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ABSTRACT 
 

In this paper, optimal design of barrel vaults is performed using the Improved Big Bang-Big 
Crunch (IBB-BC) method. This method can be used for problems with continuous and 
discrete variables. Here, double layer braced barrel vaults are optimized considering weight 
of the structure as the objective function, where the necessary constraints are satisfied. The 
cross sectional areas are considered as continuous variables. 

The algorithm is based on the Big Bang-Big Crunch (BB-BC) and Harmony Search (HS). 
The BB-BC applies for global optimization and the HS deals with variable constraints. After 
a number of sequential Big Bangs and Big Crunches, where the distribution of randomness 
within the search space during the Big Bang becomes smaller and smaller about the average 
point computed during the Big Crunch, the algorithm converges to a solution. In the 
proposed method, similar to HPSO, HS is used for controlling the variable constraints. 

 
Keyword: Optimal design; double layer barrel vault; big bang-big crunch; harmony search 
algorithm 

 
 

1. INTRODUCTION 
 

The popularity of barrel vaults is partially due to the economy of these structures, since all 
arches can be constructed as identical hyper-members. At the same time, their cylindrical 
shape provides a great deal of volume under the roof, a distinct advantage for railway 
stations, or for large span warehouses, providing a welcome increase in their storage space. 
Barrel vaults are lightweight and cost effective structures that are used to cover large areas 
such as exhibition halls, stadium and concert halls. These structures provide a completely 
unobstructed inner space and they are economical in terms of materials compared to many 
other conventional forms of structures as explained by Makowski [1]. A barrel vault consists 
of one or more layers of elements that are arched in one direction. Barrel vaults are given 
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different names depending on the way their surface is formed. The earlier types of braced 
barrel vaults were constructed as single-layer structures. Nowadays, with increase of the 
spans, double-layer systems are often preferred. If the area to be covered is long compared 
to its width, and internal stanchions are not permitted, then continuous braced barrel vaults 
are used. The long barrel vaults are subdivided into several shorter ones, supported 
internally by stiffening space trusses, integrally interwoven into the framework of the 
structure [1]. 

There are many possible ways of bracing which have been used in the construction of 
single-layer braced barrel vaults. The fully triangulated systems can theoretically be 
analyzed as pin-jointed structures. The barrel vaults, having the diagonal or hexagonal types 
of bracing should have rigid joints to be stable, and the influence of bending moments in 
their stress distribution is much more than in the other types. In order to restrict the length of 
compression members, especially when the span is wide, a large number of lattices are 
needed. This will produce nearly collinear lattices, with the consequent danger of instability. 
However, this can be avoided by using double-layer braced barrel vaults. It has also been 
shown that the stiffness of very wide barrel vaults can even be increased by interweaving 
two sets of lattices. In the latter case every other rib is raised above its neighbors [1]. 

Size optimization of truss structures involves the determination of suitable values for 
member cross-sectional areas iΑ , that minimize the structural weight W. Such a minimum 
design should also satisfy the inequality constraints that limit design variable sizes and 
structural responses. The optimal design of a truss can be formulated as [2]: 

 

 Minimize  W({x}) =∑
=

n

i
iii LA

1
..γ   (1) 

Subject to:  
 ,maxmin δδδ ≤≤ i mi ,...,2,1=   
 ,maxmin σσσ ≤≤ i  ni ,...,2,1=  

 ,0≤≤ i
b
i σσ  nsi ,...,2,1=  

 ,maxmin AAA i ≤≤ ngi ,...,2,1=  
 

Where W({x}) is the weight of the structure; n is the number of members forming the 
structure; m is the number of nodes; ns is the number of compression elements; ng is the 
number of groups (number of design variables); iγ  is the material density of member i; iL  
is the length of member i; iΑ  is the cross-sectional area of member i chosen between minΑ  
and maxΑ ; min is the lower bound and max is the upper bound; iσ  and iδ  are the stress and 

nodal deflection, respectively; b
iσ  is the allowable buckling stress in member i when it is in 

compression [2]. 
In the last decades, different natural evolutionary algorithms have been developed for 

structural optimization including Genetic Algorithms, Ant Colony Optimization, Particle 
Swarm Optimizer, Harmony Search, and Charged System Search.  

A new optimization method relying on one of the theories of the evolution of the 
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universe, namely the Big Bang and Big Crunch theory, is introduced by Erol and Eksin [3]. 
The BB–BC algorithm for truss design follows the general procedure developed by Erol and 
Eksin, but according to the Camp's paper [4]; positions of the candidate solutions at the 
beginning of each Big Bang are normally distributed around a new point, located between 
the center of mass and the best global solution.  

According to this theory, in the Big Bang phase energy dissipation produces disorder, and 
randomness is the main characteristic of this phase; while in the Big Crunch phase, the 
randomly distributed particles are drawn into an order. The Big Bang–Big Crunch (BB–BC) 
optimization method similarly generates random points in the Big Bang phase and shrinks 
them into a single representative point via a center of mass in the Big Crunch phase. After a 
sequence of Big Bangs and Big Crunches, where the distribution of randomness within the 
search space during the Big Bang becomes smaller and smaller about the average point 
computed during the Big Crunch, the algorithm converges to a solution [2]. 

