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ABSTRACT 
 

This paper examines a methodology for computing the probability of structural failure by 
combining Monte Carlo Simulation (MCS) and Artificial Neural Networks (ANN). MCS is 
a powerful tool, simple to implement and capable of solving a broad range of reliability 
problems. However, its use for evaluation of very low probabilities of failure implies a great 
number of structural analyses which can become excessively time consuming. In the present 
study, nonlinear structural analysis is involved and therefore the computational effort of 
MCS will be resonated comparing with that of the linear analysis. The proposed 
methodology makes use of capability of a ANN to approximate a function for reproducing 
structural behavior, allowing the computation of performance measures at a much lower 
cost. In order to assess the validity of this methodology, a structural example is presented 
and discussed. The numerical results demonstrate the efficiency of the proposed 
methodology for the structural reliability analysis.  

  
Keywords: Structural reliability; Monte Carlo simulation; nonlinear analysis; neural 
networks 

 
 

1. INTRODUCTION 
 

The structural designer must verify, within a prescribed safety level, the serviceability and 
ultimate conditions commonly expressed by the inequality: Sd < Rd, where Sd represents the 
action effect and Rd the resistance. The intrinsic random nature of material properties and 
actions is actually considered by some codes. In the present study a more accurate and also 
computationally efficient method is employed to deal with this randomness. In this method 
the probability of failure is computed from the joint probability distribution of the random 
variables associated with the actions and resistances. 

Theory and methods for structural reliability have been developed substantially in the last 

                                                   
* E-mail address of the corresponding author: r_kamyab_m@yahoo.com (R. Kamyab Moghadas) 

www.SID.ir



Arc
hive

 of
 S

ID

R. Kamyab Moghadas and M.J. Fadaee 

 

80 

few years and they are actually useful tools for evaluating rationally the safety of complex 
structures. Recent developments allow anticipating that their application will gradually 
increase, even in the case of common structures.  

Monte Carlo Simulation (MCS) is a simulation method that presents the following 
characteristics: it can be applied to many practical problems allowing the direct 
consideration of any type of probability distribution for the random variables; it is able to 
compute the probability of failure with the desired precision; and it is easy to implement. 
However, despite the advantages it presents, the use of this method is not widespread in 
structural reliability because it is not efficient in terms of computational burden. In fact, 
MCS requires a great number of structural analyses, one for each sample of the set of 
random variables. The number of analyses needed to evaluate the probability of failure of a 
structure with a prescribed precision depends on the order of magnitude of that probability. 
As the values of the probability of failure associated to the ultimate limit states vary 
normally between 10-4 and 10-6, for ensuring a 95% likelihood that the actual probability be 
within 5% of the computed one, the number of analyses to be performed must be at least 
1.6×107 to 1.6×109, according to Shooman [1]. 

These analyses are frequently performed with the help of finite elements software. 
Therefore, the computation time can be prohibitively high, especially when the structure 
exhibits non-linear behavior or the numerical model is rather complex. To eliminate this 
drawback, it is proposed here the use of Neural Networks (NN) to approximate structural 
response. Once properly trained, an NN allows the determination of the structural 
performances with a very small number of operations and at a fraction of the cost of the 
corresponding structural analysis. This methodology allows the application of MCS to 
practical cases of great complexity where the direct use of this method would not be 
feasible. 

To examine the computational performance of the proposed methodology a test example 
is presented. In this example, the reliability analysis of a steel plane truss considering 
nonlinear behavior is performed. Moreover, by changing the cross-sectional areas vector of 
the structure, the failure probability of the structure is computed employing MCS coupled 
with back-propagation NN. In this manner a database including 50 samples are provided. At 
last, by using the database, a back-propagation NN is trained to predict the probability of 
failure of the structure. In this NN, the input is the cross-sectional areas vector and the 
output is the probability of failure. The numerical results show a good agreement between 
the predicted and evaluated values of the probability of failure. Through this test example, it 
is demonstrated that the proposed methodology is a robust tool for reliability analysis of the 
structures.     

