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ABSTRACT 
 

The main objective of this study is to hybridize particle swarm optimization (PSO) and ant 
colony optimization (ACO) algorithms to propose an efficient algorithm for optimal designing 
of truss structures.  Two types of serial integration of the algorithms are studied. In the first 
one, PSO is employed to explore the design space, while ACO is utilized to achieve a local 
search about the best solution found by PSO. This is denoted as serial particle swarm ant 
colony algorithm (SPSACA). In the second one, ACO works as the global optimizer while 
PSO acts as the local one. This is called as serial ant colony particle swarm algorithm 
(SACPSA). A number of structural optimization benchmark problems are solved by the 
proposed algorithms. Numerical results indicate that the SPSACA possesses better 
computational performance compared with the SACPSA and other existing algorithms. 

 
Keywords: Meta-heuristic algorithm; size optimization; particle swarm optimization; ant 
colony optimization; exterior penalty function; sequential unconstrained minimization technique 

 
 

1. INTRODUCTION 
 

In the recent decades a number of optimization algorithms based on natural phenomena have 
been developed. Among these methods meta-heuristic algorithms have impressive features 
that differs them from the gradient based methods. In the field of structural optimization, 
genetic algorithms (GA) [1-2], particle swarm optimization (PSO) [3-4] and ant colony 
optimization (ACO) [5-6] are the most popular algorithms. This class of optimization 
techniques not only requires no gradient computations but also is simple for computer 
programming. In the present study PSO, ACO and their combinations are focused. 

PSO was inspired by the social behavior of organisms such as bird and fish flocking. As 
compared to other robust design optimization methods PSO is more efficient, requiring 
fewer number of function evaluations, while leading to better or the same quality of results 
[7-8]. Also PSO has some defect such as trapping into local optimum in a complex search 
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space and disability to do a good local search around a local optimum. It is known that the 
PSO may perform better than the other meta-heuristic optimization techniques in the early 
iterations, but it does not appear competitive when the number of iterations increases [9]. 
ACO was inspired by the behavior of real ant colonies in finding the shortest paths between 
food sources and their nest. ACO was combined with PSO to improve the operation of PSO 
in [10] for solving the continuous unconstrained problems. In this study, two new 
optimization algorithms are presented by combining of PSO and ACO for optimization of 
structures. In the first algorithm, a preliminary optimization is achieved by PSO. Then 
another optimization process is performed by ACO around the best solution found by PSO 
to finely explore the design space. As this algorithm is a serial integration of PSO and ACO 
it is denoted as serial particle swarm ant colony algorithm (SPSACA). In the second 
algorithm, the preliminary search is achieved by ACO while the finer exploration is 
performed by PSO and therefore this algorithm is termed as serial ant colony particle swarm 
algorithm (SACPSA).  

There are some constraints in structural optimization problems that should be carefully 
handled. So far, a number of approaches have been proposed by researcher but the penalty 
function methods have been the most popular constraint-handling techniques due to its 
simple principle and ease of implementation. In this study, for the both SPSACA and 
SACPSA strategies, the exterior penalty function method (EPFM) is employed in the 
framework of the sequential unconstrained minimization technique (SUMT) [11] to handle 
the constraints.     

The numerical results demonstrate the efficiency and robustness of SPSACA compared 
with the SACPSA, PSO and ACO. 

 
 

2. OPTIMAL DESIGN PROBLEM 
 

Size optimization of truss structures is defined as minimizing the structural weight that areas 
of cross-sections of bar members are normally selected as the design variables of the 
optimization problem. The objective function is the weight of a structure, which is subjected 
to the stress and the displacement constraints. This can be expressed as follows: 
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where w and X are the weight of the structure and the vector of design variables, 
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respectively; iγ , li and Ai are the ith element material density, length and cross sectional area, 

respectively. Also iσ , jd , allσ and alld are the ith element stress, jth node displacement, and 

their corresponding allowable values, respectively. The lower and upper bounds on the 
cross-sectional-area of the ith element are represented by L

iA and U
iA  , respectively. 

In this study, EPFM is employed to transform the constrained structural optimization 
problem into an unconstrained one as described below. 

