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ABSTRACT 
 

This paper introduces a number of simple findings that lead to the efficient design of system 
based earthquake resisting moment frames. A system based design is defined as one that 
leads to minimum drift and minimum weight solutions, for code recognized seismic 
frameworks, without resorting to complicated numerical analysis. These findings are used to 
form an algorithm, which in turn leads to closed form solutions for system-specific 
performance-based design of earthquake resisting moment frames. The results of some of 
these findings may be summarized as follows; 

 the efficient design of a representative closed loop sub-frame is one involving beams 
and columns of equal strength and stiffness, 

 a design may be said to be efficient when the demand/capacity ratios of all of its 
members are as close to unity as possible, 

 the magnitude of a mid-span concentrated load may be considered small if it is less 
than half its plastic collapse value acting alone on the same beam. 

 
Keywords: Earthquakes; moment frames; efficient design; performance control; plastic 
design 

 
 

1. INTRODUCTION 
 

The key to successful system-specific Performance Based Seismic Design (PBSD) is to 
appreciate the essence of the principle that all earthquake resisting systems are expected to 
withstand controllable, large inelastic displacements, each in its own particular way, while 
maintaining a certain degree of structural integrity [1, 2]. A system based design focuses 
attention on the inherent characteristics of the specific structure to fulfill the basic 
requirements stated above. A traditional design adhering to this principle may entail several 
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cycles of complete elastic analysis of a first-guess system, followed by complete plastic 
analysis and code checks of a continuously-degrading-framework, until a satisfactory 
convergence of the pertinent checks and balances is established. The problem is 
compounded when effects of gravity loads on stiffness degradation and strength 
deterioration are also considered. The challenge therefore, is to perform numerically 
massive, often theoretically complicated, analysis needed to estimate the lateral 
displacements of the structure under different phases of incremental lateral forces, starting 
from zero to initial yielding, through propagation of plasticity up to and including incipient 
collapse. While computerized versions of PBSD methodologies have proven their worth in 
connection with large scale and special order structures, [3, 4] no direct-design formulation 
for routine usage of PBSD has been reported in the literature. However, what has hindered 
the applications of PBSD to the design of common types of earthquake resisting systems, 
such as moment frames, is largely due to lack of design oriented analytic tools and 
familiarity with direct-response methods of approach. The difference between conventional 
investigative analyses first, code prescriptive design next practices and the relatively new 
direct response methods of design are a matter of experience and extent of familiarity with 
the inner workings of the subject systems. In the latter design method, both strength and 
stiffness are induced rather than investigated with respect to certain predetermined criteria. 
In other words members are selected in relation with predetermined target displacements and 
prescribed loading, neither displacements nor member strengths are checked again for code 
compliance. In the case of moment frames, groups of beams and columns are selected in 
terms of their contributions to the global strength and stiffness of the structure, including P-
delta effects, while observing the strong column-weak beam criterion throughout the loading 
history of the system. Direct-response methodologies offer many advantages over the 
conventional analyses-first practices in that, they are much simpler to work with, attract the 
least amount of seismic input energy, result in minimum drift and weight designs, and 
provide insight into the nonlinear behavior of the subject systems [5, 6]. Unlike General 
Purpose Moment Frames (GPMF) that are designed to sustain seismic forces in addition to 
permanent gravity loads, Earthquake Resisting Moment Frames (ERMF) are primarily 
designed to withstand seismic forces in combination with small or short term gravity loads. 
The difference in their performance is attributed to the fact that unlike gravity loading, 
seismic input energy is a function of the structural properties, to their different modes of 
failure and the effects of gravity forces on the ultimate lateral carrying capacities of the two 
systems. In general, large permanent gravity forces adversely effect the lateral performance 
of all types of moment frames, while moderate to small gravity loads appear to have little to 
no effect on the ultimate carrying capacity of such structures. These differences are 
significant in that ERMF perform more predictably and can carry larger earthquake forces 
than their GPMF counterparts. 

 
 

2. THE PROPOSED ALOGORITHM 
 

To develop the proposed algorithm, it is assumed that that the entire moment frame 
including grade beams, is composed of imaginary, rectangular, rigidly connected basic 
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modules which fit into the bays of the structure. Therefore, if each imaginary module, as 
component part of the moment frame, is designed as an efficient sub-frame, then the entire 
assembly could also be regarded as an efficient ERMF, in which case, it should be possible 
to extend the design of one such module to recreate the original system. 

