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ABSTRACT 
 

In this work four algorithms are presented for the integration of equations governing the 
behavior of von Mises material in plastic limit. Two of them are single-step and the others 
are double-step algorithms. Single-step algorithms are straight forward extension of 
backward Euler method or midpoint rule while double-step algorithms are a combination of 
two. In past similar algorithms were proposed for special cases of isotropic/kinematic 
hardening; however the algorithms presented in this work are applicable to general 
isotropic/kinematic hardening laws. Theoretical as well as numerical aspects are presented 
for all integration schemes and elaborated for double-step algorithms which are less 
explored in the literature. A comparison is made between the presented algorithms and the 
classical backward Euler method. 

 
Keywords: Plasticity; backward euler method; midpoint rule; second order; nonlinear 
hardening 

 
 

1. INTRODUCTION 
 

The evolution of integration algorithms dates back to the pioneering work of Wilkins [15]. 
The radial return algorithm that he proposed in his work is the basis of many algorithms 
developed later. His algorithm was actually a backward Euler type of algorithm for the 
integration of first order ordinary differential equations as a function of time. Backward 
Euler algorithm has been used successfully in the work of many authors and has proven its 
applicability in many research and commercial softwares. Midpoint rule algorithm was first 
proposed in the work of Popov and Ortiz [8]. They also presented a method for rigorously 
investigating the stability of algorithm which was later modified and corrected in the work 
of Simo and Govindjee [11]. These authors used the notion of B-Stability (A-Contractivity) 
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in the stability analysis of a given algorithm. Double step algorithms with the sense used 
today (enforcement of two consistency conditions per time step) were introduced by Simo 
[10], but were not elaborated until recently. Auricchio et al. used double step methods for 
linear hardening and a type of nonlinear hardening in some detail [3, 4]. They also proposed 
an exponential type of algorithm which outperforms the single and double step integration 
algorithms but is computationally expensive [1]. Besides the algorithms mentioned 
previously other integration algorithms such as Runge-Kutta and multi-step methods are 
available which are rather cumbersome to implement [10]. 

Abundant literature is available on the application of single and double step algorithms to 
problems with linear and special cases of nonlinear hardening. But a detailed discussion on 
the application of these algorithms to problems with general isotropic/kinematic hardening is 
missing especially for double step methods. In this work four integration algorithms are 
presented for the integration of governing equations of a J2 material with general 
isotropic/kinematic hardening. Theoretical and numerical aspects are discussed in detail and 
elaborated for double step methods. 

The four algorithms are labeled in [2] respectively as SMPT1, SMPT2, DMPT1 and 
DMPT2 and for easy reference the same labels are used here. It should be noted that in their 
work these algorithms are used for a linear type of hardening whilst the type of hardening 
(isotropic/kinematic) in this work can be general. The first two integration algorithms are 
single step methods and are based on the classical midpoint integration rule. On the other 
hand, each time step in the last two methods consists of two sub-steps and the equations are 
sequentially solved for each sub-step [2]. 

The aim of this paper is to present the formulation of the aforementioned integration 
schemes for general isotropic/kinematic hardening and to investigate the numerical aspects 
of each. The results of different algorithms are compared with backward Euler method as 
benchmark and their behavior is studied through error graphs and iso-error maps. The focus 
will be on double step methods, DMPT2 in particular, as it is believed that if it is correctly 
tuned it can operate faster and more accurate than others. 

The paper is organized as follows. In Section 2 the time continuous model under 
consideration is presented. The formulation of four integration algorithms as well as the 
enforcement of consistency condition for each algorithm is discussed in Section 3. In 
Section 4 numerical examples are used to investigate the behavior of algorithms. Efficiency 
and accuracy of algorithms are studied through error graphs and iso-error maps. Finally the 
detailed derivation of tangent operators is presented in appendix A. 