Penalty function methods transform the basic optimization problem into alternative 
formulations such that numerical solutions are sought by solving a sequence of 
unconstrained minimization problems. Let the basic constrained optimization problem 
subject to ng constraints, be of the following form: 

 
 )(    :Minimize Xw  (5) 

 
 ngkXgk 1,2,..., , 0)(    :Subject to   (6) 

 
This problem is converted into an unconstrained minimization problem by constructing a 

function of the following form: 
 
 )()(),( XpXwrXΦ p   (7) 
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 (8)  

 
where Φ , p, rp and VC are the pseudo objective function, penalty function, positive penalty 
parameter and violated constraints, respectively.  

It can be seen from Eq. (8) that the effects of penalty function only include the violated 
constraints (VC). By choosing the minor values for the penalty parameter, the effect of 
constraints in ),( prXΦ decrease and optimization processes cause to minimize objective 

function with small amount of violated constraints, in other side by choosing the high value 
for penalty parameter, the effect of constraints in ),( prXΦ increased and the portion of 

objective function decrease. In [11] it is recommended that if the unconstrained 
minimization of the ),( prXΦ function is repeated for a sequence of values of the penalty 

parameter, rp, the solution may be brought to converge to that of the original problem stated 
in Eqs. (5-6). These methods are known as sequential unconstrained minimization 
techniques (SUMT). In the present study, the EPFM is employed in the framework of the 
SUMT to handle the constraints. 

 
 

3. META-HEURISTIC OPTIMIZATION ALGORITHMS 
 

In the recent years, some optimization methods that are conceptually different from the 
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traditional mathematical programming techniques have been developed. These methods are 
denoted as meta-heuristic optimization methods. Most of these methods are based on certain 
characteristics and behavior of biological, molecular, swarm of insects, and neurobiological 
systems. In this paper, PSO and ACO meta-heuristics and their combinations are studied. 

 
3.1 Ant Colony Optimization (ACO) 
ACO is based on the cooperative behavior of real ant colonies, which are able to find the 
shortest path from their nest to a food source. The method was developed by Dorigo [12]. 
The ACO process can be explained as follows. The ants start at the home node, travel 
through the various nodes from the first node to the last node, and end at the destination 
node in each iteration. Each ant can select only one node in each layer in accordance with 
the state transition rule [13]. An ant k, when located at node i, uses the pheromone trail τij to 
compute the probability of choosing j as the next node: 

 

 













 


)(

)(

)(

if0

if

k
i

k
i

Nj

α
ij

α
ij

k
ij

Nj

Nj
τ

τ

P
k
i

 (9) 

 
where α denotes the degree of importance of the pheromones and )(k

iN indicates the set of 

neighborhood nodes of ant k when located at node i.  
The neighborhood of node i contain all the nodes directly connected to node i except the 

predecessor node. This will prevent the ant from returning to the same node visited 
immediately before node i. An ant travels from node to node until it reaches the destination 
node. Before returning to the home node, the kth ant deposits an amount of pheromone on 
arcs it has visited. After all the ants return to the nest, the pheromone information is updated 
in order to increase the pheromone value associated with good or promising paths. The 
updating is achieved as follows:  
   )(1 k

ijijij ττρτ   (10) 
 

 
k

k
ij L

Q
τ  )(

 (11) 
 

where ρ(0, 1] is the pheromone decay factor; )(k
ijτ is the amount of pheromone deposited on arc 

ij by the best ant k. also, Q is a constant and Lk is the length of the path traveled by the kth ant. 
When more paths are available from the nest to a food source, a colony of ants will be 

able to exploit the pheromone trails left by the individual ants to discover the shortest path 
from the nest to the food source and back [13]. In fact, ACO simulates the optimization of 
ant foraging behavior. 