This algorithm not only considers the center of mass as the average point in the beginning 
of each Big Bang, but also utilizes the best position of each particle and the best visited 
position of all particles, similar to Particle Swarm Optimization-based approaches [5]. As a 
result because of increasing the exploration of the algorithm, the performance of the BB–BC 
approach is improved. Another reformation is to use Sub-Optimization Mechanism (SOM), 
introduced by Kaveh et al. [6] for ant colony approaches. SOM is based on the principles of 
finite element method working as a search-space updating technique. Some changes are made 
to prepare SOM for the HBB–BC algorithm. Another change in the BB-BC algorithm is its 
combination with the HS algorithm for further improvement. The HS works as a handling 
approach to deal with variable boundaries. In the IHBB-BC, the HS method employes the HM 
operator for guiding the exploration. Numerical simulation based on the IHBB–BC method 
including medium- and large-scale trusses and comparisons with the results obtained by other 
heuristic approaches, demonstrate the effectiveness of the IHBB-BC. 

 
 

2. A BRIEF INTRODUCTION TO BB-BC AND HS 
 

In order to make the paper self-explanatory, before proposing the present work for optimal 
design, the characteristics of BB-BC and HS, are briefly explained in the following two sections: 

 
2.1 Big bang-big crunch optimization 
The BB–BC method first developed by Erol and Eksin [3] consists of two phases: a Big 
Bang phase, and a Big Crunch phase. In the Big Bang phase, candidate solutions are 
randomly distributed over the search space. Similar to other evolutionary algorithms, initial 
solutions are spread all over the search space in a uniform manner in the first Big Bang. Erol 
and Eksin [3] associated the random nature of the Big Bang to energy dissipation or the 
transformation from an ordered state (a convergent solution) to a disorder or chaos state 
(new set of solution candidates). The Big Bang phase is followed by the Big Crunch phase. 
The Big Crunch is a convergence operator that has many inputs but only one output, which 
is named as the ‘‘center of mass”, since the only output has been derived by calculating the 
center of mass. Here, the term “mass” refers to the inverse of the merit function value [2]. 

The BB-BC algorithm can briefly stated as follows: 
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Step 1: Random formation of some candidates for the initial solution for design variables:  
 

 )( minmaxmin Α−Α+Α=Α Randi  (2) 
 
Step 2: Analysis of the structure considering the design variables of a candidate solution 

and evaluation of the penalty functions for each solution candidate. 
The penalty function method has been the most popular constraint-handling technique 

due to its simple principle and ease of implementation. In utilizing the penalty functions, if 
the constraints are between the allowable limits, the penalty will be zero; otherwise, the 
amount of penalty is obtained by dividing the violation of allowable limit to the limit itself. 

 

 ,
0

maxmin/

maxmin/
)(maxmin

)(maxmin

⎪
⎩

⎪
⎨

⎧

−
=⇒<>

=⇒<<

i

iii
iiii

i
iii

or
σ
σσφσσσσ

φσσσ

σ

σ

ni ,...,2,1=  

 ,
0

00

)(

)(

⎪
⎩

⎪
⎨

⎧

−
=⇒<∧<

=⇒<<

b

bii
bbii

i
bib

σ
σσφσσσ

φσσ

σ

σ

nsi ,...,2,1=  (3) 

 ,
0

maxmin/

maxmin/
)(maxmin

)(maxmin

⎪
⎩

⎪
⎨

⎧

−
=⇒<>

=⇒<<

i

iii
iiii

i
iii

or
δ
δδφδδδδ

φδδδ

δ

δ

mi ,...,2,1=  

 
Step 3:  Calculation of the merit function: 
In optimizing structures, the main objective is to find the minimum amount of the merit 

function. This function is defined as [4]: 
 

 ε
δσ φφ )1( kkkk wMer ++=  (4) 

 
Where k

δφ  is the total deflection penalty for a candidate truss k and k
σφ  is the total stress 

penalty for a candidate truss k,ε  = positive penalty exponent. kw  is a function of the weight 
of candidate truss k. ε  is set to 1.5 but gradually it is increased to 3 as suggested by Refs. 
[4,6]. 

 
Step 4: Calculation of the center of mass: 
 

 ,1
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1

1
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j j
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j
kj

ijkc
i

Mer

Mer    ngi ,...,2,1=  (5) 

 

Where )(kj
iΑ  is the ith component of the jth solution generated in the kth iteration; N is the 
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population size in Big Bang phase and jMer  is the merit function for the jth candidate [2]. 
 
Step 5: Calculation of the new candidates' solution value around the center of mass: 
 

 ,
1

)( minmax1)()1(

+

Α−Α
+Α=Α +

k
rjkc

i
jk

i

α
  ngi ,...,2,1=  (6) 

  
Where jr  is a random number from a standard normal distribution which changes for each 

candidate, and 1α  is a parameter for limiting the size of the search space [2]. 
Step 6: Return to step 2 and repeat the algorithm until the condition for the stopping 

criterion fulfilled. Convergence for each phase is determined when the value of gbestΑ  is not 
improved for a specified number of analyses. 