 
 

2. THEORETICAL BACKGROUND OF NONLINEAR ANALYSIS 
 

In a linear analysis we implicitly assume that the deflections and strains are very small and 
the stresses are smaller than the material yield stresses. Consequently, the stiffness can be 
considered to remain constant and the finite element equilibrium equations are linear. 

In many structures, at or near failure (ultimate) loads, the deflections and the stresses do 
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not change proportionally with the loads. Either the stresses are so high that they no longer 
obey Hooke’s law or else there are such large deflections that the compatibility equations 
cease to be linear. These two conditions are called material nonlinearity and geometric 
nonlinearity, respectively. In this study, a finite elements model based on geometrical and 
material nonlinear analysis of 2-D trusses including plasticity, and large deflection 
capabilities is presented by ANSYS [2]. In elasto-plastic analysis the von mises yield 
function is used as yield criterion. Flow rule in this model is associative and the hardening 
rule is bilinear isotropic hardening. In the bilinear model the slope of the second line is 
chosen to be zero.  

  
2.1 Nonlinear Analysis Combining Geometrical and Material Nonlinearities 
Here, instead of the linear strain-displacement relation, the nonlinear Green’s strain [3] is 
used which is defined as follows: 

 
2
0

2
0

2

2l

lln
G


  (1) 

 
where G  is the nonlinear Green’s strain, nl and 0l  are the length of space truss element 

after and before deflection, respectively. 
Since Green’s strains are used, the stresses in each analysis, including geometric 

nonlinearity, will be 2nd order Piola-Kirchoff [3] stresses. 
When the strains are nonlinear functions of the displacements or, in other words, when 

the stresses reach values exceeding the yield stresses of the material, the stress-strain 
relationship is nonlinear. In these cases, the stiffness is dependent on the displacements and 
the strains. Obviously, the solution of the displacements cannot be obtained in a single step. 
Instead, the analysis is carried out by the incremental method [3] combined with some 
iterative equilibrium corrections at every step.  

 
 

3. MONTE CARLO SIMULATION (MCS) 
 

A reliability problem is normally formulated using a failure function, g(X1,X2,…,Xn), where 
X1,X2,…,Xn are random variables. Violation of the limit state is defined by the condition 
g(X1,X2,…,Xn) ≤ 0 and the probability of failure, pf, is expressed by the following expression [4]: 

 

 nnXXXXXXgn x...xxxxxf...XXXgPp
n
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where ),...,,( n21 xxx  are values of the random variables and ),...,,( 21,...,, 21 nXXX xxxf

n
 is the 

joint probability density function. 
The Monte Carlo method allows the determination of an estimate of the probability of 

failure, given by 
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where ),...,,( 21 nXXXI  is a function defined as: 
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According to (2), N independent sets of values nxxx ,...,, 21  are obtained based on the 

probability distribution for each random variable and the failure function is computed for 
each sample. Using MCS, an estimate of the probability of structural failure is obtained by 

 

 
N

N
p H

f   (5) 

 
where NH is the total number of cases where failure has occurred. 

 
 

4. ARTIFICIAL NEURAL NETWORKS 
 

NN are numerical algorithms inspired in the functioning of biological neurons. This concept 
was introduced by McCulloch and Pitts [5], who proposed a mathematical model to simulate 
neuron behavior. Use of NN has become widespread in several fields of engineering, such as 
structural mechanics [6-15] and structural reliability [16]. 

In this study back-propagation NN is employed. In the next subsection the theoretical 
background of the back-propagation NN is briefly explained. 