 
3.2 Particle Swarm Optimization (PSO) 
The PSO has been proposed by Eberhart and Kennedy [14] to simulate the motion of bird 
swarms. The particle swarm process is stochastic in nature; it uses a velocity vector to 
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update the current position of each particle in the swarm. The velocity vector is updated 
based on the memory gained by each particle, conceptually resembling an autobiographical 
memory, as well as the knowledge gained by the swarm as a whole. Thus, the position of 
each particle in the swarm is updated based on the social behavior of the swarm which 
adapts to its environment by returning to promising regions of the space previously 
discovered and searching for better positions over time. Numerically, the position of the ith 
particle, Xi, at iteration t + 1 is updated as follows: 

 
 11   t

i
t
i

t
i VXX  (12) 

 
Where 1t

iV is the corresponding updated velocity vector given as follows: 
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i
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where t

iV  is the velocity vector at iteration t, r1 and r2 represents random numbers between 0 

and 1; t
iP  represents the best ever particle position of particle i, and tGbest corresponds to the 

global best position in the swarm up to iteration t. The remaining terms are problem 
dependent parameters; in this paper, cognitive parameter, c1, and c2, social parameter, are 
considered to be equal to 2. Also, ω is the inertia weight which plays an important role in 
the PSO convergence behavior. 

Due to the importance of ω in achieving efficient search behavior the optimal updating 
criterion is taken as follows: 

 k.
k

ωω
ωω

max

minmax
max


  (14) 

 
where ωmax and ωmin are the maximum and minimum values of ω, respectively. Also, kmax, 
and k are the number of maximum iterations and the number of present iteration, 
respectively. 

 
 

4. SERIAL INTEGRATION OF PSO AND ACO 
 

One of the defect known in PSO is that for swarm which have information about the global 
best solution (Gbest), the second and third part of the velocity update equation (Eq. (13)) is 
zero thus swarm’s behavior is on the last motion vector, also because ω is less than one, this 
part has been damped and the other swarm converge to the best swarm (Gbest). This is the 
reason that cause to precocious convergence of algorithm and PSO disable to do a good 
local search. In order to solve this problem and improve the performance of PSO in [15-16] 
new terms has been added to the velocity updating equation.  

In this study, in order to improve the computational performance of PSO, two hybrid 
optimization strategies are proposed. In the first one, PSO and ACO are serially integrated 
and the resulted algorithm is termed as serial particle swarm ant colony algorithm 
(SPSACA). In the SPSACA the constraints are handled using EPFM in the frame work of 
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SUMT. The SPSACA works as follows: 
At first by using the EPFM and choosing the minor penalty parameter a swarm including 

np particles is randomly selected and PSO is employed to achieve a preliminary optimization 
task. As the rp is small, PSO converges to an infeasible solution. In this process the best 
solution is saved as Gbest in the memory of the algorithm. In the next step, a new swarm is 
generated based on elitism. The new elite swarm is created by the means of giving more 
chance to survive the elite particles. In this case, Gbest is transformed to the new swarm and 
the remaining ones are randomly selected as follows: 

 
 )( bestbest G,GX j  Ν , )1(,2,...,1  pnj  (15) 

    
where )( bestbest G,G Ν represents a random number normally distributed vector with the mean 

of Gbest and the standard deviation of bestG .   
The produced elite swarm is employed by PSO to achieve another optimization process. 

In this process according to the SUMT concepts, the penalty parameter is increased as: 
 

 k
p

k
p rr 101   (16)  

 
This procedure is continued until PSO finds a feasible Gbest. This process is entitled as 

global search phase (GSP). In the second stage of the SPSACA a finer search is 
implemented about the feasible Gbest found by PSO in GSP. A new elite population is 
created using Eq. (15) and ACO is employed to achieve the optimization task. The best 
solution found by ACO is considered as the final solution. This later process is termed as 
local search phase (LSP). The flowchart of the SPSACA is shown in Figure 1.  

The second algorithm proposed in this paper, termed as serial ant colony particle swarm 
algorithm (SACPSA), is similar to the SPSACA with a slight difference. In the framework 
of SACPSA, ACO is employed in the GSP while PSO is utilized in the LSP. For the both 
SPSACA and SACPSA, various values of α are examined and the results are reported in the 
numerical results section. 

     
 

5. NUMERICAL EXAMPLES 
 

In order to investigate the computational performance of the proposed algorithms, five 
benchmark structural optimization examples are solved. For the proposed algorithms, a 
population of 20 individuals is considered.  