 The development of the proposed procedure is greatly facilitated by first generating a 
single row horizontal, Figure1b, or single bay vertical, Figure1c, sub-frame with the same 
characteristics as the pre-designed efficient module and then extending the sub-frame design 
to all other parallel sub-frames through direct proportioning. This renders the physical model 
of the prototype as an upright cantilever, with single story, contiguous sub-frames stacked 
on top of each other and hinge connected at their common joints i,j. Obviously, when the 
beams of the imaginary sub-frames merge at their common boundaries, the hypothetical 
hinges disappear, and  their physical properties and internal forces become superimposed to 
regenerate the original frame, e.g., the moments of inertia and the bending moments of the 
beams of the reassembled structure become jijiji III ,1,,   and jijiji MMM ,1,,   

respectively. The proportionate selection of the strength and stiffness of the members of the 
system, results in the creation of an efficient ERMF where members of geometrically similar 
groups of beams and columns of identical properties share the same demand-capacity ratios 
regardless of their locations and numbers within the group. The essence of the proposed 
procedure is described in two parts. Part I, in section 3.1, attempts to establish the pertinent 
conditions needed for the formulation of an efficient design. Part II, in section 4.1, 
introduces the required formulae and the manner of implementation of the algorithm through 
parametric examples. 
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Figure 1. Basic Module, Vertical and Horizontal Sub-frames, ERMF and Drift Angle 
 

2.1 Design conditions 
The efficient design of earthquake resisting structures is governed by specific stability and 
ductility related criteria which may or may not apply to gravity resisting systems [7]. The 
design of gravity resisting frameworks, on the other hand, may not be required to comply 
with strict drift and hysteretic conditions. It seems, therefore, expeditious to concentrate 
effort on system and function specific concerns rather than testing generalities. In an ideal 
system-oriented design, the essential design criteria, including optimization data, are made 
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part of the selection process rather than comparing results with the same requirements, and 
iterative processes are replaced with direct numerical substitutions. 

 The fundamental conditions related to the efficient design of ERMF may be summarized 
as follows. 

 
 The side-sway of each story shall be a minimum for that story.  
 The maximum allowable drift angle shall be the same for all stories. 
 The total weight of each constituent module shall be a minimum. 
 Gravity loads shall not reduce the ultimate lateral carrying capacity of the frame. 
 Columns shall remain stable and elastic throughout all loading stages. 
 The structure shall be capable of sustaining large inelastic displacements while 

maintaining a certain degree of structural integrity. 
 Effects of gravity loads on stiffness degradation and strength deterioration shall be 

considered as part of the prescribed design criteria. 
 The solution shall be capable of addressing damage control and meeting 

predetermined target decisions. 
 The design shall satisfy conditions of uniqueness and/or lower bound solutions during 

both linear as well as nonlinear stages of loading. 
 These issues are addressed in the following studies and their companion examples.  

 
 

3. PART I –FUNDAMENTALS 
 

The purpose of this section is to focus attention on the more significant aspects of system 
specific design, rather than generalized analysis. Information gathered from such studies are 
then directed towards design-specific member selection rather than computer generated 
outcome. The following areas of interest, in connection with efficient design of basic 
modules, as component parts of ERMF, are briefly studied in this section.  

 
 Effects of large gravity loads on moment frames 
 Basic elastic-plastic response 
 Basic plastic limit state response 
 Minimum weight-minimum drift association 
  
The outcome of the design process is immensely improved by utilizing the findings of 

this section, and as a result, unnecessary preliminary computations are routinely avoided. 
Furthermore, treating the selection of the columns and connections as automatic byproducts 
of beam design reduces the design effort to a minimum and increases the efficiency of the 
final product. Minimum weight columns, which are not allowed to contribute to the ductility 
of the system, are selected in such a way as to support the ductile performance of the rest of 
the structure at ultimate loading.  

However, a revision of the nonlinear response of a single, rectangular, closed loop 
moment frame or Basic Module (BM), as component part of ERMF, is essential in 
understanding the applications of the proposed algorithm to the practical design of ERMF. 
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3.1 Effects of large gravity loads on moment frames 
The undermining effects of large gravity loads on ERMF are significant enough to warrant a 
referenced to the formal study of the subject. While the bending effects of small floor loads 
W have little or no direct influence on the plastic moment of resistance of the BM, the axial 
effects of P and W tend to magnify both the lateral displacements as well as the moments 
generated by the lateral shear forces acting on the system. The question, what constitutes a 
small or large gravity load is addressed as part of the following discussion. In order to 
investigate the validity of the belief that small gravity loads do not affect the performance of 
EMRF, consider the combined effects of loads V, P and W on the ultimate load carrying 
capacity of the symmetric BM of a. An important characteristic of symmetric BM, is that 
their total weight is a minimum with respect to symmetric lateral loading [8]. This implies 
that the subject BM may be more flexible than their regular counterparts. Since these BM 
are expected to sustain relatively large inelastic displacements during major earthquakes, it 
becomes crucial to control their global as well as member capabilities at large gravity loads. 
The softening or loss of stiffness of such BM may be evaluated, to a high degree of 
accuracy, by the inclusion of the P-delta effects in their plastic carrying capacity 
computations, [9] expressed as;  

 

 












4)1(4

1 LW

f

hV
M P

cr
W
P

PP


 (1a) 

 
Where 0W

P  for W=0, and 1W
P  for W≠0. Both suffix and index “P” relate the 

quantity to plastic collapse. PM and PP MN  are the plastic moments of resistance of the 
beams and columns of the BM respectively. )/21( crcr PPf  , is the magnification factor 

described in the next section. It has been shown, [9], that while small floor loads, i.e., 

LMW P
Small /8 , have no effects on the lateral carrying capacity of the BM, axial loads P 

tend to reduce its efficiency linearly from full capacity to zero at .crPP   Furthermore, 

comparing SmallW  with  ,/16 LMW P
Limit   it may be concluded that in general 

.2/LimitSmall WW   In other words; the magnitude of a mid-span concentrated load may be 

considered small if it is less than half its plastic collapse value acting alone on the same 
beam. And that moderate to small gravity loads have little to no effect on the ultimate 
carrying capacity of ERMF which are designed for code level earthquakes. 