  
 

2. TIME CONTINUOUS MODEL 
 

The model considered in this work is associative von Mises plasticity with general 
isotropic/kinematic hardening employing small deformations theory. If the stress and strain 
tensors are split into deviatoric and volumetric parts we can write 

 

 Isσ p  with )(tr
3

1
p σ

 (1)
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 Ieε θ
3

1
  with )(tr ε  (2) 

 

 p  (3) 
 
where tr is the trace operator, I, s, e, p and θ are, respectively, the second order identity 
tensor, the deviatoric stress and strain tensors, the volumetric stress and strain terms and 
finally κ is the bulk modulus. 

Based on the previous splitting of the stress and strain tensors, the equations of the model 
can be written as [12]: 

 )(G2 pees    (4) 
 

 βsξ    (5) 

 
)(K

3

2
f  ξ

 (6) 
 

 ne p  (7) 
 

 nβ  )(H
3

2   (8) 

 


3

2


  (9) 
 
 0f,0f,0   (10) 

 
where G is the shear modulus, e is the total strain, ep is the plastic strain whose trace is zero, 
ξ is the relative stress, β is the center of yield surface in stress deviator space [12], f is the 
von Mises yield function, n is the normal to the yield surface, α is the equivalent plastic 
strain and the functions )(K  and )(H   are called the isotropic and kinematic hardening 

modulus respectively. Finally, equations (10) are the so called Kuhn-Tucker conditions. 

Since pe , relationship (9) implies that 

 

 
  d)(e

3

2 pt

0


 (11) 
 
which agrees with the usual definition of equivalent plastic strain.  

Isotropic and kinematic hardening can be linear as is widely used in the literature. 
Moreover, nonlinear isotropic/kinematic hardening models are considered in which a 
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saturation hardening term of the exponential type is appended to linear terms [12]. The type 
of isotropic/kinematic hardening considered in this work is 
 

 

    H)exp(KKK)(h 0

)(h)(K   
]1,0[),(h)1()(H    

(12) 

 
where K , 0K , δ and H are material constants and β provides a modulation between pure 

kinematic (β = 0) and pure isotropic (β = 1) hardening. 
 
 

3. INTEGRATION ALGORITHMS 
 

In this section the details of four integration algorithms introduced in previous sections are 
presented. These algorithms are categorized as single step and double step algorithms. In 
single step algorithms return mapping procedure is performed once per integration step, 
while in double step algorithms the integration step is divided into two sub-steps and return 
mapping is performed for each sub-step. As denoted in [2], these algorithms are called 
SMPT1 for single step midpoint method no. 1, SMPT2 for single step midpoint method no. 
2, DMPT1 for double step midpoint method no. 1 and DMPT2 for double step midpoint 
method no. 2. 

The loading history over the interval [0, T] is divided into N subintervals defined by time 
instants 0 = t0 < t1 < … < tn < tn+1 < … < tN = T. An intermediate time integration interval is 
represented by ∆t = tn+1 – tn and it is assumed to be constant for each loading step. One can 
choose the midpoint instant tn+α for each subinterval [tn, tn+1] such that tn ≤ tn+α ≤ tn+1 and 
 

 t

tt nn




 

 (13) 
 

Given the variables {sn, en, 
p
ne , βn, αn} at time tn and the deviatoric strain en+1 at time tn+1, the 

objective is to devise a numerical algorithm to compute the variables at time tn+1. 
 

3.1 SMPT1 and SMPT2 algorithms 
In order to integrate the set of governing equations of the system using SMPT1 and SMPT2 
algorithms, a generalized midpoint rule is applied over the interval [tn, tn+1]. The consistency 
condition in SMPT1 algorithm is enforced at the end of time interval, while it is enforced at 
midpoint instant tn+α in SMPT2 algorithm. In both algorithms the enforcement of consistency 
condition is accomplished along the normal to the yield surface at midpoint instant tn+α. The 
algorithmic setup for SMPT1 and SMPT2 algorithms is as follows 
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  n
p
n

p
1n nee

)(G2 p
1n1n1n   ees  

)(H)(HH,H
3

2
n1n1nn1nn1n   nββ

1n1n1n   βsξ  

  nn1n t,
3

2
 

 (14)  

 
The scalar λ is the incremental plastic multiplier and is determined by enforcing the 
consistency condition f(ξn+1) = 0 for SMPT1 and f(ξn+α) = 0 for SMPT2. The tensor nn+α is 
the normal to the yield surface at midpoint and can be computed by evaluating the quantities 
at tn+α using the following linear equations. 

