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ABSTRACT 
 

In the first part of the present paper, a numerical method called spectral finite element 
method (SFEM) is presented, which is able to simulate wave scattering phenomena in plates. 
Combining excellent characteristics of classical finite element method (FEM) and spectral 
elements, SFEM not only exhibits flexibility and ease of formulation, which is a FEM 
character, but also exploiting high order spectral elements leads to a significant superiority 
over FEM from the viewpoints of solution precision and computation costs. The excellent 
characteristic of SFEM is its diagonal mass matrix because of the choice of the Lagrange 
interpolation function supported on Legendre-Gauss-Lobatto (LGL) points in conjunction 
with LGL integration rule. Therefore numerical calculations can be significantly efficient in 
comparison with the classical FEM. In this paper, a SFEM-based code is represented and 
verified, and then some wave propagation problems in elastic solid domains are solved using 
this code to show the capabilities of SFEM in solving elastodynamic problems. The 
problems are solved using different spectral elements, and then solution accuracy and 
computational costs in different solutions are compared to analytical and/or numerical 
solutions available in the literature. In the second part of this paper, the result of this part as 
forward solution is used for detection of through-thickness crack in plates. 

 
Keywords: Spectral finite element method; elastodynamics; wave scattering analysis 

 
  

1. INTRODUCTION 
 

Elastodynamics covers a broad range of phenomena in engineering and physical problems, 
in which general form of wave equations with suitable boundary conditions (BCs) should be 
solved. During the last decades, numerical methods have provided robust and effective 
forums to challenge wave propagation phenomenon among which, finite difference method 
(FDM) [1], finite element method (FEM) [2–6], and boundary element method (BEM) [7–
15] are most popular. 
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High-order methods on the other hand, have attracted high interest in the last years, to 
improve computational efficiency and reduce computation costs needed for an 
elastodynamic simulation. Regardless of the method, the approximated solution is described 
in terms of high-order polynomial basis. High-order methods are always associated with not 
only high accuracy and computational efficiency but also some well-known drawbacks. For 
instance, FDM are not very well suited for describing very complex geometries and 
heterogeneous media. Moreover, boundary conditions are difficult to implement in FDM. 
Last but not least, classical high-order FEMs are known to generate high-order spurious 
modes [16]. 

To overcome these problems, spectral finite element method (SFEM) has been 
developed. Recently, two different kinds of SFEM have been proposed for analysis of wave 
propagation, namely, fast Fourier transform (FFT)-based SFEM and orthogonal 
polynomials-based SFEM. The latter one, which employs orthogonal polynomials, is much 
more suitable for analyzing wave propagation in domains with complex geometry. SFEM 
gain the best of both worlds by hybridizing spectral and finite element methods. The domain 
is subdivided into elements, as in FEs, to gain the flexibility and matrix sparsity of FEs. At 
the same time, the degree of the polynomial in each sub-domain is sufficiently high to retain 
the high accuracy and low storage of spectral methods. 

When it comes to mention the differences between FEM and SFEM, the major difference 
is that spectral analysis consists of selection of specific basis functions and the collocation 
points. Orthogonal basis functions are used as approximation functions and such selection of 
approximation functions in conjunction with specific numerical integrating schemes used in 
SFEM, leads to a diagonal mass matrix which is a great advantage over FEM. Fourier series, 
Chebyshev and Legendre polynomials are the commonly used basis functions. In this 
research, Legendre polynomials have been chosen as basis functions, and as will be 
discussed, the roots of the first derivative of a Legendre polynomial of order N would 
contribute in the collocation points set. 

SFEM which was originally introduced in computational fluid mechanics [17] is 
currently being implemented in continuum-based elastodynamics problems [18–21]. More 
recently, the SFEM was used to simulate wave propagation in both sound and damaged 
structures. For example, wave propagation in one-dimensional (1D) structures, such as rod 
and beam, were investigated by Sridhar et al. [16] and Kudela et al. [22]. Sridhar et al. [16] 
also presented various comparisons between situations where FEs and SFEs were used to 
solve the same problems and it was brought out that SFEM is significantly more efficient 
than classical FEM from the viewpoints of time and memory costs. Results of numerical 
simulation of the transverse elastic wave propagation in a composite plate were presented by 
Kudela et al. [23]. A two-dimensional (2D) spectral membrane finite element-based model 
was developed by Zak et al. [24], and was used for the analysis of wave propagation in a 
cracked isotropic panel. 

