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ABSTRACT

In this article, an improvement is proposed for bat algorithm and it is utilized for size
optimization of skeletal structures consisting of truss and frame structures. Various
optimization problems are implemented to demonstrate the ability of the enhanced bat
algorithm. These numerical examples are along with different constraints and loading
conditions such as stress, displacement and frequency constraints, static and time history
dynamic loadings. Furthermore, these optimization problems are in two form of discrete and
continuous. Results show the suitability and efficiency of the present algorithm for optimal
design of skeletal structures.

Keywords: Structural optimization; an enhanced bat algorithm; truss structures; frame
structures; continuous and. discrete optimization.

1. INTRODUCTION

Optimal design of structures aims to design a structure with minimum weight, or minimize
an objective function value corresponding to minimal cost of the structure, while the
corresponding design criteria are satisfied.

Different classifications exist for structural design optimization. Based on the variable
types to be optimized, three kind of optimization are considered as: size optimization, shape
(geometry) optimization and topology optimization. Optimization algorithms can be
generally categorized as deterministic and non-deterministic (random) algorithms. Meta-
heuristics are well-known non-deterministic optimization algorithms that are utilized in
engineering optimization problems and are in a progressive state of development. Many
researchers are concerned with structural design optimization via various meta-heuristic

* E-mail address of the corresponding author: alikaveh@iust.ac.ir (A. Kaveh)



180 A. Kaveh and P. Zakian

algorithms. Here, only a few of these are summarized:

Camp [1] optimized the space trusses using Big Bang—Big Crunch (BB-BC) which is a
kind of meta-heuristic algorithm, Gomes [2] employed the particle swarm optimization
(PSO) algorithm for size and geometry optimization of truss structures, Li et al. [3] used a
heuristic particle swarm optimizer for optimization of pin connected structures, Design
optimization of 3D steel structures with comparison of genetic algorithms versus classical
techniques was performed by Prendes Gero et al. [4], Salajegheh & Heidari [5] utilized
wavelets, neural network and genetic algorithm (GA) for optimum design of structures
under earthquake loading, Liu, et al. [6] performed seismic design optimization of steel
frame buildings based on life cycle cost considerations, Kaveh & Talatahari [7] presented an
improved ant colony optimization (IACO) for the design of planar steel frames. Kaveh &
Talatahari [8, 9] developed the charged system search algorithm and applied to optimal
design of skeletal structures. Kaveh & Farhoudi developed Dolphine optimization [10], and
Kaveh & Khayatazad [11] proposed Ray optimization for truss and frame optimization.
Golizadeh & Salajegheh [12] employed a meta-modeling based real valued PSO algorithm
for optimizing structures subjected to time history loading, Kaveh & Zakian [13] performed
optimal seismic design of special reinforced concrete shear walls via charged system search
algorithm by defining several constraints and generating shear wall section database so as to
have a discrete optimization.. Kaveh & Zakian [14] accomplished optimal design of steel
moment and shear frames under seismic loading using charged system search and improved
harmony search algorithms considering drift and stress constraints via simultaneous static-
dynamic structural analysis.

This paper presents an improvement on bat algorithm to carry out size optimization of
skeletal structures consisting of trusses and frames. Various optimization problems are
implemented to demonstrate the ability of the present enhanced bat algorithm. These design
examples are associated with different constraints and loadings such as stress, displacement
and frequency constraints, static and time history dynamic loadings. Here, both discrete and
continuous optimization. problems  are studied. Results indicate the efficiency of the
algorithm for design optimization of skeletal structures.

2. BAT ALGORITHM

2.1 Definitions
Bat algorithm (BA) is a meta-heuristic optimization algorithm which was presented by Yang
[15]. This algorithm is inspired from the echolocation behavior of microbats. In echolocation
behavior, each pulse only lasts a few thousandths of a second (up to about 8-10 ms).
Nevertheless, it has a constant frequency which is usually in the range of 25-150 kHz
corresponding to the wavelengths of 2—14 mm. In BA, the echolocation properties of
microbats can be idealized as the following rules [16]:

1. All bats use echolocation to sense distance, and they also ‘‘know’’ the difference
between food/prey and background barriers.