 
5.1 A ten-bar planer truss 
A 10-bar truss structure is shown in Figure 2. The material density is 0.1 lb/in3 and the 
modulus of elasticity is 10,000 ksi. The stress and displacement limitations are ±25 ksi and 
±2.0 in, respectively. The design variables can be selected from a range of 0.1 to 35.0 in2. 
Two cases are considered: Case (1), P1=100 kips; and Case (2), P1= 150 and P2=50 kips. 
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START

Initialize a swarm of np particles 

Update particle velocities

Update particle positions 

Score new particles

Update t
iP and Gbest 

Convergence?
No 

Final solution contains maximum pheromones

Initialize rp by a small value 

Producing new elite swarm: 
a) Gbest from previous optimization process 
b) (np-1) normally distributed random particles 
    ( )( bestbest G,GX j  Ν ) 

Update rp for a new optimization process  

Yes

Is Gbest feasible? 
No

Producing new elite ants: 
 

a) Gbest from GSP 
b) (np-1) ants from ( )( bestbest G,GX j  Ν ) 

Yes

Construct solution using the pheromone trail 
and randomization 

GSP 

Update the amount of pheromone 
(Increase for better values and reduce for all others) 

Convergence? No

Yes

LSP 

 

Figure 1. The flowchart of SPSACA 
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Figure 2. Ten-bar truss structure 
 
In this example The SPSACA and SACPSA algorithms achieve the best solutions after 

500 iterations (10,000 analyses). In Tables 1and 2 the best results obtained in this work is 
compared with the results of the other works and Figure 3 shows the results of 50 
independent runs of SPSACA and SACPSA for the various values of α. The given results 
indicate that the SPSACA not only finds a better solution but also considerably decreases 
the number of required structural analyses compared with the other works. 

 
Table 1: Optimal design of the ten-bar planner truss by various methods (Case 1) 

Present work 
Element group Li et al. [15] 

SACPSA SPSACA 

A1 30.7040 30.4140 30.4550 

A2 0.1000 0.1010 0.1000 
A3 23.1670 22.3610 23.1330 

A4 15.1830 15.1880 15.2350 

A5 0.1000 0.1009 0.1002 
A6 0.5510 0.5777 0.5500 

A7 7.4600 7.6402 7.4780 

A8 20.9780 21.7730 21.1820 

A9 21.5080 21.3570 21.4470 

A10 0.1000 0.1003 0.1000 

Weight (lb) 5060.92 5064.64 5060.76 

VC 0.0000 0.0000 0.0000 

Number of analysis 150,000 10,000 10,000 
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Table 2: Optimal design of the ten-bar planner truss by various methods (Case 2) 
Present work 

Element group Li et al. [15] 
SACPSA SPSACA 

A1 23.3530 24.6640 23.7580 

A2   0.1000   0.1000   0.1000 

A3 25.5020 24.4470 25.1930 

A4 14.2500 14.6670 14.1550 

A5   0.1000   0.1000   0.1000 

A6   1.9720   1.9804   1.9723 

A7 12.3630 12.5910 12.4240 

A8 12.8940 12.6920 12.8160 

A9 20.3560 19.9370 20.3720 

A10   0.1010   0.1000   0.1000 

weight 4677.30 4681.81 4677.29 

VC 0.0000 0.0000 0.0000 

Number of analysis 150,000 10,000 10,000 
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Figure 3. Result of 50 independent runs of the SACPSA and SPSACA for Ten-bar planar truss 
for various α: (a1) Best, (b1) Worst and (c1) Average weights (Case 1) & (a2) Best, (b2) Worst 

and (c2) Average weights (Case 2)   
 
The results shown in Figure 3 reveal that in the case of SPSACA the best result are 

obtained when 020. and by increasing the value of   the algorithm loses its exploitation 
ability and converges to heavier structures. In the case of the SACPSA reverse of this 
observation is true.  

 
5.2 A seventeen-bar planar truss 
The 17-bar planar truss, shown in Figure 4, has been studied by Khot and Berke [17] and Li 
et al. [15]. The material density and the modulus of elasticity are 0.268 lb/in3 and 30,000 ksi, 
respectively. The stress and displacement limitations are ±50 ksi and ±2.0 in, respectively. 
No design variables' linking is used and there are seventeen independent design variables. 
The minimum cross-sectional area of the members is 0.1 in2.  