 
2.1.1 Hybrid big bang-big crunch algorithm 
Camp improved the Big Bang-Big Crunch by using the best global solution in Eq. (7) 
generating a new population. Selection of gbestΑ  is limited to the solutions that are feasible 
or designs that have no applied penalty to their structural weight. The final values for the 
design variables are contained in or decoded from gbestΑ [4]. 
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Where gbestΑ  is the best global solution and β  is a parameter controlling the influence of 

the gbestΑ  on the location of the new candidate solutions. 
Kaveh and Talatahari [2] used the particle swarm optimization (PSO) characteristics to 

improve the performance of the BB-BC algorithm by using of local best and global best 
solution as following: 
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  (8) 

 
Where )(kjlbest

iΑ  is the best position of the jth particle up to the iteration k and )(kgbest
iΑ  is the 

best position among all candidates up to the iteration k; and 2α  and 3α  are adjustable 
parameters controlling the influence of the global best and local best on the new position of 
the candidates, respectively. Using 11 =α  allows an initial search of the full range of values 
for each design variable and 40.02 =α  and 80.03 =α  are suitable values for the HBB–BC 
algorithm [2]. 
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Another improvement in the BB–BC method corresponds to employing the Sub-
Optimization Mechanism (SOM) as an auxiliary tool which works as a search-space 
updating mechanism. SOM, based on the principles of finite element method, was first 
introduced by Kaveh et al. [6]. Similar to the finite element method which requires dividing 
of the problem domain into many subdomains and using these patches instead of the main 
domain, SOM divides the search space into sub-domains and performs optimization process 
into these patches, and then based on the resulted solutions the undesirable parts are deleted, 
and the remaining space is divided into smaller parts for more investigation in the next stage. 
This process continues until the remaining space becomes less than the required size for a 
satisfy accuracy. 

The HBB-BC is developed in [2] and is summarized in the following: 
Step 1: Calculating cross-sectional area bounds for each group. 
If )1( −Α somkgbest

i  is the global best solution obtained from the previous stage ( 1−somk ) for 
design variable i, then 
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Where 1β  is an adjustable factor which determines the amount of the remaining search 
space and in this research it is taken as 0.3, Ref. [2]; )(

min,
somk

iΑ  and )(
max,

somk
iΑ  are the minimum 

and the maximum allowable cross-sectional areas at the stage ( somk ), respectively. In stage 

1, the amounts of )1(
min,iΑ  and )1(

max,iΑ  are set to: 
 

 ,, max
)1(

max,min
)1(

min, Α=ΑΑ=Α ii   ngi ,...,2,1=  (10) 
 
Step 2: Determining the amount of the increment in the allowable cross sectional areas. 
In each stage, the number of permissible value for each group is considered as 2β  , and 

thus the amount of the accuracy rate of each variable is equal to: 
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Where )( somk

i
∗Α  is the amount of increment in the allowable cross-sectional area. Unlike 

ACO, 2β  (the number of subdomains) does no affect the optimization time and in the BB–
BC optimization, 2β  is set to 100 as in Ref. [2]. 

 

Step 3: Creating the series of the allowable cross-sectional areas. 
The set of allowable cross-sectional areas for group i can be defined as 
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Step 4: Determining the optimum solution of the stage ( somk ). 
The last step is performing an optimization process using the BB–BC algorithm. 
 
Step 5:  The stopping creation for the SOM can be described as: 
 

 ,)( ∗∗ Α≤Α nc
i   ngi ,...,2,1=   (13) 

 
Where )(nc

i
∗Α  the amount of accuracy rate of the last stage; and ∗Α  = the amount of 

accuracy rate of the primary problem. 
 

 
Figure 1. Optimization procedure of the improved harmony search algorithm [10] 

 
2.2 Harmony search algorithm for continuous variable 
Harmony search algorithm was recently developed in an analogy with music improvisation 
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process, where music players improvise the pitches of their instruments to obtain better 
harmony. The steps in the procedure of harmony search are shown in Figure 1. These steps 
are as follows [9]: 

 
Step 1. Initialize the problem and algorithm parameters. 
Step 2. Initialize the harmony memory. 
Step 3. Improvise a new harmony. 
Step 4. Update the harmony memory. 
Step5. Check the stopping criterion. 
 

2.2.1 Initialize the problem and algorithm parameters 
In Step 1, the optimization problem is defined as follows: 

Minimize  ( )xf  subject to  
 .,...,2,1 NiXx ii =∈  (14) 
 
Where ( )xf  is the objective function; X is the set of each continuous variable ix ; N is the 
number of variables, iX is the set of the possible range of values for each variable, that is 

U
ii

L
i xXx ≤≤ , L

ix  and U
ix are the lower and upper bounds for each continuous variable, 

respectively. The HS algorithm parameters are also specified at this step. These are the 
harmony memory size (HMS), or the number of solution vectors in the harmony memory; 
harmony memory considering rate (HMCR); pitch adjusting rate (PAR); and the number of 
improvisations (NI), or stopping criterion. 

