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ABSTRACT

In this paper, a new canonical form is introduced for efficient analysis of structures with
specia geometric properties. Using the properties of this matrix, the number of operations
needed for the matrix inversion is considerably reduced employing the decomposition of the
block stiffness matrices. The condition for. applicability of the presented method is aso
discussed. For the previously developed canonical forms, the Kronecker products and the
corresponding theorems could be used for certain class of repeated structures. Here this class
is extended to the stiffness matrices having more general block tri-diagonal form where the
diagonal blocks are not necessarily identical, requiring a different treatment. Two examples
of finite element models are analyzed to illustrate the efficiency of the presented method.

Keywords. Canonical forms; block tri-diagonal matrix; regular structures; finite element
models; stiffness matrix; matrix inversion

1. INTRODUCTION

In the previous researches, different canonical forms for the stiffness matrices have been
studied and methods were presented for efficient eigensolution of such matrices [1-3].
Having the eigenvalues the calculation of the inverse becomes feasible. In the previous
studies, the matrices had repeated patterns and we could express them in the form of the sum
of the Kronecker product of some matrices.

These relations can be used for the analysis of structures which are modular. As an
example of these structures one can refer to shell structures formed from many finite
elements. Analysis of such structures can be time consuming and requires considerable
storage for mathematical operations. Another example of such structures is plate structures.
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In this paper we use mathematical approaches for the analysis of plates having high
number of elements. The simplification is achieved by operating on small matrices in place
of large matrices of the plate structures. For this analysis we use finite element method
which is briefly described in the following section. In Section 2 the geometric model of the
plates and the characteristics of the stiffness matrices are described. Then the basic concepts,
shape functions, degrees of freedom and at the end the stiffness matrix are presented. The
formation of the stiffness matrix considering the geometric properties and nodal numbering
to obtain the specia pattern are the important parts of this section.

Mathematical methods for inverting block diagonal matrices are then presented and by
comparing the matrices involved in these methods with the matrices of the plates studied in
this paper, simple equations are derived for the analysis of the plates. It should be mentioned
that in these operations one tries to use the geometry to form stiffness matrices of special
form. Using these properties the number of operations for inverting the stiffness matrices is
reduced. Based on the presented method using other special geometric forms, one can obtain
different canonical forms and using these forms the equations for simple inversion of the
matrices can be obtained. Finally these relationships are used for the efficient analysis of
space trusses.

In brief it should be mentioned that the present method is applicable to those structures for
which the stiffness matrix in block tri-diagonal, however, these blocks need not be identical.

2. ANALYSISOF PLATESBY FINITE ELEMENT METHOD

Plate elements are the most well-known plane elements having both rotational and
trandlational degrees of freedom (DOFs). These elements are categorized as plate and shell
elements. The main difference of these elements is in the number of their DOFs, resulting in
difference performance under identical loading. Plates show bending behavior and the only
out of plane action is defined by the displacement vertical to the plane of the plate, while the
membranes have in-plane behavior and have no stiffness under the out of plane loading. In
this study only the behavior of plates will be studied.

Unlike the finite difference method which uses the differential equation of the
deformation’ of . the plate, the numerical methods employ the interpolation functions for
relating the deformation of each point of the plate to the nodal displacements of the model.
Therefore having these functions, one can easily obtain all the characteristics of the elements
and structures such as mass matrix, stiffness matrix, load vector etc.

The main aim of this paper is to present an efficient approach for matrix inversion and
plate elements described are only employed as examples. Here, the assumptions and the
steps of the analytical characteristics of a plate element are briefly description, and for
details the reader may refer to Refs. [4-6].

2.1 MZC and BFSplate elements
As mentioned above the plates have both bending and out-of-plane stiffness. This means that
for each element in each node at least 3 degrees of freedom (two rotational and one vertical
displacement) should be considered.