 

 

n1nn )1( eee  
p
n

p
1n

p
n )1( eee  

n1nn )1( sss  

n1nn )1( βββ  

n1nn )1( ξξξ  

 (15) 

 
In order to solve the set of equations (14), it is initially assumed that the evolution of 

variables over [tn, tn+1] is elastic. Based on this assumption, the trial step for both algorithms 
can be written as 

 

p
n

trial,p
1n ee   

n1n1n1nn
trial

1n ,G2 eeeess  

n
trial

1n ββ   
trial

1n
trial

1n
trial

1n   βsξ  

n
trial

1n    

 (16) 

 
If the trial relative stress satisfies the yield condition, i.e.  
 

 
  0K

3

2 trial
1n

trial
1n  ξ  for SMPT1 (17) 

and 

 
  0K

3

2 trial
n

trial
n  ξ  for SMPT2 (18) 

 
the whole step is elastic and the trial variables are considered to be the correct ones. 
Otherwise if the relative stress does not satisfy the yield condition, a plastic correction as 
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specified by the following equations should be applied. 
 

 

  n
trial,p
1n

p
1n nee  

  n
trial

1n1n G2 nss  

  n1n
trial

1n1n H
3

2
nββ

 

 







 n1n

trial
1n1n H

3

2
G2 nξξ

  3

2trial
1n1n  

 (19) 

 
The normal tensor   nnn ξξn  can be computed by observing that at midpoint the 

trial relative stress is obtained using 
 

 

1nn
trial
n G2   ess

n
trial
n ββ   

trial
n

trial
n

trial
n   βsξ   (20) 

 
and the updated relative stress using 
 

 

  n
trial
nn G2 nss  

  n1n
trial
nn H

3

2
nββ  

 







 n1n

trial
nn H

3

2
G2 nξξ

 (21) 

 
Equation (21)3 implies that the following co-alignment relation exists between nn+α, ξn+α 

and trial
n ξ . 

 
trial
n

trial
n

n

n
n








 

ξ

ξ

ξ

ξ
n

 (22) 
 
The plastic multiplier λ is computed by enforcing the consistency condition at the end of 

time interval for SMPT1 and at midpoint for SMPT2. This is done by requiring that the yield 
function be satisfied for the appropriate relative stress. In the case of SMPT1 algorithm we 
have 
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 0)(K
3

2
f 1n1n1n   ξ  (23)

 

 
However, since the consistency condition is enforced along nn+α, it is necessary to 

implicitly (or explicitly) express the equation (23) in terms of nn+α. Hence, it is more 
convenient to rewrite this equation as a function of λ in the following useful form. 
 

 0)(K
3

2
:)(g 1n

2
1n1n   ξξ  (24) 

 
It should be noted that ξn+1 and K can be highly nonlinear functions of αn+1. Therefore in 

order to solve the equation (24) for λ we should recourse to numerical solution. The 
derivative of equation (24) with respect to λ is 
 

 )(K)(K
3

2

3

4
:

d

d
2)(g 1n1n1n

1n


 


 ξ
ξ

 (25)
 

 
Computing the derivative of ξn+1 with respect to λ with the help of equations (15)5 and 

(21)3 and substituting into equation (25) results in the following equation. 
 

 )(K)(K
3

2

3

4
:)(H

3

2
G22)(g 1n1nn1n1n  



  nξ  (26)

 

 
Given g(λ) and )(g  , the kth step of the numerical solution of λ for SMPT1 algorithm 

can be summarized as follows. 
 