 

 

Figure 4. A seventeen-bar planar truss 
 
The optimal results are compared with the solutions reported by Khot and Berke [17] and 

Li et al. [15] in Table 3. Figure 5 shows the results of 50 independent runs of SPSACA and 
SACPSA for the various values of α. The optimal design obtained by SPSACA is slightly 
better than both of the previously reported results but its required analyses is considerably 
lower than that of them.  
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Table 3: Optimal design of the Seventeen-bar planner truss by various methods  

Present work 
SPSACA SACPSA 

Li et al. [15] Khot [17] Element groups 

15.9320 15.8050 15.890 15.930 A1 
0.1000 0.1566 0.103 0.100 A2 

12.0700 13.0120 12.090 12.070 A3 
0.1000 0.1000 0.100 0.100 A4 
8.0656 7.9980 8.063 8.067 A5 
5.5639 5.4687 5.591 5.562 A6 

11.9310 11.7420 11.910 11.930 A7 
0.1000 0.1032 0.100 0.100 A8 
7.9478 7.9384 7.965 7.945 A9 
0.1000 0.1000 0.100 0.100 A10 
4.0584 4.1834 4.076 4.055 A11 
0.1000 0.1029 0.100 0.100 A12 
5.6515 5.4291 5.670 5.657 A13 
4.0004 3.9973 3.998 4.000 A14 
5.5611 5.3498 5.548 5.558 A15 
0.1000 0.1093 0.103 0.100 A16 
5.5747 5.6361 5.537 5.579 A17 

2581.88 2584.80 2581.94 2581.89 Weight (lb) 
0.0000 0.0000 0.0000 0.0000 VC 
10,000 10,000 150,000 30,000 Number of analysis 
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Figure 5. Result of 50 independent runs of the SACPSA and SPSACA for Seventeen-bar planar 
truss for various α: (a) Best, (b) Worst and (c) Average weights 
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Figure 5 indicates that for 020.  the SPACA found the best result. Also it is observed 
that increasing the value of   results in decreasing the exploitation ability of the algorithm. 
For the SACPSA the reverse of this idea is true.  

 
5.3 A twenty five-bar spatial truss 
A 25-bar space truss, shown in Figure 6, has been optimized by many researchers. The 
material density is 0.1 lb/in3 and modulus of elasticity is 10,000 ksi. This space truss is 
subjected to the two loading conditions shown in Table 4. 

 

 

Figure 6. A twenty five-bar spatial truss 
 

Table 4: Loading conditions for the twenty five-bar spatial truss 
Case 1 Case 2 

Node 
PX    PY PZ PX PY   PZ 

1 0.0   20.0 –5.0 1.0 10.0 –5.0 

2 0.0 –20.0 –5.0 0.0 10.0 –5.0 

3 0.0   0.0   0.0 0.5 0.0   0.0 

6 0.0   0.0   0.0 0.5 0.0   0.0 

 
The truss members are subjected to the compressive and tensile stress limitations shown 

in Table 5. Displacement limitation is ±0.35 in and the minimum and maximum cross-
sectional areas of all members are 0.01 in2 and 3.4 in2, respectively. The member groups are 
as follows:  

(1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21, (8) 
A22–A25 
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Table 5: Member stress limitations for the twenty-bar spatial truss 
Element group Compressive stress (ksi) Tensile stress (ksi) 

A1 35.092 40.0 

A2–A5 11.590 40.0 

A6–A9 17.305 40.0 

A10–A11 35.092 40.0 

A12–A13 35.092 40.0 

A14–A17 6.759 40.0 

A18–A21 6.959 40.0 

A22–A25 11.082 40.0 

 
Table 6 gives a comparison between the solutions reported in the literature and the 

present work.  
Table 6: Optimal design comparison for the twenty-bar spatial truss 

Present work 
Element group 

Li et al. 
[15] 