The element MZC is developed by Melosh-Zienkiewicz-Cheung is a non-conforming
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bending element for plates. This is because in bending the normal slope for this element is
not compatible. The general form of this element is a trapezoidal element as shown in Figure
1. The element forces and displacements are as follows:

D

2)

Figure 1. Trapezoidal dement of MZC

Choosing a complete polynomial function of order 3, the shape functions of a rectangular
element can be obtained. Obviously for any other four-sided element like trapezoidal
element, the integration should be performed in the lengths corresponding to the element.
The shape functions are defined as follows:

fo={f,.f,.f,} ,i=1:4
o=@ g )isn)ers +m-to) | i=1:4
fo=- Sbn(Le )L n)Lrn) | i=1:4
fo=sax (i E)Lemlies ) | i=1:4
&=&E m=nn , i=1:4

Considering the definition of the general linear operator d which is given by Eq. (3) the
strain-displacement of B matrix can be obtained as provided by Eq. (4).
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Based on this matrix one can find the stiffness matrix and the nodal forces of the element
using Eq. (5) and Eq. (6), respectively.

K=¢p EBdA (®)

B Ej,
98 (6)
In these relationships j , is the initia strain. After analysis one can find the initial stress

of the elements.
The BFS element was developed by Bogner-Fox-Schmit. In this element apart from the
DOFs of MZC some warping is aso included. In this case, the slopes of the edges in two

directions are compatible. The displacements and the DOFs of this element are illustrated in
Figure 2. According to the definition, the nodal displacements can be expressed asin Eq. (7).

r‘ii 1

Figure 2. Trapezoidal dement of BFS
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For this element the displacemnet function should be selected such that apart from 3
noda displacements, linear variation and second order vertical slope at the edges in both
direction should also be fulfilled. Therefore, apart from a complete polynomial of order 3
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with 10 terms, 6 additional terms should be considered as the following:

W=a, X’y +a,Xx+ay+a,X> +asy’ +agxy +a, X’ +agy° +a X’y + ...

8
e ByXy” +8, XY+ 8, XY + 8, XY A, XY +aX Y +a Xy ©
In fact this function is an incomplete polynomia of order 4. Utilizing this function one
can find the shape functions of the element, or using Egs. (5 and 6), the stiffness matrix and
the load vector can be found and the analysis can be performed.
As it can be seen from the number of DOFs of the elements, one can find the stiffness
matrix of each MZC element as 12" 12 and for the BFS element this matrix.is 16~ 16 .

2.2 Analysis of plates with regular mesh

In order to increase the accuracy of the analysis of plates, usually the elements are refined to
smaller elements of different shapes. Since the analysis of these models is performed in an
identical manner, thus one can analyze the entire model simpler using smaller number of
elements. In other words instead of a plate with 3n or 4n degrees of freedom (n being the
number of nodes) one can analyse the plate with a fraction of these DOFs as many times as
needed depending on the geometry of the model. The method utilized in this section can be
used for the analysis of al those plates which fulfill the following two requirements:

1. The elements constituting the entire nodel should be decomposible in two direction
and dl the elements along each axis should be'identical. This means that the graph
corresponding to the finite element model should be in the form of the Cartesian
product of two paths P and P.

2. The boundary conditions in.each edge should be in a continuous form for al the
nodes.

These two conditions permit: the selection of a repeated row in the model and then order
the nodes row by row for the entire model. Obviously the stiffness matrix of this model will
be a block tri-diagona matrix.

In Ref. [4] the detrminants of such matrices are calculated. In Ref. [5] an iterative
algorithm is provided for block tri-diagonal matrices and using the constituting blocks, the
matrix is inverted. Here we use an LU factorization.

For investgation of the model and the way it works, a plate is considered as shown in
Figure 3. This plate is decretized into trapezoidal elements.

P
.

Figure 3. Trapezoidal dements with regular pattern
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As can be seen the bands in both directions are obvious, however, there is no similarity
among the elements from positioning and the geometry point of view. The supports are in
the lognitudnal edges in a continuous manner. Considering the element MZC described
previously, the stiffness matrix of the plate can be obtained in the form of Eq. (9). In this
example we have want to illustrate the general canonical form of the stiffness matrix, while
as will be described in the following, specia cases will aso be inverstigated.

éK, KL, 0 0 0 U
&Ko, K, . 0 0§
K =g 0 KL 0 3
éo o0 K Kg KjU (9)
50 0 0 K, K

The stiffness matrix of the plate for the free DOFs is'a 90° 90 matrix, and in this
example it is a block tri-diagonal matrix. Each block is a 10" 10 matrix. Thus one can
perform all the opertions with 10” 10 matrices which is less time consuming compared to
operting with the 90" 90 matrix.

