower and upper bounds and the necessary 
properties are generated for beams and columns that shown in Table 4. Steel reinforcement 
ratios of longitude bars and transverse bars followed code requirements of ACI [15] and 
obeyed the following ranges that indicated in Table 4. The diameter of longitudinal bars is 
laid between 14mm and 36mm in the databases. Columns and beams of the structure are 
three groups in the height of the structure. 
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Table 4: Range of variables for frame elements   

Section Variable Lower bound Upper bound 

Columns    

Width )( Cb (mm) 350 550 

Height )( Ch (mm) 350 550  

Steel reinforcement ratio )( C  1.0% 3.0% 

Beams    

Width )( Bb (mm) 250 450 

Height )( Bh (mm) 350 550  

Steel reinforcement ratio )( B  /fy.41  yc ff /364.0 1  

 
The peak ground acceleration (PGA) and the central frequency for the soil filter ( gf ) is 

considered as the intervening variables in the generation of artificial earthquakes. Other 
variables for the generation of artificial earthquakes are either supposed to be functions of 
PGA and gf , or supposed to be constants. The lower and upper bounds of PAG according to 

seismic hazard levels seismic (Table 2) and gf  are selected as shown in Table 5. 

 
Table 5: Range of variables for the generation of artificial earthquakes 

Variable Lower bound Upper bound 

PGA (cm/s2) 25 800 

gf (Hz) 2.0 3.0 

 
Seven values for PGA according to Table 5 are selected. These PGA are 260, 350, 400, 

550, 600, 700 and 800. Using the steps of LHD sampling, 100 combinations are generated 
for each one of seven values for the PGA. Thus, there are 700 combinations. For each of the 
700 combinations, five artificial earthquakes were generated corresponding to each value of 
the PGA. The nonlinear dynamic analysis of SSI system is run for each of the five sub-
combinations. For this combination the probability of failure, fP , is calculated by Eq. (5). 

fP  may be 0, 0., 0.4, 0.6, 0.8 and 1. Therefore, the modified ANFIS model is employed for 

prediction of failure probability.   
In order to validate the modified ANFIS model, this method is compared with the single 

ANFIS. The absolute percentage errors (APE) of the values of failure probability obtained 
by the proposed method and ANFIS in testing mode. For further comparison, relative root-
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mean-squared error (RRMSE), mean absolute percentage error (MAPE) and the absolute 
fraction of variance (R2) arose during testing in the proposed method and ANFIS are also 
calculated by using the following equations: 
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where a is actual value, p is predicted value and nt is number of testing sample. The smaller 
RRMSE and MAPE and larger R2 mean better performance generality. 

 
10.2 The FCM–FPSO Parameters 
In order to lead the modified ANFIS to better solutions without a significant increase in the 
computational cost, the parameters of FCM and FPSO should be defined suitably. The 
appropriate values of the FCM and FPSO parameters are given in Tables 6.  

 
Table 6: The parameter of FCM-FPSO method 

Method Parameter Value 
FCM   

 Fuzzification parameter 2.0 
 Certain threshold 0.0001 

FPSO   
Particle size 50 

 
Social parameter 2.5 

 Cognitive parameter 2.5 
 Maximum iteration 100 

 
One of the main parameters affecting the performance of the FCM–FPSO is the inertia 

weight )( in achieving efficient search behavior. The optimal inertia weight is taken as 
follows: 

 l
l

.
max

minmax
max

 
  (38) 
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where max and min are the maximum and minimum values of ω , respectively. Also, lmax 

and l are the numbers of maximum iteration and present iteration, respectively. In this study, 

max and min are selected 0.09 and 0.01, respectively. 
The FCM-FPSO depends on the initial FPSO particle that produced by the number of 

copies of the FCM solution. For this, the parameter NcFCM is defined as:  
 

 
PSO

FCM
FCM N

 N
Nc   (39) 

 
The value of this parameter is varied according to NcFCM = 0.2, 0.3, 0.4 and 0.5 while the 

values of other required parameters are supposed to be constant (Table 6). 
The optimum number of clusters )(nc is efficient parameter in the FCM-FPSO and FISs 

that calculated by SA. For finding this parameter several values of ra in the interval [0.20, 
0.50] with the step of 0.005 is selected. 