The harmony memory (HM) is a memory location where all the solution vectors (sets of 
variables) are stored. Here, HMCR and PAR are parameters that are utilized to improve the 
solution vector. Both are defined in Step 3. 

 
2.2.2 Initialize the harmony memory 
In Step 2, the HM matrix is filled with as many randomly generated solution vectors as the HMS 
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2.2.3 Improvise a new harmony 
A new harmony vector ( )i

n
iii xxxx ,...,, 21=  is generated based on three rules: (1) memory 

consideration, (2) pitch adjustment and (3) random selection. Generating a new harmony is 
called ‘improvisation’ [9]. 

In the memory consideration, the value of the first variable (ً )ix1 for the new vector is 
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chosen from any of the values in the specified HM range ( )hmsxxx 1
2
1

1
1 ,...,, . Values of the other 

continuous variables ( )i
n

ii xxx ,...,, 32  are chosen in the same manner. The HMCR, which varies 
between 0 and 1, is the rate of choosing one value from the historical values stored in the 
HM, while (1 − HMCR) is the rate of randomly selecting one value from the possible range 
of values. 

 
{ }
{ }⎩

⎨
⎧

−∈
∈

=
)1(,........,,

,........,,

21

21

HMCRyprobabilitwithxxxx
HMCRyprobabilitwithxxxx

x
ni

hms
iiiinew

i  (16) 

 
For example, a HMCR of 0.85 indicates that the HS algorithm will choose the continuous 

variable value from historically stored values in the HM with a probability of 85% or from 
the entire possible range with a probability (100–85) %. Every component obtained by the 
memory consideration is examined to determine whether it should be pitch-adjusted. This 
operation uses the PAR parameter, which is the rate of pitch adjustment as follows: 

 

 Is new
ix to be pitch-adjusted?

⎩
⎨
⎧

− )1( PARofyprobabilitwithNo
PARofyprobabilitwithYes

 (17) 

 
The value of (1−PAR) sets the rate of doing nothing. If the pitch adjustment decision for 

new
ix is YES, then new

ix is replaced as follow: 
 

 ,*bwrandxx new
i

new
i ±←  (18) 

 
Where bw is an arbitrary distance bandwidth and rand is a random number between 0 and 1. 

In Step 3, HM consideration, pitch adjustment or random selection is applied to each 
variable of the new harmony vector in turn. 

 
2.2.4 Update harmony memory  
If the new harmony vector is better than the worst harmony in the HM, judged in terms of 
the objective function value, the new harmony is included in the HM and the existing worst 
harmony is excluded from the HM. If the new harmony vector is severely infeasible, it is 
discarded. If it is slightly infeasible, there are two ways to follow. One is to include them in 
the harmony memory matrix by imposing a penalty on their objective function value. In this 
way the violated harmony vector which may be infeasible slightly in one or more 
constraints, is used as a base in the pitch adjustment operation to provide a new harmony 
vector that may be feasible. The other way is to use larger error values such as 0.08 initially 
for the acceptability of the new design vectors and reduce this value gradually during the 
design cycles and use finally an error value of 0.001 towards the end of the iterations. This 
adaptive error strategy is employed in the design examples of this paper. 
 
2.2.5 Check stopping criterion 
If the stopping criterion (maximum number of improvisations) is satisfied, computation is 
terminated. Otherwise, Steps 3 and 4 are repeated. 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

A. Kaveh and B. Eftekhar 

 

474 

3. AN IMPROVE HYBRID BIG BANG BIG CRUNCH FOR CONTINUES 
VARIABLE  

 
The process of heuristic Big Bang-Big Crunch harmony search optimization algorithm is 
prepared in Figure 2. This algorithm applies BB-BC for global optimization, while HS works as 
the operator for preventing the violation of the variable constraints, wherein, HS apply harmony 
memory-guided mechanism to rectify the positions found by particles in the BB-BC stage. 

 
 

No 

 

     Yes 

Initialize solution for design variables in a 
random manner 

Analysis of the structure considering the design 
variables and evaluate the penalty function for 

each solution candidate 

Calculation of the merit function 

Determine feasible and infeasible agents and sort them in an 
increasing order (using the constraint handling method)  

Store the first agents in HM according to the size of HM 

Calculation of the center of mass 

Calculation of the new candidates' solution value 

Correct the position of agents 
(using a harmony-based method) 

Analysis the agents vectors 

Update HM 

Termination satisfied? 

Stop 
 

Figure 2. The flowchart of the present method 
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4. DESIGN EXAMPLES 
 

In this section, first the IHBBBC-based algorithm is tested for the 25-bar truss structure with 
conditions being defined. Then two double layer barrel vaults are optimized and the results 
are compared through three methods HS, BB-BC, and IHBB-BC. 

The second example is a double barrel vault taken from Ref. [1]. It is optimized under 
two types of symmetrical and non-symmetrical loadings. The third example is chosen as a 
double layer braced barrel vault with 984 elements having a large span and a short length. It 
is optimized by the above mentioned three methods. 