 

)(K
3

2
:)(g k

1n
2k

1n
k

1nk   ξξ  













   )(K)(K

3

2

3

2
:)(H

3

2
G22)(g k

1n
k

1nn
k

1n
k

1nk nξ

)(g

)(g

k

k
1k 


   

)(g

)(g

k

k
k1kk1k 


   

 (27) 

 
where k

1nξ and k
1n are the updated values of ξn+1 and αn+1 in step k and are computed using 

the following relations. 
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)(H)(HH,H
3

2
G2 n

k
1n

k
1nn

k
1nk

trial
1n

k
1n 








  nξξ

k
trial

1n
k

1n 3

2
   

 (28) 

 
The procedure for solving λ should be repeated until ∆λk+1 becomes smaller than a 

predefined tolerance. In the case of SMPT2 algorithm, the consistency condition to be 
satisfied is 

 
0)(K

3

2
f nnn   ξ

 
(29)

 
 
Observing equations (21) and (22) it is evident that the equation (29) as a function of λ 

can be written in the following form.  
 

 0)(K
3

2
H

3

2
G2)(g nn

trial
n 








 ξ  (30) 

 
Taking the derivative of equation (30) with respect to λ results in the following equation.  
 

 



 
 

G3

)(K)(H
1G2)(g nn

 (31)
 

 
Based on equations (30) and (31) the kth step of the numerical solution of λ for SMPT2 

algorithm can be summarized as follows. 
 

)(K
3

2
H

3

2
G2)(g k

n
k
nk

trial
nk  








 ξ  








 
 

G3

)(K)(H
1G2)(g

k
n

k
n

k  

)(g

)(g

k

k
1k 


   

)(g

)(g

k

k
k1kk1k 


   

(32)

 
where k

nH  and k
n  are the updated values of ∆Hn+α and αn+α in step k and are computed 

using the following relations. 
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)(H)(HH n
k
n

k
n    

k
trial
n

k
n 3

2
   

(33)

 
Pictorial illustrations of SMPT1 and SMPT2 algorithms as well as a detailed discussion 

about these algorithms for linear isotropic/kinematic hardening can be found in [2]. 
 

3.2 DMPT1 and DMPT2 algorithms 
Double step algorithms perform the return mapping procedure twice per time interval, first 
at tn+α and then at tn+1. Consequently the amount of computations required to accomplish a 
single step of DMPT1 and DMPT2 algorithms is dramatically increased compared with 
SMPT1 and SMPT2 algorithms. In the first step, both algorithms perform a backward Euler 
integration over the subinterval [tn, tn+α]. This is the presence of the second step which makes 
the two algorithms different from each other. 

The second step of DMPT1 algorithm comprises of a midpoint integration rule that is 
applied to the time interval [tn, tn+1]. The consistency condition is enforced at the end of time 
interval along the normal tensor nn+α which is computed in the first step. Conversely, as the 
second step, DMPT2 performs an extrapolation of the results obtained in the first step and if 
necessary projects them onto the yield surface [2]. 

It was mentioned that applying a backward Euler integration rule over the subinterval 
[tn, tn+α] constitutes the first step of DMPT1 and DMPT2 algorithms. Therefore the 
algorithmic setup for the first step can be formulated as follows. 

 

  n1
p
n

p
n nee  

)(G2 p
nnn   ees  

)(H)(HH,H
3

2
nnnnnnn   nββ  

  nnn βsξ  

  n11nn t,
3

2
 

(34)

 
where λ1 is the plastic multiplier for the time interval [tn, tn+α] and is computed by enforcing 
the consistency condition at time instant tn+α. 

The procedure for solving the set of equations (34) is similar to the one used for SMPT1 
and SMPT2 algorithms. In other words, it is initially assumed that the evolution of variables 
over the time interval [tn, tn+α] is elastic and if the trial values violate the consistency 
condition, a plastic correction is employed. Based on the elastic hypothesis the trial step is 
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p
n

trial,p
n ee   

nnnnn
trial
n ,G2 eeeess    

n
trial
n ββ   

trial
n

trial
n

trial
n   βsξ  

n
trial
n    

(35)

 
If the trial relative stress satisfies the yield condition, i.e.  
 