2. Bats randomly move with a velocity of v; at position x; with a fixed frequency f,
varying wavelength A, and loudness 4, to search for prey. They can automatically tune the
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wavelength (or frequency) of their emitted pulses and tune the rate of pulse emission
r €[0,1], depending on the proximity of their target,

3. Although the loudness can vary in different ways, it is supposed that the loudness
varies from a large (positive) 4y to a minimum constant value A4,,,.

For each bat (i), its position x; and velocity v;in a nv-dimensional search space should be
defined. x; and v; should be subsequently updated during the iterations. Adjusting frequency
and the new solutions x; and velocities v; at time step ¢ can be calculated by:

fi:fmin"'ﬂ(fmax_fmin) (D
V=V £ = X)) )
xl=x 3)

where [ in the range of [0,1] is a random vector drawn from a uniform distribution.

Here, x is the current global best location (solution), which is located after comparing

cgbest

all the solutions among all the n bats. As the product 4 f, is the velocity increment, either
J; (or A,) can be used to adjust the velocity change while fixing the other factor A, (or f)),

depending on the type of the problem of interest. For implementation, fi,i, = 0 and fn.x = 100
are used, depending on the domain size of the problem of interest. Initially, each bat is
randomly assigned a frequency that is drawn uniformly from [fiin, fmax]. For the local search
part, once a solution is selected among the current best solutions, a new solution for each bat
is generated locally using a local random walk:

Xy =X,q +E <A > 4)

where the random number ¢ is drawn from [—1,1], while < 4/ > is the average loudness of
all the bats at this-time step. The update of the velocities and positions of bats have some
similarities to the procedure in the standard particle swarm optimization as f; essentially
controls the pace and range of the movement of the swarming particles. To a degree, BA can
be considered as a balanced combination of the standard particle swarm optimization and the
intensive local search controlled by the loudness and pulse rate. Once a bat found its prey,
the loudness usually decreases and the rate of pulse emission increases. In this case, the
loudness can be chosen as any value of convenience. For simplicity, 4p =1 and 4,,;, = 0 can

be used. Assuming 4,,;; = 0 means that a bat has just found the prey and temporarily stop
emitting any sound, we have:

A,'Hl — aAit (5)
r = 1 - exp(—y1)] (6)

In which ¢ and y are constants. In fact, & is similar to the cooling factor of a cooling
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schedule in the simulated annealing. For any & >0 and y <1:

lim[4/"]=0, lim[ ;"] =7 (7)

—0 t—0

In the simplest case, & = y can be used. It is worth pointing that the bat algorithm is not

just another metaheuristic. Compared with existing metaheuristics, it has two advantages:
frequency tuning and dynamic control of exploration and exploitation by automatic
switching to intensive exploitation if necessary. It uses the frequency-based tuning and pulse
emission rate changes to mimic bat behavior, which leads to good convergence and simpler
implementation compared with other algorithms. In addition, the balance of exploration and
exploitation is important; a simple fixed ratio of exploration to exploitation is not necessarily
a good strategy.

Bat algorithm uses a dynamic strategy for exploration and exploitation. Like the
autohoming of bats on their prey, the variations in pulse emission rates and loudness
essentially control how exploration and exploitation are used. In fact, auto switching from
exploration to more extensive exploitation can be -achieved when the optimality is
approaching; thus, the algorithm can be very efficientin applications. Pseudo code of the bat
algorithm has been illustrated in Fig.1.