This finding is equally valid for multimember ERMF. Henceforth, the scope of the 
present study will be confined to V-W-P combinations with crPP   and .SmallWW   

 
3.2 Basic elastic-plastic response 
A review of the linear behavior of the basic moment frames of Figure 4 is a priori to 
appreciating the essence of the proposed algorithm. To this end, the generalized 
displacement equation of a closed loop or grade beam supported BM in terms of its material 
and geometric properties, subjected to combined axial and lateral forces has been derived as 
a closed form formula. This generalized mathematical model which addresses both the 
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elastic as well as plastic deformations of the closed loop system up to and including 
incipient collapse is then expanded to discuss the basis of the proposed algorithm. 

 

                 (2a)                                       (2b)                                       (2c) 
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Figure 2. Basic lateral resisting moment frames and boundary support conditions 
 
An generalized study of the plastic deformations of BM with fixed and pinned boundary 

supported conditions has been reported by the present authors, [10, and 11]. This article is 
concerned mainly with the elastic-plastic response of grade beam supported multistory 
moment frames. The drift ratio ,/ iii h  of the generalized sub-frame of Figure 4b, 

subjected to a roof level lateral force VVi   and axial nodal forces PP ji ,  can be 

expressed as;  
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Where J, lI and 

u
I are the section moduli of the columns, and, the lower and the upper 

beams respectively. i  is the roof level lateral displacement. Dimensions a and b, describe 

the heights of the upper and lower parts of the sub-frame measured from their common 
points of zero moments and separated by the imaginary lines x-x. The condition for 
minimum drift with respect to location of line x-x can be expressed as:   
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Where igrK ,  is the global, un-degraded stiffness and ]/)(1[ ,
0

,, icr

n

i
jiicr PPf 


  is the 

corresponding force magnification functions.  jiP,  and iigricr hKP ,,   are the total and 

critical axial loads of the subject sub-frame respectively. Abbreviated suffices gr, hg and fx 
refer to grade beam, hinged and fixed support conditions respectively. The generalized 

Kronecker’s Delta P
j , is used to include the effects of formation of plastic hinges at the 

moment bearing ends of the beams , e.g., 1P
j  for P

jj MM   and 0P
j  for .p

jj MM   

0P
j  also implies structural damage and/or loss of stiffness. E is the modulus of elasticity 

of the material of the frame. However, in order to avoid mathematical complications, 
without loss of generality, a simplified version of Eq. (2a), corresponding to a representative 
module of the same sub-frame, Figure 4d, is presented for the purposes of this section. The 
elastic drift ratio h/ , of the representative or basic module of Figure 4b, subjected to 

similar forces as the sub-frame which it represents, can be expressed as;  
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Coefficients   and   now become ( )/ hIJL u  and )/( hIJL l respectively. Defining the 

upper and lower racking stiffness of the basic frame as  3S  and  3S  

respectively, allows the corresponding upper and lower beam or corner bending moments 

uM  and lM respectively to be expressed as; 
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A simple check verifies that the sum of the corner or beam end (or column end) moments 

is equal to the racking moment VhM R   of the frames, i.e. 
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22
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Story level racking moment is, therefore, defined as the story level shear multiplied by 

the story height. Three types of boundary support conditions for lateral resisting moment 
frames are usually encountered in practice; fully hinged, with flexible grade beams and fully 
fixed [9]. The complete elastic solution for the basic module with a grade beam is contained 
in Eqs.(2d)through (2f). The complete elastic solutions to the two companion cases, frames 
with fully hinged and fully fixed supports, can be derived easily from the same set of 
equations as for their prototype, e.g., Replacing the partial height a with h in Eq. (2a), it 
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gives; b=0 and; 
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as the roof level elastoplastic drift ratio of the hinged support moment frame of Figure(4a). 
The corresponding beam moments for this case can be written down as;    
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Where, the story racking stiffness factors S and S for the fully hinged support moment frame 

may be defined as 1S and 0S respectively. Similarly, putting lI , i.e. 0  in  Eqs. 

(1a) and (1b), gives; 
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as the roof level elastic drift ratio of the fixed support moment frame of Figure (4c), where  
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The corner bending moments for moment frames with fixed supports can also be 

expressed as; 
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Where, the story racking stiffness factors for the fully fixed support moment frame are 
defined as 3S and ,3 S comparing Eqs. (2f), (3b) and (4c), it can be seen that in all 

three cases the sum of the corner or column end moments is equal to the racking 
moment VhM R   of the frames. If the dashed lines passing through the points of zero 

moment or contra-flexure are treated as the neutral axis of these frames with respect to story 
level (external) racking moments, then it may be observed that; the total story level racking 
moment can be divided into upper and lower, parts in proportion with upper and lower 
racking stiffnesses of the module respectively, i.e. 