 
4.1 Back-propagation Neural Network 
The most popular and successful learning method for training the multilayer neural networks 
is the back-propagation algorithm. The algorithm employs an iterative gradient-descent 
method of minimization which minimizes the mean squared error between the desired output 
and the network output (supervised learning). The back-propagation training procedure is 
presented as, 

 
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in which N, M, and n are number of training input patterns, dimension of output space, and 
number of iterations, respectively, and  
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where (n)di  is the desired output, (n)y(L)
i is the network output and L is the output layer. 

The output of layer l, )(l nvi , is defined as follows,  
 

 
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N
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in which (n)y 1)(l

j
  is the function signal of neuron j in the previous layer, l – 1, at iteration n, 

(n)w(l)
ij  is the weight of neuron i in layer l that is fed from neuron j in layer l – 1. 

Then the output signal of neuron i in layer l is 
 

 ))n(v(f)n(y l
i

l
i   (9) 

 
where f (.) is the activation function.  

If neuron i, is in the first hidden layer, (l = 1), then set )( ny0
i  is )( nxi  

The local error or the local gradient is defined as: 
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Equation (10) can be simplified to 
for neuron i in output layer L:  

 ))n(v(f)n(e)n( L
i
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L
i   (11) 

for neuron i in hidden layer l:     
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where (n))(vf l
i is the derivative of the activation function with respect to v(n).  

If the activation function is chosen to be the hyperbolic tangent function then )(vf i is:  
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where γ is an adjusting coefficient. 
Hence, adjust the weights of the network in layer l according to the generalized following 

delta rule: 
 )n(y)n()n(w)1n(w )1l(

j
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where is the positive constant learning rate, usually equals 0.01. 

If after updating the weights, the error E is not minimized, new iterations are required. 
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5. NUMERICAL EXAMPLE 
 

The structural model involved here is introduced. The structure configuration and the 
element groups is shown in Figure 1.  

The cross-sectional area of each element group is considered to be deterministic variable 
and is taken from the following 25 discrete values, i.e., 1.74, 2.27, 2.67, 3.08, 3.79, 3.90, 
4.80, 5.69, 6.91, 8.13, 8.70, 9.03, 9.40, 10.10, 10.57, 11.40, 11.79, 12.20, 13.90, 15.10, 
15.50, 17.10, 18.70, 19.20, and 20.30 cm2.  

 

Figure 1. A 10-bar steel truss  
 
Random variables of the truss are listed in Table 1. 
 

Table 1: Random variables 

Variable 
Distribution 

type 
Mean Standard deviation 

Modulus of elasticity (E) Normal 21000 (KN/m2) 1050 

Yield stress (σy) Normal 21 (KN/m2) 1 

External load (P) Normal 100 (KN) 20 

 
In this study, the failure criterion is defined as follows:  
 

(Ultimate Load obtained by nonlinear analysis) < (Applied Load) 
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In the nonlinear analysis process, if due to a load increment the convergence is failed that 
load is called Ultimate Load.  

In this study a hybrid methodology is employed to reliability assessment of the structure. 
The fundamental steps of the proposed methodology are as follows:  

1. 50 sample structures with various cross-sectional areas are randomly selected.  
 

ig
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 , i=1,2,…,50 

 
2. The probability of failure of each sample structure is computed by MCS and back-

propagation NN as follows: 
2.1. 750 vectors containing random variables are selected as: 
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2.2. The ultimate loads of these 750 structures are calculated by the nonlinear 
analysis.  

2.3. Employing these training set, RV, as input and ultimate load as the output, a 
back-propagation NN is trained. This NN is called Local Neural Network, 
(LNN) 

2.4. 1.6×107 vectors of RV is selected and their corresponding ultimate load values 
are predicted by the trained NN. Therefore, now it is possible to calculate the 
probability of failure of the current structure   

3. The steps 2-1 to 2-4 are repeated for all the 50 samples: 
f i

p , i=1,2,…,50. 

4. Now the final training set is reached: inputs: Ai ; outputs: 
f i

p  , i=1,2,…,50. 

Therefore a back-propagation NN is trained to predict the fp of the structures. This 
NN is called Global Neural Network, (GNN). 