 
10.3 Example 1: A Six-Story RC Frame  
In this example, six-story RC frame is considered. During the nonlinear dynamic analysis of 
the SSI system it is revealed that 148 combinations of database lose their stability in a 
number of these sub-combinations. For these combinations the probability of failure is 
defined according to Eq. (5). Therefore, in data set there are 148 instable and 552 stable SSI 
systems. In order to train the modified ANFIS, 350 samples including 100 instable and 250 
stable SSI systems are considered. Also for test this method, 202 samples including 48 
instable and 154 stable SSI systems are selected.  

 
10.3.1 FCM-FPSO Algorithm 
The optimal number of the clusters is found by SA. The values of 0.20 to 0.50 with the step 
of 0.005 have been examined for ra and the results are given in Table 7. According to the 
results, it is observed that in the 62.30%, 1.64%, and 36.06% of all the cases the number of 
the centers found are 3, 5, and 4, respectively. Therefore, in this example the number of the 
centers is considered to be 3. 

 
Table 7: The results of finding the generated data by SA. 

ra The number of the centers found (The centers found / all the cases)*100 
0.200 
0.205 
  

0.385 

3 
3 
  
3 

62.30 % 

0.390 5 1.64 %  

0.395 
0.400 
  

0.500 

4 
4 
  
4 

36.06 % 
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For training samples, the FCM-FPSO algorithm partitions the data to three clusters and 
determines the centers of clusters and the membership grades each of clusters. The FCM-
FPSO algorithm is run according to the different values of NcFCM . The average values of 
optimum objective function (Eq. (27)) are presented in Table 8. It is revealed that the best 
optimum solution is associated with NcFCM = 0.4.  

 
Table 8: Optimum solutions obtained by FCM–FPSO for different values of NcFCM  

NcFCM 0.2 0.3 0.4 0.5 

Average value objective function 80.32 79.43 78.75 79.67 

 
For the FCM, FPSO and FCM– FPSO, the convergence histories of the optimum 

objective function based on Eqs. (21) and (27), according to NcFCM =0.4, are shown in 
Figure 8.  
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Figure 8. Convergence histories of the optimum solution of the FCM, FPSO and FCM–FPSO 
 

10.3.2 Training and Testing the Proposed Model 
The FIS structure is generated by using the optimum center of clusters and the membership 
grades of clusters that obtained by FCM-FPSO. In this study, the Gaussian function and 
linear function are used as membership function of input and output in FIS structure, 
respectively. The optimum number of fuzzy rules is determined by SA to be 3. This FIS is 
used for tuning the parameters of ANFIS. The ANFIS employs a combination of the least-
squares method and the backpropagation gradient-descent method for training samples. In 
this study, the maximum number of epochs in training mode is set to 50.  The absolute 
percentage errors of the design values obtained by the proposed method and ANFIS in 
testing mode are shown in Figure 9.  

Finally, the statistical characteristics for failure probability of SSI system found from testing 
in the proposed method and single ANFIS are compared in Table 9. All of the statistical values 
in this table reveal the good performance generality of the modified ANFIS. 
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Table 9: Comparison of performance of the methods used based on statistical criteria 

Statistical parameters RRMSE MAPE R2 

The proposed method 0.1045 8.46 0.9896 

ANFIS 0.1148 10.78 0.9668 

 
As revealed in Table 9 the proposed method achieves better performance than the single 

ANFIS. Therefore, the proposed method is a suitable method for predicting the probability 
of failure. 
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Figure 9. Absolute percentage errors  
 