 

 RRU M
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S
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  and  RRL M
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Eqs. (3a) and (2d), for the hinged base and grade beam supported modules respectively, 
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can be used directly to compute the corresponding lateral displacements at incipient 
collapse. The lateral displacements of fixed base portal frame of uniform section can be 
estimated directly by putting a=b=h/2 in Eq. (4a).  

 
3.3 Basic plastic limit state response 
Plastic limit state design philosophies are based on understanding pertinent failure 
mechanisms and corresponding load factors at collapse. Therefore, employing the principle 
of virtual work in connection with the plastic failure mechanisms of figure (5b), and 
observing that the plastic moments are prevented from forming within columns, i.e., 

P
u

P MN  and ,P
l

P MN   it gives for the total virtual external and 

 

                           (3a)                                        (3b)                                          (3c) 

L LL

h
a

b

V VV

P
lM

P P P P PP

x

x

x

x

x

P
uM

PN

P
uM

PN PN
PN PN

PN

P
uM

 

Figure 3.  Basic Collapse Mechanisms Due To Lateral Shear 
 

internal work quantities; crext fhVW /  and   ][2 )
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P
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P
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P
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respectively. Virtual work theory states that: 0int WWext , whence, 

 

 ,/][2 ) hfNMMV cr
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where, 0 P
fxl

P
hg   represents hinged supports with hfMV cr

P
uP /2 , 0P

hg   and 

1P
fx  represent fixed supports with hfNMV

cr
PP

uP /)(2  , 1P
hg   and  0P

fx  

indicate grade beams at supports with ./)(2 hfMMV cr
P
l

P
uP   Substituting for 

,PP
l MM   ,2 PP

u MM   1P
hg  and 0P

fx  in Eq. (6), results in ,6/ crP
p fhVM   a 

result previously obtained for the example problem through simple plastic analysis. This 
indicates that as far as failure theorems are concerned the proposed methodology results in 
either smaller or equal failure loads compared with those predicted by virtual work analysis. 
Therefore the proposed algorithm leads to either lower bound or unique solutions, which are, 
of course, better suited for both linear as well as non-linear design purposes [12, 13, 14]. 
The essence of the proposed design algorithm is illustrated through the following simple 
parametric examples.  

 
3.4 Illustrative example I-  
The purpose of this exercise is twofold; first, to demonstrate that the proposed set of simple-
closed form formulae, such as (2a), can be used manually to study both the linear and 
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nonlinear behavior of closed loop moment frames under lateral loading, and that they 
provide a wealth of design and performance data that neither elastic nor plastic closed forms 
of analysis can offer on their own. Currently, there are no exact closed form solutions that 
can estimate global stiffness degradation due to propagation of plastic hinges, nor the de-
stabilizing effects of large axial loads.  Second, to demonstrate the applications of the direct 
response methodology to the design of efficient ERMS and to show that the proposed 
solutions can be used in conjunction with ASD, LRFD, PLS and Performance-Based 
Elastic-Plastic methods to design moment frames of minimum weight and minimum drift 
subjected to seismic or wind forces, and that in either case both design level strength and 
stiffness can be induced rather than investigated. Consider the lateral displacements of the 
BM of Figure2b, subjected to a monotonically increasing lateral force V and constant axial 
joint forces P .The preliminary design conditions are prescribed as follows;   

h=L, ,IIl  ,2IIu  ,3IJ  ,PP
l MM  ,2 PP

u MM  PP MN 2.2 and .10.0/  crPP  

It is required to establish the values I and PM such that the drift ratio 015.0Y radians 

at first yield, (with safety factor =1), and 030.0P  radians at incipient collapse, (with load 

factor =1). 

Since P
 = 1P

  before and up to first yield, then substituting for ,9.01.01 crf  

2/3)2/3(  IhIL  and 3)/3(  IhIL  in Eqs. (2d) and (2c), it gives; 

,/2039.0)]9.0(/0437.0[ 2 EIhMfEIhV P
crYY   as the maximum elastic drift ratio at 

first yield, and the beam moments P
crYl MfhVM  )]9.0(42/9[  and 

,23/4)]9.0(42/12[ PP
crYu MMfhVM   caused by the corresponding lateral force 

.9/)9.0(42 hMfV P
crY   Obviously, with YF  or shear at first yield known, the minimum 

elastic section modulus ,YI  corresponding to an ASD with pre-specified safety factor, 

(SF=1), and maximum elastic drift ratio ,Y  can be computed as; 

 

 EhMhhMEhMI PP
Y

P
Y /5933.13015.0/2039.0/2039.0    (6a) 

 
Similarly, if desired, appropriate load factors may be used in conjunction with LRFD to 

compute the corresponding section moduli in terms of YF  and .Y  However, since  

,23/4 PP
u MMM   it must be increased by ,3/2)3/42( PP MM   before reaching 

.2 PM Therefore replacing the partial height a with the total height h, and the original 
stiffness grK with the degraded stiffness hgK  in Eq.(2a) or directly using Eq. (2d) it gives, 

cr
P fVhM 2/3/2   or  hMfV P

cr 3/4  as the additional shear force needed to cause 

plastic collapse at .PV  crcr ff   is the next or second stage load magnifying factor. 