In last two examples the size of population is selected as 100, and ∗Α = 0.01. Modulus of 

elasticity is taken as 30450ksi (210000MPa) and the material density is 0.228 3/ inlb  
(7971.810 3/ mkg ). The yield stress of steel is taken as 58ksi (400MPa). The minimum cross-
sectional area of all members is 0.775 2in (2 2cm ) and the maximum cross- sectional area is 
taken as 20 

2in  (129.03 2cm ). Displacement limitations of ±0.1969 in (5mm) are imposed 
on all the nodes in x, y and z directions. According to the AISC ASD code [7], the 
limitations of the stresses are as follows:  
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Where −

iσ  is calculated according to the slenderness ratio: 
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Here, E  is the modulus of elasticity; yF  is the yield stress of steel; cC  is the slenderness 

ratio ( iλ ) dividing the elastic and inelastic buckling regions ( yc FEC /)2( 2π= ); iλ  is the 

slenderness ratio ( iii rkL /=λ ); k is the effective length factor; iL  = the member length; and 

ir  is the radius of gyration. 
On the other hand, the radius of gyration ( ir ) can be expressed in terms of cross-sectional 

areas, i.e. b
iaA . Here, a and b are the constants depending on the types of sections adopted 

for the members such as pipes, angles, and tees. In this example, pipe sections (a = 0.4993 
and b = 0.6777) are adopted for bars similar to that of [8]. 

In addition, the maximum slenderness ratio is limited to 300 for tension members, and it 
is recommended to be 200 for the compression members according to ASD-AISC [7] design 
code provisions which can be formulated as follows: 
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Where mk  is the effective length factor of the mth member ( 1=mk  for all truss members), 
and mr  is its minimum radius of gyration. 

All examples in this study are analyzed using direct stiffness method. To show the 
randomness of these experiments, they are performed for several times and the best results 
are chosen and shown in the tables. 

 
Example 1: A 25-bar spatial truss 
The topology and nodal numbering of a 25-bar spatial truss structure are shown in Figure 3. 
In this example, designs for a multiple load case are performed and the results are compared 
to those of other optimization techniques. In these studies, the material density is considered 
as 0.1 3/ inlb (2767.990 3/ mkg ) and the modulus of elasticity is taken as 10,000 ksi (68,950 
MPa). Twenty five members are categorized into eight groups, as follows: 

(1) 1A , (2) 52 AA − , (3) 96 AA − , (4) 1110 AA − , (5) 1312 AA − , (6) 1714 AA − , (7) 2118 AA − , 
(8) 2522 AA − . 

 
Figure 3. A twenty five-bar spatial truss 
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This spatial truss is subjected to two loading conditions shown in Table 1. Maximum 
displacement limitations of ± 0.35 in (8.89 mm) are imposed on every node in every 
direction and the axial stress constraints vary for each group as shown in Table 2. The range 
of the cross-sectional areas varies from 0.01 to 3.4 2in (0.6452–21.94 2cm ). 

 
Table 1: Loading conditions for the 25-bar spatial truss 

Node Case 1 Case 2 

1 0.0 20.0 (89) −5.0 (22.25) 1.0 (4.45) 10.0 (44.5) −5.0 (22.25) 
2 0.0 −20.0 (89) −5.0 (22.25) 0.0 10.0 (44.5) −5.0 (22.25) 
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0 
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0 

 
Table 2: Member stress limitation for the 25-bar spatial truss 

Element group Compressive stress 
limitations ksi (MPa) 

Tensile stress limitations ksi 
(MPa) 

1 A1 35.092 (241.96) 40.0 (275.80) 
2 A2 ~ A5 11.590 (79.913) 40.0 (275.80) 
3 A6 ~ A9 17.305 (119.31) 40.0 (275.80) 
4 A10 ~ A11 35.092 (241.96) 40.0 (275.80) 
5 A12 ~ A13 35.092 (241.96) 40.0 (275.80) 
6 A14 ~ A17 6.759 (46.603) 40.0 (275.80) 
7 A18 ~ A21 6.759 (46.603) 40.0 (275.80) 
8 A22 ~ A25 11.082 (76.410) 40.0 (275.80) 

 
The IHBB–BC algorithm achieves the best solution after 5500 searches. However, the 

CSS algorithm finds the best solution after about 7000 analyses [13] which is 27.3% more 
than the present work. The best weight of the IHBB–BC is 545.07 lb while the best result of 
the CSS is 545.10 lb. In addition, the IHBB–BC algorithm has better performance than the 
CSS algorithm with regard to the average weight. Although the IHBB–BC approach has 
worse performance than the improved methods (IACS [6] and HPSACO [11]), it performs is 
better than the other simple algorithms (similar PSO [12]) when the best weight and the 
average weight are compared. 