Now acoording to what is explained the coming section, for the models with regular
geometry the following pattern can be obtained for the stiffness matrices:

éB, -A" 0 O 0ou
é . a
eA B, AN 0 0y
K=£0 oY
< u
éeo 0 -A B, -Al (10)
§0 0 0 -A By

In this case, the above matrix can be decomposed into the product of two matrices [L]
and [U] as shown inthe following:

am
»—\'_ =
I
N
'
. C
i

(11)
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Inthisrelation [L] and [U] are obtained using the following iterative approach:



A NEW BLOCK TRI-DIAGONAL STIFFNESS MATRIX FOR EFFICIENT... 263

jU, =H;'B,(i =1
i<jiL=AH =B, =1

fU, =H*((Ad), H, =B,-LU,,(=2:j-1)
i> j ;L2 :A(I;HK :B3,Ui :Hi;llA,Hi :BZ-LZUi(i =k-1: j+1)

iH =B-LU;, ,i=1
i=j;L, =AU, = Hi_ilA’}_Hi =B,-LU_-LU, ,1<i<K
{Hi:BS-LlUi—l ,i=K

Now using [U] and [H] uutilizing Eq. (13) the inverse of the stiffness matrix can be
obtained.
: KG =H}?
K =UK (=]-10) 3
+Ki}l =U K7 (=j+1:K
As it can be seen al the operations are performed on the blocks matrices. Only 4
fidderent block exist in the main stiffness matrix. And the operations are performed on three
blocks. Atb the end having the inverse matrix, the complete analysis of the plate will be
performed and al the displacements can be obtained. An interesting point is that in this
method one does not need to have a symmetric loading and any general loading can be
handled. In what follows the approach for transforming the general matrix of Eqg. (9) to the
stiffness matrix of Eq. (10) will be discussed.

4. SPECIAL CONDITIONSFOR THE FINITE ELEMENT ANALYSIS OF
PLATESWITH REGULAR GEOMETRY

As mentioned in the previous section there is no restriction in positioning orthe shape of the
elements. If special conditiond hold fot the geometry of the plate, the relations can be
simplified and the time and storage required will be reduced, and the specia form of the
stiffness matrix will be attained.
(&  The most common descretiztion of a plate for its analysis is when the elements
form some bands as shown in Figure 4.

Figure 4. Discretiztion of a plate with regular geometry having similar bands in each row
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As it can be seen, the trapeziodal elements are in both vertical and horizontal dirctions
and as an example &l the elements in vertical direction are completely identical. In such a
case the stiffness matrix will be in the form of Eqg. (14). As it is obvious from this
relationship due to the repetition in each row one can observe similar K2 matrices on the
main diagonal. In such a case using the relationships for inverting the matrix , the inversion
of some blocks can be avoided.

&, K] 0 0 0u
é . a
K, K, Kj 0 0y
_e u
K=20 Ky K, K 04 (14
€0 0 K, K, KU
é 5 2 6 l:l
O 0 0 Ki Ky

(b)  the second case occurs when al the constituting elements of the plate are identical
as shown in Figure 5. In this case the stiffness matrix will be in the form of Eq. (15).

ey r ey 4

ke b=

Figure5. A finite dement modd wit regular geometry and identical e ements

&, KI 0 0 0
é . a
&K, K, Kl 0 04
_€e u
K=g0 K, K, Kj 04 (15)
€0 0 K, K, KJU
é 4 2 40
O 0 0 K, Ky

In fact all the relations in Eq. (12) can be caculated based on 4 above matrices, and this
reduces the number of operation for inverting the stifness matrix drastically. On the other
hand it avoids working with large scale matrices and uses far less computational storage. In
the following an example is provided to illustarte the use of the presented method.
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5. A SOLVED EXAMPLE OF PLATE USING THE SIMPLIFIED
INVERTING METHOD

265

In this section the analysis of a stedl plate is explained using the present method. For

avoiding the complexities of the stiffness matrix, simple rectangular elements are utilized
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(b)
Figure 6. (a) The geometric mode of a plate with BFS (b) Loading of the plate