Furthermore since  P
l MM   then 0P

 , consequently ,0 b  and Eq. (2a) or more 

directly (2d) yields; EIhMfEIVh P
cr /2594.014.5/2   as the additional drift angle 
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caused by the additional load V  i.e., EIhM p
EP /4633.0  , therefore; 

 

 EhMhhMEhMI PP
P

P
P /4433.1503.0/2039.0/4633.0    (6b) 

 
Since YP II  , then 

P
II   governs. With the stiffness degradation ratio 

45.40437.0/1946.0/ hggr KK  known, the new magnifying factor crf  can be computed 

as ,555.0]45.41.01[ crf  which in turn allows the plastic limit state or the collapse 

load to be estimated at ,/94.43/49/42 hMhMfhMfVVV PP
cr

P
crYP   as 

compared with  ,/4.5/6 hMhMfV PP
crp   corresponding to 9.0 crcr ff . It is 

instructive to observe that with 0.1 crcr ff  the ultimate lateral capacity may be 

computed as ./63/49/42 hMhMhMVVV PPP
YP   The determination of I and 

PM automatically establishes the values of J=3I and PP MN 21.1  .A comparison of the 

three different values of PV , i.e. ,/6)0/( hMPPV P
crP   

crP PPV /( Constant) hM P /40.5  and crP PPV /( Variable) hM P /94.4 , clearly 

demonstrates the possibilities and advantages of using the proposed formulae over 
conventional methods of computation. 

 
3.5 Design efficiency, minimum weight-minimum drift association 
The basic idea behind the proposed algorithm is the consideration that actual structural 
response is largely a function of system specific characteristics, rather than mathematical 
analysis, and that unlike gravity loading, seismic input energy is a function of structural 
properties and design. Therefore it would be reasonable to expect efficient earthquake 
resisting structures to be designed in such a way as to adsorb the least possible seismic 
energy while meeting predetermined performance goals. Total input energy is a function of 
global stiffness and the way it degrades through different phases of diminishing energy 
absorption. Structural design efficiency, from a materials consumption point of view, may 
be linked with its strength and stiffness under specified loading conditions. A structure may 
be said to be efficient or of minimum weight and minimum drift design if its total weight 
and drift are minimum under non-plastic conditions-(a non-plastic or partially plastic 
condition is one in which no partial or global failure mechanism can take place.) By the 
same token, the system may be regarded as highly efficient or of efficient design if its total 
weight and drift are a minimum at ultimate loading or at incipient plastic collapse. 
Supposing that for BM of Figure 2b or 3b ba  , the  imposed demand is 

)]/6([)]/6([ LEIMLEIM llluuu   , and that the column design moment uMN  , 

then the linearized non-plastic total weight function of the BM may be expressed as [15, 16]; 
 

 ul MLhLMCG )2([  ] (7a) 
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Where, C is an arbitrary constant of proportionality. Substituting for lM  from Eq. (2f) into 

Eq. (7a) and rearranging, it gives; 
 

 ]2/12[]2/2[ VhEhICVhLhMCG uuu    (7b) 

 
Now since )],/6([)]/6([ LEIMLEIM llluuu    then for a non-zero solution, 

Eq.(7b) may be studied with respect to the following limiting conditions; 
 

 0)]/6([4/  LEIMVh lll   and 4/)]/6([2/ VhLEIMVh uuu    (7c) 

 
Comparing inequalities (7c) with Eq.(7b), it follows that the total weight of the BM is a 

minimum when 4/VhMM lu   and/or lluu II   , which can be true only when 

III lu   and lu   , i.e., when a=b=h/2. Equal upper and lower rotations are associated 

with minimum drift and points of contra-flexure occurring at mid-height [17, 18]. In other 
words conditions lu II   and lu MM   together result in an efficient solution where both 

total weight and side-sway are a minimum, i.e. the demand-based non plastic total weight 
and the corresponding drift ratio become;  

   

 uMLhCG )(2    and 
hKf

V

kkEf

M

crcr

R 



 

11

24
  (8d) 

 
respectively, where LIk /  and hJk /  represent the simplified relative stiffnesses of 
the beams and columns of the optimized module.  This unique moment frame property leads 
to the simple but important finding that; the efficient design of the closed loop basic module 
is one involving beams and columns of equal strength and stiffness. 

The capacity based total weight can now be expressed as, .)(2 P
P MLhCG   Since   

PG  is a constant property of the BM and is valid for all P
u MM  or ,1/ P

u MM  then 

efficient conditions may be reached when 0GGP . In other words; a design may be said 

to be efficient when the demand/capacity ratios of all of its members are as close to unity as 
possible. Naturally, if the imaginary modules can be merged to form an efficient sub-frame, 
then the entire assembly could also be looked upon as an efficient ERMF. The methodology 
used for Example I, is employed without major modifications to design the multi-bay, multi-
story ERMF of the illustrative example II below, which has been devised to illustrate the 
advantages of incorporating doubly symmetric BM in the design of multi-story ERMF. 

 
3.6 Illustrative example II-  
Assuming 9.0crf , compare the total weight and the drift angles of the BM of example I 

with that of a similar BM with beams of equal average strengths 

2/32/)2( PPPP
average MMMM   and equal average section inertias, 
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2/32/)2( IIIIaverage  , at incipient collapse. The total weight of the example BM at 

incipient collapse may be estimated as; P
luu ChMMMLhMCG 40.7)](1.12[  . 