Also, the IHBB–BC approach has smaller required number of iterations for convergence 
than HPSACO and HS [9]. Table 3 presents a comparison of the performance of the IHBB–
BC method and other heuristic algorithms. The results of the barrel vault of Example 1 
under symmetric and unsymmetrical loadings are provided in Table 4 and table 5, 
respectively. 
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Table 3: Performance comparison for the 25-bar spatial truss 
Optimal cross-sectional areas (in2) 

Kaveh and Talatahari Present work Element group Schutte and 
Groenwold 
[12] PSO 

Lee and 
Geem [9] 

HS 

Kaveh et 
al. [6] 
IACS 

[11] 
HPSACO 

[2] 
HBB-BC 

[13] 
CSS (in2) (cm2) 

1 A1 (2003) PSO 0.047 0.010 0.010 0.010 0.010 0.010 0.065 
2 A2 ~ A5 2.121 2.022 2.042 2.054 1.993 2.003 1.979 12.863 
3 A6 ~ A9 2.893 2.950 3.001 3.008 3.056 3.007 3.001 19.506 
4 A10 ~ A11 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.065 
5 A12 ~ A13 0.010 0.014 0.010 0.010 0.010 0.010 0.010 0.065 
6 A14 ~ A17 0.671 0.688 0.684 0.679 0.665 0.687 0.687 4.465 
7 A18 ~ A21 1.611 1.657 1.625 1.611 1.642 1.655 1.680 10.92 
8 A22 ~ A25 2.717 2.663 2.672 2.678 2.679 2.660 2.654 17.251 

Best weight (lb) 545.21 544.38 545.03 544.99 545.16 545.10 545.07 2424.56 
Average weight (lb) 546.84 N/A 545.74 545.52 545.66 545.58 545.49 2426.43 

No. of analyses 9596 15000 3520 9875 12500 7000 5500 
 

Table 4: The results of the barrel vault of Example 1 under symmetric loading 
Optimal cross-sectional areas (in2) 

BB-BC Present work Element group 
HS 

(in2) (cm2) 
1 0.786 0.817 0.775 4.999 
2 1.181 1.201 1.048 6.761 
3 1.130 1.253 1.399 9.026 
4 0.778 0.775 0.775 4.999 
5 6.280 5.753 6.523 42.084 
6 0.776 0.776 0.775 4.999 
7 14.917 14.392 13.288 85.729 
8 10.460 10.403 10.352 66.787 
9 15.972 15.906 14.825 95.645 
10 16.133 14.868 15.349 99.025 
11 11.067 9.714 10.219 65.929 
12 12.681 14.540 13.747 88.690 
13 7.058 6.853 7.033 45.374 
14 4.303 4.483 4.730 30.516 
15 2.398 2.449 2.497 16.110 
16 4.504 4.299 5.030 32.451 
17 6.214 6.289 6.692 43.174 
18 0.782 0.775 0.775 4.999 
19 0.789 0.790 0.775 4.999 
20 0.776 0.789 0.775 4.999 
21 0.829 0.793 0.775 4.999 
22 0.787 0.775 0.775 4.999 
23 0.782 0.775 0.775 4.999 
24 2.375 3.073 3.011 19.425 
25 1.458 1.502 1.811 11.684 
26 1.722 1.617 1.732 11.174 
27 2.368 2.757 2.824 18.219 
28 1.242 1.278 1.217 7.852 
29 1.269 1.419 1.279 8.251 
30 1.327 1.252 1.255 8.097 
31 1.227 1.229 1.231 7.942 

Best weight (lb) 62206 62096 61972      275696  N 
Average weight (lb) 62539 62532 62196     276692  N 

No. of analyses 50000 50000 50000 
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Table 5: The results of the barrel vault of example 1 under unsymmetrical loading 

Optimal cross-sectional areas ( 2in ) 
Present work Element group 

HS BB-BC 
(in2) (cm2) 

1 0.775 0.775 0.775 4.999 
2 0.823 0.868 0.775 4.999 
3 2.442 1.891 0.829 5.348 
4 1.780 2.077 2.151 13.877 
5 3.006 2.356 2.544 16.413 
6 0.918 0.775 0.775 4.999 
7 7.768 7.657 7.842 50.593 
8 8.002 7.564 7.717 49.787 
9 7.768 7.378 7.714 49.767 

10 4.833 5.704 5.128 33.083 
11 3.286 3.286 3.284 21.187 
12 5.024 4.774 4.957 31.980 
13 1.709 1.612 1.542 9.948 
14 1.435 1.426 1.397 9.013 
15 1.936 1.984 1.907 12.303 
16 5.371 5.332 5.053 32.600 
17 5.082 5.239 5.149 33.219 
18 0.775 0.775 0.775 4.999 
19 0.775 0.775 0.775 4.999 
20 1.537 1.147 0.775 4.999 
21 0.780 0.775 0.775 4.999 
22 0.775 0.775 0.775 4.999 
23 0.775 0.775 0.775 4.999 
24 0.799 0.868 0.784 5.058 
25 0.775 0.775 0.775 4.999 
26 1.373 1.240 1.283 8.277 
27 1.960 2.077 2.169 13.993 
28 0.775 0.775 0.775 4.999 
29 0.975 1.054 0.960 6.193 
30 1.621 1.798 1.774 11.445 
31 1.160 1.240 1.159 7.477 

Best weight (lb) 35501 35372 34731 154508  N 
Average weight (lb) 37071 36867 35647 158583  N 

No. of analyses 50000 50000 50000 

 
Example 2: A three hundred eighty four-bar double layer barrel vault 
In this example, there are two types of loadings on the structure, and the structure is 
optimized using three methods HS, BB-BC and IHBB-BC. The structure consists of two 
rectangular nets and for making it stable, angles of the bottom nets are put into the center of 
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one of the above nets, and these are connected through diametrical elements as shown in 
Figures 4 and 5. 