A stedl plate of 2.00m by 1.00m with thickness of 0.03m is considered as shown in
Figure 6(a). This plate has a loading as shown in Figure 6(b) and magnitudes provided in
Table 1. The modulus of elasticity of the plate is taken as 1.99*10"'N/m?. For the analysis
BFS elements are used due to its high accuracy. Descretization of the plateis 10” 20. The
nodal numbering is shown on each element.
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Table 1: Nodal loading of the plate

Node 5 13 16 25 27 37 38 46 49 60 61 65 71 73 82 8 93 9 104 109 115

F,kN) 5 10 5 12 5 5 5 20 5 20 7 20 20 15 20 9 20 10 20 20 20

For the analysis of this plate first we form its stiffness matrix. Having 121 nodes for this
plate each having 4 DOFs, the stiffness matrix will be a 484" 484 matrix. After imposing
the boundary conditions this matrix becomes 462" 462 . Thus according to the considered
nodal numbering, the stiffness matrix will be obtained in the following form:

€B, AT 0 0O O ou
é T u
éA B, A 0O O 0y
Et* €0 A o ol
Kaszasr =7 € u
12(1-n“)e0 0 . 0u
é u
(:30 0 0 . B, AT@
g0 0O O 0 A B3H11’11

As it can be observed the dimensions of the blocks are42” 42. Here part of these 4
matrices areillustrated.

¢155 -084 0045 573 ' . 0 0 0 0 0
2—0.84 113 -0.034 . . . 0 0 0 3
€0.045 -0.034 . . . . 0 0 0
e u
@ 5.73 0 l;l

B, =10°€ _ .G
e u
& 0 . -0.001y
g 0 0 0.84 -0.045Y
g6 0 0 0 . . 0.84 1.13 -0.034(
&0 0 0 0 .. -0001-0.045 -0.034 0.002Y

€310 0 009 0 .. 0 0 0 0 U
é u
& 0 226 O . . . . 0 0 0 a
009 0 . : S : 0 0
e u
e 0 0 g
B,=10°¢ . . a
e u
e 0 . . . . . . . -0.002@
g 0 0 . . S . . 0 -009U
e o 0 0 . . . . 0 2.26 0 u
g v
€0 0 0 0 .. -0002-004 0 0004Y
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€155 084 0045 -573 . . 0 0 0

0 u
20.84 113 0034 . . . 0 0 0 3
80.045 0034 . . L . . 0 0 d
e u
(?5.73 0 G
B, =10°¢ . .G
e u
(:g 0 . . . . . . -0.001@
g 0 0 . . L . . -0.84-0.0453
6 0 0 0 . o . -084 1.13 0.034
é
0 o0 0 0 .. -0.001-0.045 4.19 ooozum2
¢-071 062 -0019-723 . . 0 0 0 0 U
g-o.ez 064 -0.022 . . . 0 0 0 3
€-0.019 0022 . . . L . 0 0 d
e u
A =10°¢ . . a
e u
g O . . . . A } . 0.0006);
g 0 0 . . N . . -062 0.0193
& 0 0 0 . e . . 062 064 -0.022 u
é
g 0 0 0 0 : .0.0006 0.019 0.022 -0.0006

It can be seen that in this example according to Eqg. (10) we at at most four different
matrices, and thus one can use Eg. (12) to obtain [L], [U] and [H]. As an example, after
performing the required opergtions, the matrices [Ug.;]Jand [Hy] in the last step (j=k=11) are
illustrated.

-0.264 -0.115 -0.0057 -0.68 . : 0 0 0

e 0 0
g 0.305 0.304 0.0114 . . . . 0 0 0 g
& 260 -1.21 . . . . . . 0 0 U
€ 0.0068 o U
e u
u,=6€ . .U
Y8 a
e 0 . . . . . . . 0.040
g 0 0 . . . . . 0.115 00057u
6 0 0 O . . . . -0.305 0.304 00114u
e
& 0 0 O 0 . . 0058 -260 -121 0070 {_



268 A. Kaveh, H. Rahami and P. Pezeshky

€1.15 046 312 239 . . 206e-6 -16e-5 O 0

a
20.46 074 0021 . . . . 0 0 0 3
€0.031 0021 . L . . 0O 0
e u
g0029 . . L . . . -15E-6y
H, =10°¢ . . . S . . . .
u
82.06E-6 . . . o . . . -860 |
2—1.61E-50 . . . -0.46 -3.82 3
e 0 0 0 . o . -046 073 247 |
é 1]
& 0 0 0 0 . . -7E-3 -0031 002000001}

Having the [H] and [U] matrices and using Eq. (13), the inverse of [K] can be calculated.