Objective function Obj(X) , X=[x1,X2,. o Xa]”
Begin
Initialize the bat population x; and v; (i=1,2,..,n)
Define pulse frequency of f; at x;
Initialize pulse rates r; and the loudness A;
While (t<maximum number of iterations)
Generate new solutions by adjusting frequency and update velocities and
positions (equation 1, 2 and 3)
If (rand >1;)
Select a solution among the best solutions randomly;
Generate a local solution around the selected best solution by a local
random walk (equation 4)
End if
If (rand<A; and f(x;)<f(x°€*))
Accept the new solution
Increases r; and decrease ga;
End if
Rank the bats at each iteration and store their current global best x
End while
Post processing the results

End

cgbest

Figure 1. Pseudo code of bat algorithm for optimization.

2.2 Improvement

Exploration ability of the bat algorithm is favorable. But, it needs high number of iteration to
lead to a desirable solution. Here, with defining dynamic € scale factor parameter (a factor
that limits the step sizes of random walks for local search), an improvement is proposed for
this algorithm. Proper tuning of this parameter reduces the number of the iterations (hence
the computational time). In addition, this improvement can provide easy adjustment of the
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bat algorithm for discrete optimization problems. Dynamic scale factor @ parameter may be
formulated as:

Ln(%)
Oiter) =0 exp((—2m). iter) ®)

max

This formulation is inspired from [17]. They proposed this relationship for bandwidth
parameter of harmony search algorithm.
Instead of using Eq. (4), for improved version the following equation can be used:

X,,, =X, +&0(iter) 9)

where iter stands for current iteration. For solving design examples, this enhanced version is
used. In continuous optimization problems, &,, and €, should be taken such as 1 and

0.001, respectively whereas in discrete optimization problems, these should be taken such as
10 and 0.1, respectively. However, these values are.commonly recommended for tuning
parameters of optimization problems and for many problems these need to be well-adjusted
as these parameters are highly problem dependent.

3. STATEMENT OF THE DESIGN OPTIMIZATION PROBLEM

Since in size optimization usually design variables are in the form of thickness or
dimensions of the members of the structure, size optimization of skeletal structures involves
reaching at optimum values for cross-sectional areas of structural members that minimize
the structural weight #. This. minimal design also has to satisfy inequality or equality
constraints that restrict design variable sizes and structural responses. Hence, the optimal
structural designproblem may be expressed as:

Minimize W(X)
subject to g;(X)<0

X =[x,,%,,%5,.00%, ] (10)
i=123,...,nv
x, € R?

Minimize Obj(X) =W (X)X [ popairy (X) (11)

Where X is the vector of design variables containing the cross section areas, nv is the
number of design variables or the number of member groups, and R is the domain of the
design variables. Here, Obj(X) is the objective function or penalized weight of the structure,
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W(X) is the structural weight function, and fyenaiy(X) is penalty function in order to control
the constraints:

nv

W(X)=Y 7 -x-1, (12)

fpenally (X) = (1 +K - V)K2 , V= imax[o,vi] (13)

i=1

Where [;is the length, and y, is the material density of the member i. Here, the parameters

and x, for the penalty function are selected as [14]. v represents the sum of the violated
constraints.

4. NUMERICAL EXAMPLES

Seven design examples are chosen and solved by the present algorithm in order to
demonstrate the efficiency of the natural inspired bat algorithm. These optimization
examples are along with different constraints and analyses. In Examples 1 and 2, benchmark
truss structures are optimized, static structural analysis is performed for checking stress and
displacement constraints, and type of the problems are continuous. In Examples 3 and 4, two
benchmark truss structures is optimized, eigenvalue analysis is performed for checking
frequency constraints and type of these problems is continuous too. In Examples 5, a
benchmark moment resisting frame structure is optimized, static analysis is performed for
checking displacement constraint and type of this problem is discrete. Design variables are
selected from W-section database of AISC. In Example 6, a benchmark moment resisting
frame structure is optimized, time history dynamic analysis is performed for checking drift
constraint and type of this problem is discrete as well. Design variables are selected from an
available section database.