As SFEM has shown a promising performance in solving problems in which elastic wave 
propagation plays an important role, the aim of the present paper is to show how this method 
could be formulated and coded in the most efficient way to simulate wave scattering phenomena 
in plates, with less computational effort while obtaining the highest resolution. As illustrated in 
the second part of this paper, a solution of wave scattering phenomena of highest resolution play 
a critical role as forward solution for detection of through-thickness crack in plates. 
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2. FORMULATION OF 2D SPECTRAL FINITE ELEMENTS 
 

The following presentation is assumed for isotropic, homogeneous, and small-displacement 
linear elastic behavior of materials. The Legendre polynomials-based 2D spectral finite 
element (SFE) discretization proceeds as what follows. The domain Ω  is firstly 
decomposed into a number of non-overlapping quadrilaterals, eΩ , as in classical FEM. 

These elements are subsequently mapped into a reference domain 2]1,1[−=Λ , a square in 
2D, using an invertible local mapping f. On the reference domain Λ , a set of basis functions 
consisting of Legendre polynomials of degree, ln , are introduced. Subsequently, a set of 
nodes are defined (denoted by ]1,1[−∈iξ , 1,,2,1 += lni K ) which are the Legendre-Gauss-
Lobatto (LGL) points. The LGL points are the ( 1+ln ) roots of 

 
 0)()1( 2 =′− ξξ

lnL   (1) 
 

where )(ξ
lnL′  is the first derivative of the Legendre polynomial of order ln . The definition 

of element nodes results in an irregular distribution of nodes, as shown in Figure 1, which is 
different from classical FEs with uniformly spaced nodes within elements or on the element 
boundaries. 

 

   
(a) (b) (c) 

Figure 1. Various spectral elements with a certain degree of Lagrange polynomials: (a) 3=ln , 
(b) 5=ln , (c) 7=ln  

 
Any quantity such as f may be interpolated on element’s domain using the following 
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where nn  indicates the total number of nodes in one spectral element, and ijf  is the value of 
interpolated quantity f at collocation point ),( ji ηξ  
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( )),( jiij xff ηξ=  (3) 
 

and ),( ηξnN  is the nth node’s shape function as 
 

)()(),( ηξηξ ll n
n

n
nn hhN =  (4) 

 
in which )(ξln

nh  and )(ηln
nh  denote the nth node’s shape functions in ξ  and η  natural 

coordinates directions, respectively. Moreover, the LGL shape functions used in this 
research are in the following form 
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In an elastodynamic problem, the dynamic equilibrium equations (6) should be satisfied 

during the time of analysis [20] 
 

FuKuCuM
rrr

&
r
&& =++ ][][][  ,  txet FFF

rrr
−−=  (6) 

 
where ][M , ][C , and ][K  are the global mass, damping, and stiffness matrices, respectively. 
In addition, tF

r
 and txeF

r
 are the discrete representations of forcing terms for external traction 

and body force, respectively. In a wave propagation analysis, the damping term of the 
system of equations, uC

r
&][ , could be neglected [25]. Thus, the dynamic equilibrium 

equations could be written in the form of Equation (7)  
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in which global mass and stiffness matrices may be represented in the following forms 
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and load vectors are 
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where ][ eM , ][ eK , e

tF
r

, and e
txeF

r
 respectively have the same definitions as global variables 

][M , ][K , tF
r

, and txeF
r

, at the element level e. Elemental mass and stiffness matrices may be 
written as 
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∫=
e

e
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Ω
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e
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Ω]][[][][  (10) 

 
Furthermore, the load vectors could be represented as 
 

∫−=
e
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The above integrals should be integrated using LGL numerical integrating scheme which 

uses spectral collocation points as sampling points. Each collocation point is associated with 
a spectral integrating weight represented by 