Kaveh and Talatahari 
[18] SACPSA SPSACA 

A1 0.010 0.010 0.0101 0.0100 

A2–A5 1.970 1.993 1.9520 1.9935 

A6–A9 3.016 3.056 3.0440 2.9792 

A10–A11 0.010 0.010 0.0102 0.0100 

A12–A13 0.010 0.010 0.0119 0.0100 

A14–A17 0.694 0.665 0.6770 0.6822 

A18–A21 1.681 1.642 1.6890 1.6784 

A22–A25 2.643 2.679 2.6530 2.6679 

Weight (lb) 545.19 545.16 545.41 545.18 

VC 0.0000 0.0001 0.0000 0.0000 

Number of analysis 30,000 12,500 10,000 10,000 

 
It is observed that the SPSACA obtains an optimal structure which is slightly better than 

previously found designs by the other researchers but its required analyses is lower than that 
of them. Figure 7 shows the results of 50 independent runs of SPSACA and SACPSA for 
the various values of α. These results indicate that in the case of SPACA if 020.  the best 
result can be obtained also by increasing the value of   the algorithm converges to heavier 
structures. In the case of the SACPSA the reverse of this observation is true.  
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Figure 7. Result of 50 independent runs of the SACPSA and SPSACA for Twenty five-bar 
spatial truss for various α: (a) Best, (b) Worst and (c) Average weights 

 
5.4 SA seventy two-bar spatial truss 
A 72-bar spatial truss structure is shown in Figure 8. The material density is 0.1 lb/in3 and 
the modulus of elasticity is 10,000 ksi. The members are subjected to the stress limits of ±25 
ksi and the maximum displacement of top nodes in each direction is limited to ±0.25 in. This 
structure is subjected to the two loading conditions as follows: 

 

 

Figure 8. A seventy two-bar spatial truss 
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Case 1; Node 17: PX = 5.0 ksi, PY = 5.0 ksi and PZ = –5.0 ksi. Case 2; Nodes 17, 18, 19 and 
20: PZ = –5.0 ksi. 

 
The structural elements are classified into 16 groups as follows:  

(1) A1-A4, (2) A5-A12, (3) A13-A16, (4) A17-A18, (5) A19-A22, (6) A23-A30, (7) A31-A34, (8) 
A35-A36, (9) A37-A40, (10) A41-A48, (11) A49-A52, (12) A53-A54, (13) A55-A58, (14) A59-A66, 
(15) A67-A70, (16) A71-A72. 

The lower and upper bounds on the cross-sectional area of each element are 0.1 in2 and 
4.0 in2, respectively. In Table 7 a comparison between the solutions reported in the literature 
and the present work is presented.  

 
Table 7: Optimal design comparison for the seventy two-bar spatial truss 

Present work 

SPSACA SACPSA

Kaveh and 
Talatahari [18]

Camp et al. [19]Element groups 

1.8822 1.8577 1.9042 1.8577 A1 

0.5114 0.5059 0.5162 0.5059 A2 

0.1000 0.1000 0.1000 0.1000 A3 

0.1000 0.1000 0.1000 0.1000 A4 

1.2571 1.2476 1.2582 1.2476 A5 

0.5136 0.5269 0.5035 0.5269 A6 

0.1000 0.1000 0.1000 0.1000 A7 

0.1000 0.1012 0.1000 0.1012 A8 

0.5300 0.5210 0.5178 0.5209 A9 

0.5200 0.5172 0.5214 0.5172 A10 

0.1000 0.1004 0.1000 0.1004 A11 

0.1000 0.1009 0.1007 0.1005 A12 

0.1566 0.1565 0.1566 0.1565 A13 

0.5465 0.5507 0.5421 0.5507 A14 

0.4080 0.3922 0.4132 0.3922 A15 

0.5648 0.5922 0.5756 0.5922 A16 

379.64 379.86 379.66 379.84 weight 

0.0000 0.0000 0.0000 0.0000 VC 

10,000 10,000 13,200 - Number of 
analysis 
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Figure 9. Result of 50 independent runs of the SACPSA and SPSACA for Seventy two-bar 
spatial truss for various α: (a) Best, (b) Worst and (c) Average weights 

 
The solution obtained by SPSACA is slightly better than that of other researchers but its 

required analyses is lower than that of them. Figure 9 shows the results of 50 independent 
runs of SPSACA and SACPSA for the various values of α. These results demonstrate that in 
the case of SPSACA by increasing the value of   the algorithm converges to heavier 
structures while for the SACPSA reverse of this observation is true. 