Similarly, the total weight of the BM with equal beam strengths may be estimated as; 

.30.6]1.1[2)](1.12[ PP
averageluu ChMMLhCMMLhMCG   

The drift angle of the BM of Example I was computed as ./4633.0 EIhM p
P   The 

corresponding drift angle for the BM with equal beam section inertias can be expressed as, 

./2778.0 EIhM p
P   Clearly, doubly symmetric basic modules perform more efficiently 

than their singly symmetric and non symmetric counterparts. The results of this finding are 
extended to the design of multimember ERMF in the forthcoming sections of this paper. 

 
 

4. PART II-DEVELOPMENT OF THE ALGORITHM 
 

In the proposed design methodology both strength and stiffness are to be induced rather than 
investigated with respect to predetermined criteria. What is needed, therefore, is an analytic 
tool that is based on the findings of Part I and can estimate the elastic-plastic deformations 
of the subject frame through a single, seamless expression. 

 
4.1 Frame displacements 
The generalized drift Eq. (2a), can be modified [19, 20] to represent the drift equation of an 
imaginary efficient horizontal sub-frame, such as that shown in figure 1b,  say at level  i=m, 
 under a monotonically increasing roof level lateral load, i.e.  

 

 
msm

sms
n

r
rm

s
r

n

j
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smcr

smRs
sms hK

V

kk
Ef

M
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,

1
,

1
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,
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,

11

12





































  (9a) 

Where, the term rm

n

r

s
r k ,

1

1


  has been introduced to signify the order of formation of plastic 

hinges within the beams of the imaginary sub-frame. The numerical vale of “s”, the number 
of iterations or different values of k, increases with decreasing order of k, whence by 
definition, the smaller the symbol “s” the stiffer the beam it represents. In mathematical 

terms, 11 s
r  for ,1 sr  and 01 s

r  for .1 sr  In physical terms 01 s
r  for 

P
smBsmB MM ,.,.   and implies structural damage and/or loss of stiffness with respect to 

member ".," si  11 s
r  for P

smBsmB MM ,.,.  . ]/)(1[
0

,.,,. 



n

j
smcrjmsmcr PPf , is the force 
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magnification function. 


n

j
jmP

0
,  and msmsmcr hKP ,,.   are the total axial load and the critical 

axial load of level  m  at ths  response stage respectively. smK , is the total stiffness of the 
thm  level sub-frame at ths  response stage. Symbol s  signifies increment at ths consecutive 

iteration. The variations of the magnifying factor can be expressed in terms of the stiffness 
degradation function as;  

 ])(1[
0

,
,

1,
,. 




n

j
jm

sm

m
smcr P

K

K
f  (9b) 

4.2 Rules of proportionality 
Next, in order to satisfy the minimum constant drift criterion for all sub-frames of the 
structure, it would be sufficient to impose the condition ssissmss   ,,  in Eq.(9) for 

all “i”. With “s”, ss  and msmssmR hVM ,,.   known, the response of the thm  level sub-

frame, in terms of sjmI ,,  and  sjmM ,,  can be studied for all values of .ns    These  results 

can then be extended to all other sub-frames, in accordance with the following rules of 
proportionality; 

 

  
 


n

j

n

j
jm

smR

siR

smcr

sicr
ji k

M

M

f

f
k

0 0
,

,.

,.

..

,.
, ))((  and  

 

 
n

r

n

r
rm

s
r

smR

siR

smcr

sicr
ri

s
r k

M

M

f

f
k

1 0
,

1

,.

,.

..

,.
,

1 ))((   (9c) 

 
Assuming the moment magnification factor, sicrf ,. , remains  constant for the same “s”, 

then it may be shown that the most expedient nonzero solution to the pair of Eqs. (9c), in 
terms of selected relative stiffness factors of the sub-frames, could be expressed as; 

jmsmRsiRji kMMk ,,.,., )/(  and  jmsmRsiRji kMMk ,),.,., )/( , or  more directly in terms of 

the desired section moments of inertia as; 
 

 jmmismRsiRji JhhMMJ ,,.,., )/)(/(  and jmsmRsiRji IMMI ,,.,., )/(  (9d) 

 
respectively. Similarly, the desired distribution of sub-frame beam and column bending 

moments, jiM , and jiN , can also be expressed as; 

 

 jmsmRsiRji NMMN ,,.,., )/(   and jmsmRsiRji MMMM ,,.,., )/(  (9e)  

 
Introducing the proportionality factors i smRsiRsiR MMM ,.,1.,. /)(   and   

i )/( ,.,. smRsiR MM  the desired section properties of the members of the actual frame can 

now be established as; 
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   jijiji III ,1,, jmi I ,  and  )/(, miiji hhJ  jmJ ,  (9f) 

 
Similarly, the bending moments of the members of the actual frame can be evaluated as; 
 

 jijiji MMM ,1,,  = jmiM ,   and jmiji NN ,,   (9g) 