 

( )2)()1(
2

inll l

i Lnn
w

ξξ +
=   ,  1,,2,1 += lni K  (12) 

 
where 

lnL  is the Legendre polynomial of order ln . 
The second-order ordinary differential equation (7) may be solved using central 

difference time integration scheme, which is conditionally stable. When c
L

crtt min≅∆≤∆ , 
the central difference time integration scheme is stable, where minL  is the minimum distance 
between two adjacent nodes and c is the wave velocity in elastic medium. While using 
central difference time integration scheme, the global stiffness matrix does not need to be 
actually assembled [25]. Therefore, the required computations could be performed on the 
elemental level. Another major point of this scheme is that as the order of SFEs increases, 
the minimum distance between SFEs’ nodes decreases very fast. In other words, the critical 
time increment is significantly decreased, so there should be a balance between the mesh 
size and the order of SFEs to avoid unnecessary growth in computation time. More details in 
this regard may be found in [20]. 

 
 

3. NUMERICAL EXAMPLES 
 

The above methodology has been implemented in a 2D time-domain SFEM code. In this 
code written in FORTRAN environment, a library of spectral quadrilateral elements with 
various orders is provided. In this research, GID as a freeware for pre-processing 
purposes is linked to the SFEM code (see Figure 2). Furthermore, TECPLOT is used to 
show the results of analyses in post-processing steps. The detailed flow-chart of the 
developed software using FORTRAN code, GID, and TECPLOT may be observed in 
Figure 3. 
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Figure 2. A sample mesh shown using GID: (a) rectangular domain with an embedded crack, (b) 

detailed view of cracked zone 
 

Mesh_Input.txt TP Contour Values.txt

In

Fortran Code

Mesh_Structured_Spectral

Out OutOut

INPUT_MESH.txt MGID.post.msh TECPLOTFILE.dat

In
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Software

Tecplot 360

Used for
viewing

Contours
of desired
quantitiesOut

INPUT_GENERAL.txt Arbitrary_Excitation.txt

In

Fortran Code

SFEM_EXPLICIT

Out OutOut

DISPLACEMENT.txt CONTOUR.txt EXCITATION_CHECK.TXT

VELOCITY.txt

ACCELERATION.txt

STRESS.txt

Used for
viewing

History of
responses

Could be
modified

to "TP
Contour

Values.txt"

Used for
checking the
interpolated

values of
loading

ampliude

 
Figure 3. The detailed flow-chart of the developed SFEM software 
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In order to validate the nature and general behavior of the developed software, three 
numerical examples are considered. A plane stress condition is assumed for all the 
examples. Numerical results are compared with those obtained by exact analytical solutions 
[26] and/or by classical FEM to assess the stability and the accuracy of the present method. 
No physical damping (i.e., pure elastic material behavior) is considered in all the SFEM 
analyses. All quantities are measured in SI units. 

 
3.1 Rectangular bar subjected to heaviside loading 
In the first example, verification of the developed software especially in comparison with 
analytical solutions is the main target. A rectangular bar (see Figure 4a), whose length L is 
twice its width W, is fixed at its left end with traction free on its top and bottom sides. The 
Poisson’s ratio is considered zero to impose 1D condition. The right end side of bar is 
uniformly subjected to a Heaviside step function representing a suddenly applied load 
( 10 =P ) as shown in Figure 4b. The material constants are as follows: the Young's modulus 

1=E , and the mass density 1=ρ . These material properties yield the maximum 
propagation velocity of stress waves 1=c . To show the convergence of the SEM, two 
different meshes are used and the results are compared to the analytical solutions. Each 
mesh includes only two square elements with a specific degree of Lagrange polynomials. 
The first mesh is constructed using 36-nodes elements and the second mesh uses 441-nodes 
elements. In fact, the second mesh may represent an extreme of SFEM precision.  