 

  0K
3

2 trial
n

trial
n  ξ

 (36)
   

the time interval [tn, tn+α] is elastic and the trial variables are considered to be the correct 
ones. Otherwise if the relative stress does not satisfy the yield condition, a plastic correction 
as specified by the following equations should be applied. 

 

  n1
trial,p

n
p
n nee  

  n1
trial
nn G2 nss  

  nn
trial
nn H

3

2
nββ  

 







 nn1

trial
nn H

3

2
G2 nξξ  

1
trial
nn 3

2
   

(37)

 
The plastic multiplier λ1 is calculated by enforcing the consistency condition at time 

instant tn+α, i.e. the following equation should be satisfied. 
 

 0)(K
3

2
f nnn   ξ  (38)  

 
After a few mathematical manipulations, it can be shown that the following steps should 

be taken in order to numerically solve the equation (38) for λ1. 
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 (39) 

 
where k

nH  and k
n  are the updated values of ∆Hn+α and αn+α in step k and are computed 

using the following relations. 
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(40)

 
In the previous derivations, it should be noted that nn+α is the normal tensor at time 

instant tn+α and regarding the equation (37)4 it can be computed using a co-alignment relation 
similar to equation (22). 

The second step of DMPT1 algorithm, after applying a backward Euler integration 
method over the subinterval [tn, tn+α], consists of an integration using midpoint rule over the 
time interval [tn, tn+1]. The algorithmic setup is as follows 
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3

2
 

(41)

 
where nn+α is the normal tensor at midpoint and is computed in the previous step. The plastic 
multiplier λ2 is calculated by enforcing the consistency condition at the end of time step. 

As usual, the solution of the set of equations (41) is pursued by initially assuming that the 
evolution of variables is elastic. Thus the trial step can be written in a form similar to 
equations (16). If the trial relative stress satisfies the yield condition, i.e. the equation (17) 
holds, the trial variables are the correct ones and no further updating is necessary. However 
if this is not the case, a plastic correction as specified by the following equations is required. 
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(42)

 
The plastic multiplier λ2 is computed by requiring that the yield function be satisfied for 

the relative stress ξn+1, i.e. equation (23) should hold. Following the same procedure used for 
SMPT1 algorithm, the numerical solution of λ2 can be summarized as follows. 
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(43)

 
where k

1nξ and k
1n are the updated values of ξn+1 and αn+1 in step k and are computed using 

the following relations. 
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(44)

 
From the previous discussion it is evident that the second step of DMPT1 algorithm is 

similar to SMPT1 algorithm, but with the difference that the normal tensor nn+α in DMPT1 
algorithm is computed in the first step. 

As the second step, DMPT2 algorithm extrapolates the results obtained in the first step to 
the time instant tn+1. If it is assumed that the evolution of variables over the time interval 
[tn, tn+1] is linear, then the extrapolation can be performed with the help of equations (15) by 
expressing the quantities at time instant tn+1 in terms of the quantities at time instants tn and 
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tn+α. The variables obtained in this way constitute the trial state for the second step. 
Therefore the trial state can be written as 
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(45)

 
If the trial relative stress trial

1nξ satisfies the yield condition, i.e. 
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 (46)  
 

the trial variables are the correct ones and no further updating is required. However, if the 
trial relative stress trial

1nξ violates the yield condition, a plastic correction according to the 

following equations is required. 
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(47)

 
where nn+1 is the normal tensor at time instant tn+1 and can be computed using the following 
relation. 
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Straightforward algebraic manipulations lead to the following set of equations for 
numerical solution of λ2. 
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(49)

 
where k

1nH  and k
1n are the updated values of 1nH  and αn+1 in step k and are computed 

using the following relations. 
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(50)

 
Pictorial illustrations of DMPT1 and DMPT2 algorithms as well as a detailed discussion 

about these algorithms for linear isotropic/kinematic hardening can be found in [2]. 
 