At the end having the equation of force, the displacements of the structure can be
calculated. For simplicity the displacements of the nodes 5 to 115 are shown in Table 2. The
dimension of the length is meter and that of rotation is Radian.

Table 2: The displacements of thefifth column

Node

Defl 5 16 27 38 49 60 71 82 93 104 115
w 0069 -0068 -0.068 -0.069 -0.069 -0.070 -0072 -0.074 -0.076 -0.078 -0.082
:TTW 0010 0004 -0.001 -0.005 -0009 -0.013 -0016 -0.019 -0.023 -0.028 -0.035
X
W
W 0030 0030 0030 008 0031 0032 0033 0034 0035 0036 0038
Ty
T°w
ot 000 -0.002 -0.004 -0.006 -0.008 -0.009 -0.009 -0.010 -0.011 -0.013 -0.015
xTly

As it can be observed, for the analysis of this plate using the present method instead of
inverting a matrix of dimension462” 462 matrix, we need only the inverse of matrices of
dimension 42" 42.

6. AN EXAMPLE OF 3D TRUSSANAYIZED BY THE SIMPLE INVERTING
METHOD

In the following the capability of the present method in efficient analysis of 3D trusses is
illustrated. This model consists of two horizonal planes connected to each other by inclined
members. The horizontal planes has moved with respect to each other with 2.00m in X-
direction and 1.50m in the vertica direction. The height of two planes is 2.00 m. The lower
plane has 6 bays each being 4.00m in the X-direction and 11 bays of 3.00m in the Y-
direction. The upper plane is a similar one, with the only difference of having 5 bays in the
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X-direction. The geometrical properties of the members are provided in Table 3 and the
loading isasin Table 4.
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Figure 7. (a) Three dimensional modd of the structure (b) The span lengthsin the plan (c)
Loading at the nodes of the upper horizontal plane (d) Nodal numbering for the two sectors of
the structure

The elsatic modulus of the materia is 2* 10" N/m?. The structure is supported in a pinned
form along the two rows parallel to the Y -axis.

Table 3: The sections used in the structure of Figure 7

Properties A(M?)  I(mY  Iy(m?)  J(m?)
Element E-4 E-8 E-8 E-8

Bot plane, X Dir. 23.90 1317.00 101.00 4.73
Top plane, X Dir. 13.20 318.00 27.70 1.69

Bot. & top plane, Y Dir. 20.36 60440 6260 537
Diagonals 11.02 10580 1940  2.00
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Table 4: Loading of the structure of Figure 7

Node
Loading

73 74 75 7% 8 86 87 88 89 98 102 111 115 124 127 139 153 154 155

Load
(kN)

Direction Z X Z Z Z X X 4 4 Z X Z X Z X Z Z Y Y Y

-0 -2 -15 -15 -10 4 -2 -15 -15 -10 4 -10 4 -10 4 -10 -10 8 8 8

For the analysis of this structure first we form its stiffness matrix. Having 156 nodes for
this plate each having 6 DOFs, the stiffness matrix will be a 936" 936 matrix. After
imposing the boundary conditions this matrix becomes 864" 864 . Thus according to the
nodal numbering shown in Figure 7(d), the stiffness matrix will be obtained in the following

form.
é8, A 0 0 0 O u
é T a
A B, A 0 0 0y
K _gO A 0O © 3
BB a0 0 . .. 0
é U
(:30 0 0 ) B, AT@
g0 00 O A B, .,

As it can be seen from the dimensions of this matrix, the blocks are 72 72 matrices.
Here parts of these four matrices are provided.