 
5.1 Numerical Results 
For training of 50 LNN, The number of training samples is 650 while the number of testing 
samples is 100.  

Information regarding the performance generality of 6 selective LNN is given in Table 2. 
It can be observed that all the trained NNs possess appropriate performance generality. 
The values of the probability of failure predicted by the 50 LNNs are listed in Table 3. 
For training of GNN, the number of training samples is 40 while the number of testing 

samples is 10. The testing results of the GNN are given in Table 4. 
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Table 2: Performance generality of 6 selective LNN 

Error (%) 
No. of LNN 

mean min max 

1 0.0082 0.0001 0.0332 
7 0.1244 0.0003 0.5263 

12 0.2900 0.0031 1.2937 
25 0.4451 0.0116 1.9670 
34 0.7858 0.0003 3.3774 
48 1.1838 0.0337 5.0815 

Average values of all the 50 LNNs 0.5216 0.0093 2.5465 

 
Table 3: The values of the probability of failure predicted by the 50 LNNs 

No. fp  No. fp  No. fp  No. fp  No. fp  

1 0.0014 11 0.0376 21 0.0184 31 0.0191 41 0.0189 
2 0.0663 12 0.0185 22 0.0646 32 0.0014 42 0.0247 
3 0.0013 13 0.0252 23 0.0190 33 0.0252 43 0.0015 
4 0.0015 14 0.0247 24 0.0092 34 0.0386 44 0.018 
5 0.0658 15 0.0089 25 0.0243 35 0.0248 45 0.0649 
6 0.0378 16 0.0014 26 0.0186 36 0.0091 46 0.067 
7 0.0094 17 0.0012 27 0.0655 37 0.0373 47 0.0192 
8 0.0379 18 0.0647 28 0.0183 38 0.0084 48 0.0655 
9 0.0090 19 0.0251 29 0.0187 39 0.0242 49 0.0383 
10 0.0258 20 0.0381 30 0.0188 40 0.0093 50 0.0256 

 
Table 4: testing results of GNN 

Test Samples No. exact
fp  eapproximat

fp  Error (%) 

1 0.0191 0.0180 5.7764 
2 0.0373 0.0403 8.0334 
3 0.0184 0.0180 1.9482 
4 0.0646 0.0569 11.8513 
5 0.0378 0.0358 5.2233 
6 0.0187 0.0179 4.2239 
7 0.0383 0.0391 2.2437 
8 0.0188 0.0177 5.7015 
9 0.0243 0.0250 3.2201 
10 0.0376 0.0372 0.8966 

Average error (%) 4.9119 
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6. CONCLUSIONS 
 

An efficient methodology is proposed to evaluate the probability of structural failure 
employing Monte Carlo simulation (MCS) and neural networks (NN). In the proposed 
methodology, extensive nonlinear structural analysis is involved to assess that whether the 
trail structures bear the external load or lose their stability and collapse. Thus, the 
computational effort of the MCS is considerably resonated comparing with the state that the 
linear analysis is employed and simple limit states are checked. Therefore NN is employed 
to mitigate the computational rigor of the process. In this study, backpropagation NN is 
employed in two stages. In the first stage, the NN is employed to predict the structural 
responses. In this case, for a structure with fixed cross-sectional areas, the MCS can be 
achieved by incorporating the properly trained NN with much less computational effort. In 
the numerical example in this paper, if NN is not used, the time spent to MCS of each 
structure is about 4.8×107 seconds, while using the NN reduces the time consumption to 
2.25×103 seconds plus the time spent for NN training which is equal to 240 seconds. In the 
second stage, another NN is employed to predict the failure probability of structures by 
changing the cross-sectional areas. The numerical results demonstrate the computational 
advantages of the proposed hybrid methodology. Finally, it is observed that the 
computational time of the reliability assessment of the structures can be dramatically 
reduced by employing the proposed methodology. 
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