 

4. NUMERICAL EXAMPLES 
 

In this section, numerical examples are used to compare the SMPT1, SMPT2, DMPT1 and 
DMPT2 algorithms under various loading conditions. In order to solve examples, a finite 
element program has been developed in C++ and the four integration algorithms as well as 
the backward Euler method have been implemented into it. The backward Euler method is 
adopted as the reference in all numerical examples. 

The isotropic and kinematic hardening rules are of the exponential type as specified by 
equations (12). The elastic properties of the material are taken as E = 7000MPa, ν = 0.3, and 
the parameters in the saturation type of hardening rule are MPa35K  , MPa30K0  , δ = 

0.1, MPa280H   and β = 0.8. 
The numerical examples fall into three groups. In the first one, a typical mixed stress-strain 

loading history is considered [2]. Error graphs are used to investigate the convergence of 
algorithms to the exact solution. In the second example, a set of non-proportional loading 
histories are employed to build iso-error maps. The iso-error maps are then used to study the 
accuracy of algorithms. The third example is a perforated strip subject to uniaxial tension. The 
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aim of this example is to assess the reliability of algorithms in real engineering applications. 
4.1 Mixed stress-strain loading history 
The biaxial non-proportional stress-strain loading history shown in figure 1 is considered in 
this section. The loading history is obtained by controlling ε11 and ε22 [2]. In order to study 
the convergence history, error graphs are used to evaluate the error produced by different 
algorithms. To provide a relationship between the error and the size of time step, the 
following error measure is introduced. 

 
ex
n

ex
n

nE





 (51) 

 
where ||●|| is the Euclidean norm and ex

n is the stress at time instant tn computed using the 

backward Euler method with a very fine time discretization. Figures 2-3, present the error 
graphs for SMPT1, SMPT2, DMPT1, and DMPT2 algorithms employing ∆t = 0.1s. 

Regarding the error graphs, it is clear that the performance of DMPT2 algorithm is 
considerably better than the other algorithms while the performance of SMPT2 algorithm is 
the worst. Other aspects such as the linear and quadratic accuracy of algorithms can be 
investigated as well [2]. 

  

 

Figure 1. Mixed stress-strain loading history 
 

4.2 Iso-error maps 
Iso-error maps are extensively employed by researchers as a systematic procedure to assess 
the accuracy of a proposed algorithm. In the literature, iso-error maps are generated by 
applying a set of normalized strains in principal directions. A detailed description of this 
procedure can be found in [7] or in [12]. In order to build the iso-error maps, the following 
formula is used to measure the error in stress compared with the exact value. 
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 100
:

)(:)(
E

exex

exex

iso 



  (52)  

 
where σex is the stress computed using backward Euler method with a very fine 
discretization. The iso-error maps shown in figures 5-7 correspond to points A, B and C of 
the yield surface in figure 4 and are generated for α = 0.5. 

 

 

Figure 2. Error for SMPT2 algorithm 

 

Figure 3. Error for SMPT1/DMPT1 and DMPT2 algorithms 
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Figure 4. Plane stress yield surface. Points for iso-error maps 

BE            SMPT1/DMPT1   

 
%0.2E max,iso      %4.2E max,iso    

SMPT2      DMPT2   

 
%7.2E max,iso      %5.1E max,iso    

Figure 5. Iso-error maps for point A of the yield surface 
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BE  SMPT1/DMPT1 

%3.3E max,iso     %5.2E max,iso   

 
 
  SMPT2      DMPT2   

%6.15E max,iso      %1.2E max,iso   
 

Figure 6. Iso-error maps for point B of the yield surface 
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BE             SMPT1/DMPT1   

  
  %9.8E max,iso              %4.4E max,iso      

 
        SMPT2                                                   DMPT2    

  
%0.8E max,iso                     %3.3E max,iso    

Figure 7. Iso-error maps for point C of the yield surface 
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Point A           Point B   

        %5.1E max,iso            %5.2E max,iso   

 
Point C 

 
%7.7E max,iso   

 