é30.55 -140. <1267 0 . .0 O 0 0 U

2-1.40 2413 -1.40 . . . . 0 0 0 3

81267 -140 . . . . . . 0 0 a

e u

¢ O 0
B, =10'€ . .

e u

‘? 0 . 0 u

g 0 0 . . . . 1.40 12.673

&6 0 0 0 . . . . 140 2413 -1.40y

€ 0 O 0 0 . .0 1267 -140 43834
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¢6101 0 -2533 0 . . 0 0 0 0 &
g 0O 2806 O . o . 0 0 0 3
862533 0 . . o . . 0 0
e u
¢ 0 0 g
B, =10°8 L
e u
(?O . . . . . . . . 0 u
g 0 0 . . o . . 0 25.333
&0 0 0 . o . 0 2806 0 (
é 1]
€0 0 0 0 .. 0 2533 0 61334,
6443 0 -2533 O 0 0 0 0 &
g 0 2793 O 0 0 0 3
82533 0 0 0 0
e u
¢ O 0 g
B, =10'¢ . Y
e u
e 0 . . . . . . . . 0 u
g 0 0 . . . : . . 0 25.333
e 0 0 0 . . . . 0 2793 0
é 1]
€ 0 0 0 0 . .0 2533 0 45211
6835 0 0 0 . . 0 0 0 00
é U
0 -014 .0 ) . . . 0 0 0 g
e o 0 . . . . . . 0 0 4
e u
é 0 g
A =10"€ . u
e u
e 0 . 0 u
£0 o0 o od
e u
e 0 o0 0 0 -014 0 g
é ]
€0 0 0 0 0 0 0 8059

It can be seen that in this example according to Eq. (12) we can obtain the matrices [L],
[U] and [H]. The matrices [Uy.4] and [Hy] inthe last step (j = k= 12) are as follows:
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272
¢0200 0  -0109 O
go.ooz 0.005 0
60011 0
e
g O

un—g .
g 0 .
€ o 0 .
e
& 0 0 0
& 0 0 0
64430 0 -2533 0
g 0 2793 O
8-2533 0
e
a 0
—1n4 A
H12—102 .
‘f" 0 .
€0 0 .
e
6 0 0 0
0 0 0

dimension of the length is meter and that of rotation is radian.

Having the [H] and [U] matrices and using Eq. (13), the inverse of [K] can be calculated.

0

0

0 0 0 U
u
0 0 0§
0 0
u
0 g
. u
u
. 0 u
0 0100Y
-0002 0005 0
¥
0011 0. -01958
0 U
a
0 0" 0 g
0 U
u
0
. u
u
. 0 q
0 25.333
0 2793 0 g

2533 0 452118

At the end having the equation of force, the displacements of the structure can be
calculated. For simplicity the displacements of the nodes 66 to 78 are shown in Table 5. The

Table 5: The displacements of the fifth column (E-3)

N

D 66 67 68 69 70 71 72 73 74 75 76 77 78
AX 0 -0178 -0.080 0.118 0.251 0.203 1 234 1505 1087 0.346 -0.424 -0.977 0
Ay 0 0.001 0.012 003 0053 0.041 004 0.033 098 0153 0.167 0.127 0
Az 0 -3692 -648 -7.168 -5701 -2960 -1393 -1.780 -5341 -7152 -6.674 -4.357 0
6x -0009 -0062 -0108 -0.110 -0079 -0.037 -0.001 -0.001 -0.003 -0.008 -0.012 -0.007 -0.008
oy 0.905 0859 0452 -0114 -0563 -0.734 -0.718 0889 0.692 0166 -0362 -0677 -0.709
0z 0 0.004 0.003 0.001 -0002 -0.007 -0008 0.003 0004 0001 -0.002 -0.005 -0.005

As it can be seen for the analysis of this plate instead of inverting a matrix of dimension
936" 936, matrices of dimension 72" 72 are inverted. This results in considerable reduction
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of commputational time, and it is especialy suitable for the analysis of problems with high
number of nodes.

7. CONCLUSIONS

In this paper a simple approach is presented for the analysis of those structures for which the
stiffness matrices are in a genaralised canonical form. It is show that if the graph model of a
structure or a finite element model has repeated form, then using a suitable nodal numbering,
one can perform the analysis using the constituting blocks of its stiffness matrix. Here the
pattern of the loading does not need to be repeated.

First we investigated the plate using two four sided elements in a general form. The
choice of these elements results in stiffness matrices which are block tri-diagona for those
structures having repeated forms.

The presented method is also applied to the analysis of space structures with high number
of nodes. As it is shown, with a suitable nodal numbering of the repeated sector, the stiffness
matrix of such a structure can be decomposed into smaller blocks. The important point about
this model is that one can use any type of element having its own cross section, and it is not
necessary to have identical cross sections.
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