10.4 Example 2: A Nine-Story RC Frame 
In this example, nine-story RC frame is considered. During the nonlinear dynamic analysis 
of SSI system it is revealed that 224 combinations of database lose their stability in a 
number of five sub-combinations. For these combinations the probability of failure is 
defined according to Eq. (5). Therefore, in data set there are 224 instable and 476 stable SSI 
systems. In order to train the modified ANFIS, 420 samples including 100 instable and 320 
stable SSI systems are considered. Also for test this method, 280 samples including 124 
instable and 156 stable SSI systems are selected. 

 
10.4.1 FCM-FPSO Algorithm 
According to the results of SA, it is observed that in the 55.23%, 27.48%, and 17.29% of all 
the cases the number of the centers found are 3, 2, and 1, respectively.  Therefore, in this 
example the number of the centers is considered to be 3. For training samples, the FCM-
FPSO algorithm partitions the data to three clusters and determines the centers of clusters 
and the membership grades of clusters. The FCM-FPSO algorithm is run according to the 
different values of NcFCM . The average values of optimum objective function (Eq. (27)) are 
presented in Table 10. It is revealed that the best optimum solution is associated with 
NcFCM= 0.3.  
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Table 10: Optimum solutions obtained by FCM–FPSO for different values of NcFCM  

NcFCM 0.2 0.3 0.4 0.5 

Average value objective function 142.02 143.76 145.17 142.75 

 
The convergence histories of the optimum objective function based on Eqs. ((21) & (27)), 

according to NcFCM =0.3, are shown in Figure 10 for FCM, FPSO and FCM-FPSO. 
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Figure 10. Convergence histories of the optimum solution of the FCM, FPSO and FCM–FPSO 
 

10.4.2 Training and Testing the Proposed Model 
The FIS structure is generated by using the optimum centers of clusters and the membership 
grades each of clusters that obtained by FCM-FPSO. The optimum number of fuzzy rules is 
determined by SA to be 3. The maximum number of epochs in training mode is set to 50. 
The absolute percentage errors of the design values obtained by the proposed method and 
ANFIS in testing mode are shown in Figure 11. 

The statistical characteristics for failure probability of SSI system found from testing in 
the proposed method and ANFIS are compared in Table 11. All of the statistical values in 
this table reveal the good performance generality of the modified ANFIS. 

 
Table 11: Comparison of performance of the methods used based on statistical criteria 

Statistical parameters RRMSE MAPE R2 

The proposed method 0.1012 7.21 0.9898 

ANFIS 0.1575 12.68 0.9168 

 
As revealed in Table 10 the proposed method achieves better performance than the single 
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ANFIS. Therefore, the proposed method is a good method for predicting the probability of 
failure. 
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Figure 11. Absolute percentage errors  
 
 

11. CONCLUSIONS  
 

In this paper for predicting the probability of failure a modified adaptive neuro fuzzy 
inference system (ANFIS) is presented by a hybrid of fuzzy c-means (FCM) and fuzzy 
particle swarm optimization (FPSO). The accuracy of ANFIS depends on optimum number 
of fuzzy if–then rules and membership functions in FIS. To achieve this, subtractive 
algorithm (SA) and the hybrid of FCM and FPSO are employed. The main idea of hybrid of 
the FCM-FPSO is that combines the advantages and avoids the disadvantages of the FCM 
and FPSO methods. The FCM– FPSO can increase the probability of finding the global 
optimum, and requires lower number of iteration in the procedure optimization. Also, the 
FCM-FPSO can find the centers of clusters for the input and output data in FIS. The 
optimum number of the clusters, i.e. fuzzy rules, is determined by the SA. Numerical 
examples show that the proposed method has better performance generality than single 
ANFIS. Therefore, the proposed method can effectively predict the failure probability of 
soil-structure interaction (SSI) system subjected to earthquake loads. 
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