Figure 8. Iso-error maps for SMPT2 algorithm for α = 0.86 
 
The error range for each iso-error map is divided into 10 error levels. The maximum error 

for each iso-error map is also reported. Regarding figures 5-7 the following observations can 
be made: 

 As a first order method, the behavior of backward Euler is quite satisfactory showing 
low error levels for large time steps [2]. On the other hand, DMPT2 method has the 
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lowest error levels compared with other integration methods. 
 SMPT2 method has the worst performance among the five integration methods 

analyzed here. The poor performance of SMPT2 is attributable to two factors; the 
first is the choice of α = 0.5 for which the accuracy of second order methods in large 
time steps deteriorates [5, 6] and the second is that the consistency condition for 
SMPT2 method is imposed at midpoint while the values of stresses are reported at 
the end. The lowest value of α for which the results of SMPT2 algorithm are reliable 
is 0.86. The iso-error maps for this case are shown in figure 8. 

 From the iso-error maps shown in figure 8, it can be inferred that the accuracy of 
SMPT1, SMPT2 and DMPT1 improves for values of α close to 1. This result agrees 
with the conclusion made previously by many authors [6]. 

 

 

Figure 9. Perforated strip under uniaxial tension 
 

4.3 Perforated strip subject to uniaxial tension 
In this example, the extension of a perforated strip in plane strain condition is considered. 
Due to the symmetry of geometry and loading only a quarter of the plate is analyzed. The 
geometry of the plate and the finite element mesh are shown in figure 9. A total of 192 
quadrilateral plane strain elements with 4 integration points and linear displacement 
interpolation along each direction are used to model the plate. The load that applies to the 
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plate increases proportionally up to six times the initial yielding. 

 

Figure 10. Error graphs for different algorithms with α = 0.5 
 
The error graphs for BE, SMPT1, SMPT2, DMPT1 and DMPT2 algorithms with 

∆t = 0.2s are shown in figures 10 and 11 for α = 0.5 and α = 0.80 respectively. Regarding the 
error graphs the following observations can be made: 
 For single step, second order methods such as SMPT1 and SMPT2 choosing a larger 

value for α (preferably between 0.7 and 0.8) leads to more accurate results [5, 6]. 
 Increasing the value of α also improves the behavior of double step methods such as 

DMPT1 and DMPT2. In the case of α = 0.80, the behavior of DMPT1 and DMPT2 is 
considerably better than BE. 
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Figure 11. Error graphs for different algorithms with α = 0.80 
 At α = 0.80, the second order algorithms are competitive in terms of the error that is 

produced. From figure 11, it can be seen that the error level at different stages of 
loading is approximately the same for all second order algorithms. Considering the 
peaks and valleys in the graph, it can also be inferred that second order algorithms are 
more stable compared with backward Euler method. 

 As a performance test with α = 0.80, the model was fully loaded in one step only. Time 
elapses and the number of iterations required to complete the analysis on a machine 
with dual core 3.0GHz CPU are listed in table 1. Regarding the values it is observed 
that the time elapses and the number of iterations for second order algorithms except 
SMPT2 are close to backward Euler.  

 
Table 1: Time elapses and number of iterations for different algorithms 

Algorithm No. iterations Time (s) 

BE 23 12 

SMPT1/DMPT1 22 11 

SMPT2 40 21 

DMPT2 24 12 

 
 

5. CONCLUDING REMARKS 
 

In this work, existing second order integration methods were extended to general 
isotropic/kinematic hardening for classical J2 plasticity. Several numerical examples 
including mixed stress-strain loading histories, iso-error maps and boundary value problems 
were presented to assess the numerical aspects of these algorithms. 

Based on numerical tests it was demonstrated that the behavior of DMPT2 algorithm in a 
displacement controlled mechanism is notably better than the others. On the other hand, 
regarding the quadratic convergence of a second order algorithm, the behavior of SMPT2 
algorithm is very poor. In a force controlled mechanism, it is more appropriate to choose α 
between 0.7 and 0.8 in order to have an improved performance compared with backward 
Euler method. Numerical examples show that for α = 0.8 the CPU time that is consumed by 
DMPT1 and DMPT2 algorithms is approximately the same as backward Euler method but 
with higher accuracy.  