 
5.5 A 120-bar dome truss 
A 120-bar dome, shown in Figure 10, was studied in [20-21]. All members of the dome are 
linked into seven groups, as shown in Figure 10. The minimum cross sectional area of all 
members is 0.775 in2. 

The allowable tensile and compressive stresses are imposed according to the AISC ASD 
(1989) [22], as follows: 

 
 stressncompressioforcria Fσ   (17) 
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Figure 10. One hundred twenty-bar dome 
 

where E and Fy are the modulus of elasticity and yield stress of steel, respectively; Cc is the 

slenderness ratio dividing the elastic and inelastic buckling regions )2( 2
yc FEC  ; λi is the 

slenderness ratio (λi=kLi/ri); The modulus of elasticity is 30,450 ksi and the material density is 
0.288 lb/in3 .The yield stress of steel is taken as 58.0 ksi. On the other hand, the radius of 
gyration (ri) can be expressed in terms of cross-sectional areas, i.e., b

i aAr   . Here, a and b are 
the constants depending on the types of sections adopted for the members such as pipes, angles, 
and tees. In this example, pipe sections (a = 0.4993 and b = 0.6777) were adopted for bars. 

The dome is considered to be subjected to vertical loading at all the unsupported joints. 
These are taken as −13.49 kips at node 1, −6.744 kips at nodes 2 through 13, and −2.248 
kips at the rest of the nodes. A comparison between the optimal solutions reported in the 
literature and the present work is given in Table 8 and Figure 11 shows the results of 50 
independent run of the proposed algorithms for the various values of α. 
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Table 8: Optimal design comparison for the one hundred twenty-bar dome 

Present work 
Element group Lee et al. [21] 

Seyedpoor et al. 
[23] SACPSA SPSACA 

A1 3.296 3.040 3.0240 3.0199 

A2 2.786 2.298 2.2610 2.2603 

A3 3.872 3.133 3.0730 3.0706 

A4 2.570 1.983 1.9660 1.9652 

A5 1.149 0.775 0.7770 0.7753 

A6 3.331 2.810 2.8001 2.7903 

A7 2.781 2.370 2.3481 2.3480 

weight 19893.34 16370.23 16221.33 16205.1 

VC 0.0 0.0 0.0 0.0 

Number of analysis 35000 1700 1600 1600 
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Figure 11. Result of 50 independent runs of SACPSA and SPSACA for One hundred twenty-bar 
dome for various α: (a) Best, (b) Worst and (c) Average weights 

 
It is observed that the results of SPSACA are better than that of the other proposed 

algorithms. As well as the examples 1 to 4 in this example also in the cases of SPSACA and 
SACPSA the best results associates with 020. and 150. , respectively. By increasing the 
value of   the exploitation ability of SPSACA decreases while for the SACPSA the reverse 
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of this observation is true.  
6. CONCLUSIONS 

 
In this paper, PSO and ACO are serially integrated and two combinatorial metaheuristic 
algorithms are proposed. These algorithms denoted as serial particle swarm ant colony 
algorithm (SPSACA) and serial ant colony particle swarm algorithm (SACPSA) are 
employed in the framework of the sequential unconstrained minimization techniques 
(SUMT). In the SPSACA global search is achieved by PSO while the zone search around 
the best solution found by PSO is implemented by ACO. In the SACPSA the global and 
local searches are performed by ACO and PSO, respectively. In order to handle the 
constraints the exterior penalty function method (EPFM) is used. By increasing the number 
of iterations, the SUMT gradually increases the penalty parameter and lead to decrease the 
constraint violation. The efficiency of the SPSACA and SACPSA are tested for optimum 
design of five planar and spatial pin connected structures. The numerical results demonstrate 
that SPSACA is not only leads to better solutions but also requires fewer number of 
structural analyses compared to other algorithms.  

 
 

REFERENCES 
 

1. Kaveh A, Kalatjari V. Genetic algorithm for discrete sizing optimal design of trusses 
using the force method, International Journal for Numerical Methods in Engineering, 
55(2002) 55–72. 