 
Figure 4. The 3D view of a double layer barrel vault [1] 

 

 
Figure 5. Top view of a square on diagonal double layer barrel vault 

 
For the first loading, which is symmetric, the vertical loads of magnitude −20 kips 

(−88.968kN) are applied at free joints (non-support joints). For the second loading, which is 
an unsymmetrical one, concentrated loads of magnitude −10ksi (−44.484kN) are applied at 
the right hand half of the structure and on non-supported joints. At the left hand half of the 
structure and on the non-supported joints the load is equal to −6ksi (−29.69kN). According 
to Ref. [1], the supports are considered at the two external edges of the top layer of the barrel 
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vault and the results are provided in Tables 4 and 5. It can be observed that at the same 
number of iterations, the result obtained by IHBB-BC is better than the other two 
algorithms. The convergence rate of the IHBB-BC is higher than BB-BC and HS. 

Using IHBB-BC, better results are obtained in comparison with the other two approaches 
This can be observed from the convergence diagrams of Figures 6 & 7.  

 

 
Figure 6. Comparison of the convergence history of the double layer barrel vault for three 

algorithms under symmetric loading 
 

 
Figure 7. Comparison of the convergence history of double layer barrel vault for three 

algorithms under unsymmetrical loading 
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It can also be seen that the members between the supports do not have forces and 
therefore the smallest cross sections are allocated to these members. Tables 4 and 5 for the 
members of group 1 have the smallest cross section areas showing a good performance of 

the structure. In Figure 8 the diagram for the stress ratio (
allowable
i

i

σ

σ max

) of the maximum stress 

in the element groups to the maximum allowable stress is depicted. This ratio for some 
groups is zero since they sustain either no axial force or this force is small. For these 
members the smallest cross sections are selected. As an example, one can refer to member 
groups 18 to 23. In investigating the process of optimization we also observe that some 
member groups have high axial force and high displacement where the constraints 
corresponding to the displacements or the compressive buckling load have governed the 
design. For these member groups, wit the axial force governs the design, a suitable cross 
section with the stress ratio close to 1 are selected. 

 

 
Figure 8. The ratio of the max stress to the allowable stress for different group for the double 

layer barrel vault under unsymmetrical loading using the IHBB-BC algorithm 
 

Example 3: A 984-bar double layer braced truss type barrel vault 
The considered structure is a braced barrel vault as shown in Figure 9 and the loading 
consists of the following: 

1. In the nodes of the central arc, a downward concentrated load of −15 kips 
(−66.726kN). 

2. In the nodes of the arcs adjacent to the central arc, a downward concentrated load of 
−10 kips (−44.484kN). 

3. In the nodes of the arcs adjacent to the external arcs, a downward concentrated load of 
−5 kips (−22.242kN). 
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4. In the nodes of the external central arcs, a downward concentrated load of −2 kips 
(−8.897kN). 

This structure consists of 984 elements and considering the type of loading, 55 element 
groups are selected. The related details are shown in Figures 9 & 10. As it can be observed 
from Table 6 and the convergence diagram of Figure 11, for the same number of iterations 
among the three applied methods, IHBB-BC has achieved the best result. The weight 
achieved by IHBB-BC is 72440lb while for BB-BC and HS, the weights are 74390 and 
800021, respectively. During the optimization process the weight of the structure for the 
IHBB-BC has been smaller than the other two approaches. 

 

 
Figure 9. The 3D view of a double layer braced barrel vault 

 
Figure 10. A quarter of the double layer braced barrel vault with the related member grouping 
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Table 6: The results for the barrel vault of Example 2 under symmetric loading 

Optimal cross-sectional areas (in2) 
Present work Element group 

HS BB-BC 
(in2) (cm2) 

1 14.365 18.151 1.221 7.877 
2 1.499 8.159 3.535 22.806 
3 12.315 7.855 2.543 16.406 
4 11.871 7.945 1.711 11.038 
5 13.539 0.776 0.779 5.026 
6 8.649 12.744 0.804 5.187 
7 4.181 10.488 1.499 9.671 
8 2.708 1.012 0.890 5.742 
9 8.155 7.790 1.286 8.297 