It should however be noted that the accuracy of second order algorithms is sensitive to 
many parameters such as the value of α, the size of time step, the tolerances that are imposed 
and even the efficiency of method that is used to solve the set of equations in each iteration. 
Consequently the combination of parameters that works fine for one algorithm might not be 
suitable for another. The choice between second order algorithms is therefore influenced by 
the set of parameters being selected, the type of problem under consideration 
(displacement/force controlled) and of course the burden that is anticipated for coding the 
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specific algorithm. 
APPENDIX A 

 
In this appendix, the derivation of tangent operators for SMPT1, SMPT2, DMPT1 and 
DMPT2 algorithms is presented. 

 
A.1 SMPT1 algorithm 
Taking into account the deviatoric and volumetric part of the stress, using equations (1) - (3) 
one can write the tangent operator in the following form: 
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Taking the derivative of equation (14)2 with respect to εn+1 and using the equation (14)1 we 
have 
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where I and ι are respectively the second and fourth order identity tensors. Using equation 
(24) as the starting point and after straightforward algebraic manipulations one finds 
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Using the second equality of equation (22) it is found that 
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Substituting equations (A6) and (A3) into equation (A2) and the result into equation (A1) 
finally leads to the following equation for tangent operator. 
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It is clear that the presence of the last term in equation (A7) renders the tangent operator 
unsymmetric. 

 
A.2 SMPT2 algorithm 
For SMPT2 algorithm, the tangent operator is 
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with 
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n
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
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ξ
 (A10)

and 
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)(K)(H
1

1
B

nn  


  
(A11)

 
A.3 DMPT1 algorithm 
In the case of DMPT1 algorithm, the equation (A1) still holds. Taking the derivative of 
equation (41)2 with respect to εn+1 and using the equation (41)1 we have 
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 (A12)

 
Using the first equality in equation (22) it is found that 
 

 



















n

n
nn
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ε

ξ
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 (A13)

 
The derivative of ξn+α with respect to εn+α can be obtained with the help of equation (37)4 as 
follows. 
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with 
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 (A15)

and 
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Substituting equation (A14) into equation (A13) leads to the following equation. 
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It should be noted that if λ1 = 0, i.e. the yield condition at midpoint is not violated, then the 
following equation replaces the equation (A17). 
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The derivative of λ2 with respect to εn+1 is 
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with B defined in equation (A4). Substituting equation (A17) or (A18), whichever 
applicable, into equation (A19) leads to the following equation. 
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C
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(A21)

and 
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Observing equations (A1), (A12), (A17), (A18) and (A20), the tangent operator for DMPT1 
algorithm can be written in the following form. 
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with 

A
~

A 2  (A24)

 
The similarity between equations (A7) and (A23) is noteworthy. It is easy to check that if 
λ1 = 0, the equation (A23) reduces to the equation (A7). 
 
A.4 DMPT2 algorithm 
In this case, the equation (A1) still holds. Using equations (47)2 and (45)2 the derivative of 
sn+1 with respect to εn+1 can be computed as 
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where the derivative of sn+α with respect to εn+α is 
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and 

G3

)(K)(H
1

1
B

nn  


  
(A28)

 
Using equations (23) and (47)4, the derivative of λ2 with respect to εn+1 is obtained as 
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Observing the equation (45)4, it is evident that 
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with A and B given by equations (A15) and (A16). Substituting the equation (A32) into 
(A29) leads to 
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The derivative of nn+1 with respect to εn+1 is computed as 
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Substituting the equation (A32) into (A34) leads to 
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Substituting equations (A26), (A33) and (A35) into equation (A25) and the result into 
equation (A1) finally leads to the following equation for tangent operator. 
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The last term in equation (A36) renders the tangent operator unsymmetric. 
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