 

  
(a) (b) 

Figure 4. The first example. Rectangular bar subjected to prescribed loading: (a) geometry and 
boundary conditions, (b) Heaviside loading 

 
The time histories of horizontal displacement at point A and horizontal stress at point B 

(see Figure 4a) are investigated. The numerical results by SFEM are compared with those of 
analytical solution. Figure 5 depicts the horizontal displacement of point A, for the 
Heaviside step function loading. As it is obvious from this figure, both types of spectral 
elements give very good results and that the higher-order elements give the better results.  
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(a) 

 
(b) 

Figure 5. Horizontal displacement at point A due to the Heaviside loading, (a) 36-nodes 
elements, (b) 441-nodes elements 

 
The horizontal stress histories at point B, for the Heaviside step function loading is 

shown in Figure 6. Good agreement between the SFEM results and the analytical solution 
can be observed, especially with higher-order elements. The SFEM results experience small 
oscillations around the analytical solutions at moments when the stress jumps. This type of 
oscillations are caused by the sudden application of the step load, and also observed in other 
numerical studies such as boundary element method (BEM) [7], domain boundary element 
method (D-BEM) [10], and hybrid BEM-FEM approach [27,28]. 
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(a) 

 
(b) 

Figure 6. Horizontal stress at point B due to the Heaviside loading, (a) 36-nodes elements, (b) 
441-nodes elements 

 
As it is shown in Figure 6, the horizontal stress at point B obtained using 441-nodes 

( 211 =+ln ) elements is much more accurate than that of 36-nodes ( 61 =+ln ) elements. 
However, it should be noted that as mentioned previously, employing such high-order 
elements causes crt∆  to decrease rapidly and thus the computations require much more time. 
In this case, a sec01.0=∆t was used for the first analysis (36-nodes elements) and the 
computations lasted for about 8 seconds, while the solution for the second mesh (441-nodes 
elements) was not converged unless t∆  was chosen as sec002.0 . The computations time 
for the second analysis was about 700 seconds (about 11 minutes). 

 
3.2 Wave propagation in an aluminum plate 
In the second example, a 2D square aluminum plate is considered to demonstrate the 
accuracy of SFEM in modeling more realistic structures. Wave propagation in this 
uncracked plate will be simulated, and then a crack will be embedded in the plate as the third 
example. The geometry of the isotropic aluminum plate is presented in Figure 7a. The plate 
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has the following dimensions and material properties: length 1000 mm, width 1000 mm, 
thickness 1 mm, Young’s modulus E = 72.9 GPa, Poisson's ratio v = 0.33, and mass density 
ρ = 2700 kg/m3. Using the mechanical properties of the plate, the primary and secondary 
wave velocities may be easily calculated as 3.5432=pc m/s and 2.3144=sc m/s. 

In order to divide the plate into SFEs, a regular structured mesh including 40×40 
elements of 36-nodes of 25×25 mm2 is employed. This SFE mesh has a total number of 
degrees of freedom (DOFs) equal to 80802. All four edges of the plate are free while its four 
vertices are constrained in both directions. An excitation signal in the form of a force pulse 
signal of 100N amplitude has been applied at point A. Figure 8 presents this signal in both 
time and frequency domains. 

 

 
Figure 7. Geometry, loading, and boundary conditions of the aluminum plate of the second and 

third examples (length unit is in millimeters): (a) uncracked plate, (b) cracked plate 
 

 
Figure 8. Excitation function applied at point A in (a) time domain and (b) frequency domain 
 
In order to verify the developed SFEM code for 2D problems, the results of SFEM are 

compared to the results obtained using classical FEM. To this end, various meshes with 
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different densities are constructed and analyzed using commercial ABAQUS software. 
These meshes consist of quadrilateral 4-nodes elements whose dimensions are 5×5, 
2.5×2.5, 1.667×1.667, and 0.833×0.833 mm2, respectively. The mentioned meshes involve 
80802, 321602, 722402, and 2884802 DOFs, respectively. These DOFs are almost 1, 4, 9, 
and 36 times of DOFs used in SFEM mesh of the present research.  