10 14.288 7.920 3.640 23.484 
11 9.169 6.853 9.540 61.548 
12 19.146 16.848 18.899 121.928 
13 18.723 18.995 17.913 115.567 
14 14.174 1.436 2.890 18.645 
15 1.462 7.181 2.669 17.219 
16 6.078 16.069 0.781 5.038 
17 14.909 0.951 1.523 9.826 
18 6.158 11.486 2.836 18.297 
19 3.420 13.164 8.369 53.993 
20 16.034 15.077 11.286 72.812 
21 11.776 13.459 5.278 34.051 
22 1.010 1.039 0.984 6.348 
23 1.228 1.221 1.052 6.787 
24 0.775 0.775 2.181 14.071 
25 5.249 4.218 5.468 35.277 
26 2.779 2.517 3.251 20.974 
27 2.243 2.427 2.422 15.625 
28 0.775 0.775 0.778 5.019 
29 0.835 0.826 0.780 5.032 
30 1.387 1.581 1.385 8.935 
31 11.626 11.134 13.158 84.890 
32 5.945 5.508 6.520 42.064 
33 1.266 0.957 0.797 5.142 
34 1.260 1.288 1.224 7.896 
35 1.108 0.998 1.296 8.361 
36 1.713 1.746 1.804 11.638 
37 1.240 1.170 2.827 18.238 
38 3.120 3.190 2.804 18.090 
39 12.690 13.893 9.431 60.845 
40 18.198 18.869 18.253 117.761 
41 16.336 12.235 17.121 110.458 
42 9.843 13.449 8.569 55.283 
43 15.597 15.270 17.649 113.864 
44 20.00 19.966 19.291 124.458 
45 1.188 0.855 0.781 5.038 
46 1.090 1.774 1.385 8.935 
47 8.687 1.636 4.076 26.296 
48 1.314 1.337 5.284 34.090 
49 0.887 1.087 1.570 10.129 
50 2.218 2.220 2.509 16.187 
51 8.156 6.195 6.729 43.413 
52 8.943 8.671 7.914 51.058 
53 18.889 10.397 1.539 9.929 
54 0.873 0.975 0.775 4.999 
55 9.188 1.023 0.786 5.071 

Best weight (lb) 80021 74390 72440 322265  N 
Average weight (lb) 80616 75285 73702 327879  N 

No. of analyses 50000 50000 50000 
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Figure 11. Comparison of the convergence history of the double layer braced barrel vault for 

three algorithms under symmetric loading 
 
Considering Figure 12 it can be observed that some member groups of this structure 

have small stress ratios, and bigger cross sections are selected. The reason corresponds to 
the special configuration and loading type of this structure. Large vertical joint 
displacements at the apex of this structure results in a design which is governed by 
displacements. The stiffness of some members on the overall stiffness of the structure is 
another problem. In the process of optimization the stiffness of some members and hence 
the stiffness of the entire structure increases and such members are designed with high 
cross section areas. Selecting small sections for such groups of members will result in 
smaller weight, while selecting small cross sections for the members with axial 
compressive stresses (corresponding to buckling) and small displacements, the selection of 
high cross sections increases the weight of the structure. This problem is dealt with by 
selecting a generation with different solution candidates in the process of optimization. 
Also the problem of the flexibility of the large-scale structure is an important issue which 
is dealt with. In relation with this problem, parts of the structure which have low axial 
forces and displacements are designed by small cross sections and the other part because 
of having constraints are designed by large cross sections. Thus part of the structure will 
be stiff and other part will be flexible. 

The uniformity of the distribution of stiffness in the vicinity of the structure is an 
important issue for large-scale structures. If part of the structure has elements of low axial 
forces and small displacements, and another part contains elements of high cross sections, 
then the uniformity of the distribution of the stiffness will not be achieved. 
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Figure 12. The ratio of the max stress to the allowable stress for different element groups for the 

double layer barrel vault for the IHBB-BC algorithm under symmetric loading 
 

 
5. CONCLUDING REMARKS 

 
Due to the special form of the barrel vaults, and because of its usage in practice, optimal 
design of this type of structures is very important. Here, the Big Bang-Big Crunch is applied 
for optimal design of truss type of barrel vaults. 

The HBB-BC is an improved version of BB-BC developed by Kaveh and Talatahari [2], 
which uses the best global and best local candidate in the formation of generation. In this 
algorithm the Particle Swarm Optimization characteristics are added to improve the 
exploration ability of the BB-BC. 

The IHBB-BC is a hybrid version of two improved optimization methods HBB-BC and HS. 
In this method increasing the number of iterations has additional effect on those element groups 
for which the cross sectional areas in the best global solution is near the boundary of the search 
space. This effect is due to the fact that if HBB-BC method creates solution out of search space 
for these element groups, then the solution will not lead to values near the boundary, while the 
use of HS method makes the algorithm to converge to the best global solution.    

In the first example the structure has been under both symmetric and non-symmetric 
loading. For each group of elements the ratio of the maximum stress to its maximum 
allowable stress is calculated and shown in Figures 10 & 11. In some of these groups the 
zero force can be observed, and no stress is developed, and the ratio has its smallest value 
and the optimization process has led to the smallest possible cross sections. This can be 
observed from the tables of the cross sections. 

For the second example, it can be seen from the diagram of the stress ratios and the 
corresponding tables for some group of elements though the stress ratio is small, however 
still some big cross sections are selected. In the first glance one may think that perhaps the 
optimization is not performed properly. However, investigating the entire process reveals 
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that the penalty for the violations has become zero and the weight has become smallest 
possible, though some groups have selected heavy sections. Of course some other 
limitations have also role and for the element at the top of the structure the displacement are 
rather big and the displacements govern the design. 

For evaluating the efficiency of the presented method, the results are compared to those 
of HS and BB-BC. One can easily see the improvement due to the use of IHBB-BC for truss 
type barrel vaults. 
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