 
4.3 Illustrative example III  
The purpose of this simple, parametric example is to demonstrate that the group of 
seemingly complicated Eqs. 9 can result in direct design values without resorting to tedious 
analysis. Consider the response of a regular (m=4) (n=5), uniform story height h, moment 
frame subjected to a uniform distribution of lateral forces Pi FF   at incipient collapse, with 

continuous beams of uniform moment of inertia, iI  and plastic moment of resistance P
iM at 

each level “i”. Assuming, ,4 IIm   PP
m MM 4 and  i  are known, compute iI , 

P
iM and the ultimate carrying capacity, ,PF  of the structure. If i  is constant, then iI  and 
P
iM can be computed using Eqs. (9d) and (9e) as multiples of mI  and P

mM  respectively, in 

proportion with their racking moments ., iiiR hVM  The story level racking moments can be 

computed as; ,4, hFM PR   ,23, hFM PR   hFM PR 32,   and .41, hFM PR   It is instructive 

to note that  hFM P

m

i
iR 10

4

1
.





   is equal to the overturning moment of the external forces 

about the base of the structure. Whence, Eq.(9d) gives for the imaginary sub-frame beam 
moments of inertia; ,4 II   ,2)/2( 43 IIhFhFI PP   IIhFhFI PP 3)/3( 42   and 

,4)/4( 41 IIhFhFI PP   consequently the actual design moments of inertia for the beams 

of the prototype become; ,044 III   ,3343 IIII   ,5232 IIII   

IIII 7121   and .4010 III   Similarly it can be shown that the plastic moments of 

resistance of the beams of the imaginary sub-frames are; ,4
PP MM   ,23

PP MM   
PP MM 32   and  ,41

PP MM  based on which the actual design plastic moments of 

resistance of the beams of the original frame can be computed as; ,044
PP MMM   

,3343
PPPP MMMM  ,5232

PPPP MMMM  PPPP MMMM 7122  and

.4010
PPP MMM   Next observing that the roof level sub-frame resists its own racking 

moment hFP  through formation of [2 (2 5 No. of beams)] =20=No. of plastic binges, 

caused by plastic moments ,PM then by static equilibrium ,20 P
P MhF  as an indication of 

the ultimate lateral capacity of the system. Using the principles of the virtual work method 
of plastic analysis for this particular problem gives; 
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 hFhVMW Pii

m

i
iRext 10)(

4

1
..  





 and 1020/(20
4

1
),..int 






m

i

P
mRiR

P MMMMW  (9f) 

 
Equating the results of the two work equations, directly verifies the previously obtained 

solution, hMF P
P /20  without resorting to additional computations. 

 
4.4 Sub-frame moments 
Eq.(9a) is composed of two components; drift due to beam rotations, ,,. smBeams   and drift 

due to column bending, ,,. smCols , i.e.  

 

 







 n

r
rm

s
rsmcr

smRs
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kEf

M

1
,

1
,.

,.
,,

12 
  and 





 n

j
jmsmcr

smRs
smCols

kEf

M

0
,,.

,.
,,

12

  (10a)  

 
Substituting for jmjmsmbeams EkM ,,,. 6/   and jmjmsmCols kEN ,,,. 12/    in Eq.(10a) 

and rearranging, gives the moment redistribution or plasticity progression Equations of the 
beams and columns of the subject sub-frame at any given response stage as; 
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r
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rsmcr
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
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j
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,,.
,,  (10b)  

 
respectively. The pair of Eqs.10 are statically consistent at all joints m,j of the subject sub-
frame, i.e. .0,,,1,,,   sjmssjmssjms NMM  The sequential plastic hinge formation, Eq. 

(11a), of the beams of the thm level sub-frame can be expressed as;  
 

 
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4   (11a) 

 
The validity of Eq.(11a) can be verified by comparing the sum of the incremental 

forces smsF , , from zero up to incipient collapse, with the collapse load corresponding 

to 1,. smcrf , estimated by the virtual work analysis, Eq. (9f) i.e.  
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Which is in full agreement with the corresponding virtual work result, hMF P
P /20 , 

described above. A detailed verification of Eqs. (11a) and (11b) is presented in the 
Appendix. 

 
4.5 Illustrative example IV 
Consider the lateral displacements of the moment frame of Example III, subjected to a 
monotonically increasing triangular distribution of lateral force )/( miFFi   and constant 

.10.0/ .  icri PP The frame geometry is defined as follows; ,5.11 hh   ,25.12 hh   

,43 hhh   ,1 hLL  ,25.12 LL  LL 50.13  and LL 24  .The 4th level sub-frame 

column section inertias are defined as ,1.140 IJJJ   and IJJJJ 2.22321  . 

The uniform plastic moments of resistance of the beams and columns of the 4th level sub-

frame are selected as PP
m MM  , PP

m
P
m NNN  4,0,  and PP

m
P
m

P
m NNNN 23,2,1,  with 

the provision that, .1̀.1 PP MN   It is required to establish the values I and PM such that 
the drift ratio 020.0Y radians at first yield and 030.0P  radians at incipient collapse. 