2. Salajegheh E, Gholizadeh S. Optimum design of structures by an improved genetic 
algorithm using neural networks, Advances in Engineering Software, 36(2005) 757–
67.  

3. Gholizadeh S, Salajegheh E. Optimal design of structures for time history loading by 
swarm intelligence and an advanced met model, Computer Methods in Applied 
Mechanics and Engineering, 198(2009) 2936–49. 

4. Kaveh A, Talatahari S. A hybrid particle swarm and ant colony optimization for 
design of truss structure, Asian Journal of Civil Engineering, 9(2008) 329-48. 

5. Camp CV, Bichon BJ. Design of space trusses using ant colony optimization, Journal 
of Structural Engineering, 130(2004) 741–51. 

6. Camp CV, Bichon BJ, Stovall SP. Design of steel frames using ant colony 
optimization, Journal of Structural Engineering, 131(2005) 369–79. 

7. Eberhart R, Shi Y. Engineering optimization with particle swarm. In: IEEE swarm 
intelligence symposium, Indianapolis, 2003, pp. 53–57. 

8. Hassan R, Cohanim B, de Weck O, Venter G. A comparison of particle swarm 
optimization and the genetic algorithm. In: 1st AIAA Multidisciplinary Design 
Optimization Specialist Conference. No. AIAA-2005-1897. 

9. Angeline P. Evolutionary optimization versus particle swarm optimization: 
philosophy and performance difference, Proceeding of the Evolutionary Programming 
Conference, San Diego, USA, 1998. 

10. Shelokar PS, Siarry P, Jayaraman VK, Kulkarni BD. Particle swarm and ant colony 

www.SID.ir



Arc
hive

 of
 S

ID

S. Gholizadeh and F. Fattahi 

 

146 

algorithms hybridized for improved continuous optimization, Applied Mathematics 
and Computation, 188(2007) 129-42. 

11. Vanderplaats GN. Numerical optimization techniques for engineering design: with 
application. 2nd ed. NewYork: McGraw-Hill, 1984. 

12. Dorigo M. Optimization, learning and natural algorithms (in Italian), PhD Thesis. 
Dipartimento di Elettronica, Politecnico di Milano, IT, 1992. 

13. Dorigo M, Caro DG, Gambardella LM. Ant algorithms for discrete optimization, Art if 
Life, 5(1999) 137-72. 

14. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: 
Proceedings of the sixth international symposium on micro machine and human 
science, Nagoya, Japan, 1995. 

15. Li LI, Huang ZB, Liu F, Wu QH. A heuristic particle swarm optimizer for 
optimization of pin connected structures, Computers and Structures, 85(1997) 340-9. 

16. Gholizadeh S. Optimum Design of Structures by an Improved Particle Swarm 
Algorithm, Asian Journal of Civil Engineering, 11(2010) 777-93.  

17. Khot NS, Berke L. Structural optimization using optimality criteria methods. In: Atrek 
E, Gallagher RH, Ragsdell KM, Zienkiewicz OC, editors. New directions in optimum 
structural design. New York: John Wiley, 1984. 

18. Kaveh A, Talatahari S. Size optimization of space trusses using Big Bang–Big Crunch 
algorithm, Computers & Structures, 87(2009) 1129–40. 

19. Camp CV. Design of space trusses using Big Bang–Big Crunch optimization, Journal 
of Structural Engineering, 133(2007) 999-1008. 

20. Soh CK, Yang J. Fuzzy controlled genetic algorithms search for shape optimization, 
Journal of Computing in Civil Engineering, 10(1996) 143-50. 

21. Lee KS and Geem ZW. A new structural optimization method based on the harmony 
search algorithm, Computers & Structures, 82(2004) 781–98. 

22. American Institute of Steel Construction (AISC).:  1989,  Manual of steel construction 
allowable stress design, 9th ed., Chicago, IL. 

23. Seyedpoor SM, Gholizadeh S, Talebian SR. An efficient structural optimization 
algorithm using a hybrid version of particle swarm optimization with simultaneous 
perturbation stochastic approximation, Civil Engineering and Environmental Systems, 
27(2008) 295–313.  

 

www.SID.ir