The results of analyses for both SFEM and classical FEM approaches for horizontal 
displacements at points A and B (see Figure 7) are drawn in Figure 9. From this figure, one 
may observe that very fine meshes of FEs give excellent results. In other words, 
computational costs of classical FEM is by far much more than SFEM while obtaining the 
same accuracy. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 9. Horizontal displacements at points A and B obtained by SFEM and classical FEM 
 
In order to show the high-resolution characteristic of obtained results by SFEM, Figure 

10 depicts horizontal displacement contours for the entire aluminum plate in nine different 
time steps, plotted by TECPLOT software. 
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Figure 10. Horizontal displacement contours of aluminum plate plotted in nine different time 
steps of (a) t = 0.04 ms, (b) t = 0.08 ms, (c) t = 0.12 ms, (d) t = 0.16 ms, (e) t = 0.2 ms, (f) t = 

0.24 ms, (g) t = 0.28 ms, (h) t = 0.32 ms, (i) t = 0.36 ms 
 

3.3 Wave scattering in a cracked aluminum plate 
In the third and final example, we study the previous plate damaged by a single crack loaded 
by the same loading, in order to check the accuracy of SFEM in the analysis of wave 
scattering phenomenon. All assumptions of this example are the same as the previous one. 
The only difference is that a crack of length 100 mm is located within the plate as shown in 
Figure 7b. Again, the same parameters have been measured. Similar to preceding example, 
contours presented in Figure 11 show the wave propagation in the cracked plate. It can be 
seen that the simulation successfully displays the effect of the crack as could be observed in 
the form of wave scattering. 
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Figure 11. Horizontal displacement contours of cracked aluminum plate plotted in four different 

time steps 
 
To get better sense on the wave scattering due to the presence of the crack, the time 

variation of horizontal displacement measured at points A and B in both cases of uncracked 
(the 2nd example) and cracked (the 3rd example) plates are shown in Figure 12. Although the 
effect of the presence of the crack might not be clearly visible in Figure 12, however, when 
the differences of two signals are calculated, the influence of the crack comes out. This 
differential waveform as a forward solution will be used in a new algorithm to detect an 
existing crack in the plate as an inverse solution of crack detection problem. See the second 
part of the present paper for more details. 
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(a) 

 
(b) 

Figure 12. The time histories of horizontal displacement at points A and B of the aluminum plate 
for both cases of (a) uncracked and (b) cracked conditions 
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4. DISCUSSIONS AND CONCLUDING REMARKS 
 

In this paper, detailed introduction of SFEM for modeling transient wave scattering problems 
in domains made of isotropic materials has been presented. It has been shown that SFEM 
offers special features over classical FEM which makes it a more powerful and flexible tool 
dealing with large scale wave propagation problems. Choosing different SFEs, one may obtain 
different levels of accuracy. Solving the same problem with different SFEs suggests that the 
precision of solution grows exponentially while increasing the SFEs' order. This exponential 
increase in precision makes SFEM able to give a converged solution using less DOFs 
compared to classical FEM. On the other hand it should be noted that when the order of SFEs 
grows, the minimum length between nodes decreases too, which leads to a smaller critical 
time increment. Consequently, to make an advance in computational costs (i.e., computation 
time and memory), an appropriate SFE order should be chosen. This SFE order should 
establish a balance between spectral convergence rate and spectral critical time increment. 

There are some important hints when coding SFEM. Taking these notes into 
consideration makes a SFEM code faster and much accurate, the first of which is to take the 
advantage of diagonal mass matrix. The second important point is that if central difference 
method is used for time integration, there is no need to the global stiffness matrix. Therefore, 
the formulation of the method could be developed on elemental level which leads to a great 
machine memory saving. 

Transient analyses of three examples have been successfully carried out using the 
developed code of SFEM. In these examples, various dynamic behaviors, geometries, 
materials properties, boundary conditions, and transient load functions have been selected to 
illustrate the applicability and generality of this method. One may note that all examples 
have been successfully modeled with a few numbers of DOFs, preserving very high 
accuracy comparing with other analytical and numerical solutions. 

As already discussed, considering the applicability and generality of SFEM in wave 
scattering problems, application of the results of this approach for solving the inverse problem 
of crack detection problem in plates is presented in the second part of the present paper [29]. 
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