Since 21 kk  , then s the distinct number of different values of  k =4. It follows therefore, 

that 
,/21 LIkk  ,/8.025.1/2 LILIk  ,/6667.050.1/3 LILIk  ./5.02/4 LILIk   

 
Table 1: Summary-example IV, numerical solutions of Eqs. (9a),(9b) and (12) 

s J )//( 3hELKs  )//( hMF P
s  )//( EIhM P

s  scrf .  sscr Ff .  sscrf .  

1 1,2 49.7512 15.8666 0.2583 0.9000 14.28 0.4273 

2 3 31.2500 1.9667 0.0509 0.8408 1.65 0.0428 

3 4 20.7900 1.1667 0.0455 0.7607 0.89 0.0346 

4 5 9.9010 1.0000 0.0818 0.4975 0.50 0.0409 

   20.0000 0.4365  17.32 0.5456 

 
The complete elastic-plastic solution of the roof level sub-frame, as well as the governing 

values of the global drift angle and the ultimate crying capacity of the subject ERMF are 
presented in table 1 below. The validity and uniqueness of the proposed solution is 
corroborated by the sum of the monotonically increasing lateral force sF  (last row, 4th 

column). It can also be seen that stiffness degradation reduces the ultimate carrying capacity 

from hMF P
P /20  to ,/32.17 hMF P

P   and increases the drift angle from 

EIhM P
P /4365.0  to EIhM P

P /5456.0 - phenomena that can not be detected by 

conventional closed form solutions. From line s=1 the maximum section inertia 
corresponding to first yield, ,1FFY   can be computed as; 
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EMEhMI PP
Y /92.1202.0/2583.0   and the corresponding value at incipient collapse, 

4FFP  ,  as; EhMEhMI PP
P /55.1403.0/4365.0  . Since YP II   then 

EhMI p /55.14 and ./55.14 EhMI p  With ,mI mJ and P
mM  known, Eqs. (9f) and (9g) 

can be used to compute the corresponding values for all other sub-frames and the members 
of the ERMF by direct proportioning. The story level racking moments and the complete 
parametric design of the subject ERMF is summarized in Table 2 below. 

 
Table 2: Summary-example IV, numerical solutions of Eqs. (9f) and (9g)  

i FhM iR /.  i  i  mii II   mmiii hJhJ /  PP
i MM /  PP

i NN /  

4 1.0000 1.0000 1.0000 1.0000I 1.1000I 1.0000  1.0000 

3 1.7500 1.7500 2.7500 2.7500I 1.9250I 2.7500  1.7500 

2 2.8125 2.8125 4.5625 4.5635I 3.8672I 4.5625 2.8125 

1 3.3750 3.3750 6.1875 6.1875I 5.5689I 6.1875 3.3750 

0 ------ ------- 3.3750 3.3750I -------- 3.3750 -------- 

 
 

5. CONCLUSIONS 
 

A system-based algorithm has been proposed that results in minimum weight minimum drift 
moment frames under purely lateral loading. The algorithm is general and may be extended, 
with some modifications, to the efficient design of other types of earthquake resisting 
systems such as eccentric and concentric braced frames, special truss moment frames, shear 
walls, hybrid systems, etc., under pre-selected distributions of lateral loading. The 
methodology reduces the otherwise complicated task of structural optimization to 
direct design through basic analysis and recommended rules of general application. 
The proposed procedures are particularly suited to manual and spreadsheet computations. 
The proposed algorithm leads to a number of useful design formulae that have not appeared 
in standard texts and literature. Several generic examples were presented to demonstrate the 
applications of these formulae. The proposed design formulae provide a wealth of analytic 
information that may not be readily available through conventional methods of design. The 
ultimate failure load solutions, thus obtained, are unique and suitable for preliminary plastic 
design treatment in that they include P-∆ and stiffness degradation effects due to 
monolithically increasing lateral forces satisfy the prescribed yield criteria as well as the 
boundary support and static equilibrium conditions. The applications of this article are 
limited in nature to non-slender systems, as the assumption of uniform drift my not be 
compatible with higher modes of natural vibrations. 
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APPENDIX 
 

Substituting for hFhFhVM mmsmmsmsmR 1,11,11,11,.1   , P
sm MM  1,.1 and 

10111  
r

s
r   in Eq.(11) after some rearrangement, it gives the amount of force needed 

to produce the first set of plastic hinges in the stiffest beams of the thm level sub-frame; 
 

 



n

r
rmmcr

mm

p

m kf
hk

M
F

1
,1,.

1,
1,1

4
 (12) 

 

Next bearing in mind that by virtue of Eq.(12) moments generated in the thx  beam (x>s) 
of any level can be expressed in terms of the maximum moments of the stiffest beam of that 

level i.e. P
ismxsmxsms MkkM )/( ,,,    and that the sequence of formation of the plastic 

hinges of any level is the same as the sequence of decreasing order of stiffness of the beams 
of the same floor, then the plastic moment of resistance of the stiffest element s=1 and 

moment of resistance of the next stiffest element s=2  can be computed as PM and 
Pp

smsm MMkk  )/( 1,2, respectively. Therefore, the balance of bending moment needed to 

elevate the moment of resistance of beam s=2 to pM can be computed as 

,)]/(1[ 1,2,
p

smsm Mkk   whence the amount of additional force required to generate plastic 

hinges at the ends of the next stiffest beam may be generalized as Eq. (11b). 
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