In Example 7, a truss tower structure is optimized, static and time history dynamic
analysis is performed for checking drift and stress constraints and type of this problem is
continuous.

For the following Examples 1, 2, 4, and 5, the number of bats is taken as 40, and 500
iterations are selected for optimization procedures. Therefore, about 20,000 structural
analyses are carried out for each example.

For Example 3, 40 bats are considered, and 500 iterations are used. Hence 25,000
structural analyses are performed.

For Examples 6 and 7, 30 bats - 200 iterations and 35 bats - 200 iterations are selected,
respectively. Thus, to complete the optimization procedures about 6000 to 7000 structural
analyses are performed, respectively. The a and y are selected near to 1 and 0.5,
respectively. By the proposed improvement, the 6 parameter can be tuned in such a way that
the algorithm is adjusted easily for discrete variable optimization problems.

Examples 6 and 7, require a large computational time. For these examples convergence
curves of four best runs are plotted.
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4.1 A 25-bar spatial truss

The geometry and nodal numbers of a 25-bar spatial truss structure are shown in Fig.2. In this
example, designs for a multiple load case are performed and the results are compared to those of
other optimization techniques employed by researchers. In these studies, the material density is
considered as 0.1 /b/in’ (2767.990kg/m* ) and the modulus of elasticity is taken as 10,000
ksi (68,950 MPa). Twenty five members are categorized into eight groups, as follows: (1) Ay,
(2) Ax-As, (3) As-Ag, (4) Aio-Air, (5) Ai-Asz, (6) A=Ay, (7) Ais-Az, and (8) Ax-Ajs.
Maximum displacement limitations of * 0.35 in (8.89 mm) are imposed on every node in all
three directions and the axial stress constraints vary for each group as shown in Table 1.The
range of cross-sectional areas varies from 0.01 to 3.4 in’ (0.6452-21.94 em’). This spatial truss
is subjected to two loading conditions shown in Table 2.

The bat algorithm achieves the best solution near to HBB—-BC solution. However,
convergence curve of the average of ten independent optimization runs and the best
convergence history curve are plotted in Fig 3.Which shows the stability of the algorithm for
a certain parameter tuning. Table 3 presents a comparison of the performance of the BA
method and other heuristic algorithms. Here, the result is not the best one among other
results but it is comparatively good outcome. 6 ,and 6 . are taken as 1 and 0.0001,

respectively. Constraint violation information is shown in Fig.4 Fig.5 for stress and
displacement constraints of each load case, respectively.

L=25in(63.5¢cm)

Figure 2. A 25-bar spatial truss
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Figure 3. The convergence history for the 25-bar spatial truss obtained by the BA.
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Figure 4. The stress constraints violation details for the optimum 25-bar spatial truss obtained by
the BA
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Figure 5. The displacement constraints violation details for the optimum 25-bar spatial truss
obtained by the BA.

Table 1: Allowable stress values for the spatial 25-bar truss.

Element group

Compressive  Tensile

stress

stress

limitations  limitations

ksi (MPa) ksi (MPa)
D\ = (33‘10.32) (247(298)
25 Arhs (;éig?g) (247(298)
3 Achs (Hég.g?) (247(298)
4 AwAn (giio.gé) (247(298)
> A (;ii(?gé) (247(2?8)
6 Ay (466.765093) (247(2?8)
7 A (467..995892) (24705?8)
8 Ao (1716.(11812) (24705 ?8)

Table 2: Loading details for the spatial 25-bar truss.
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Case 1 Case 2
Node P, P, P, Py P, P,
kips (kN) kips (kN)
1 0 20(89)  -5(22.25)  1(445)  10(44.5) -5(22.25)
2 0 -20(89) -5(22.25) 0 10(44.5) -5(22.25)
3 0 0 0 0.5(2.22) 0 0
6 0 0 0 0.5(2.22) 0 0
Table 3: Optimal design comparison for the spatial 25-bar truss.
Optimal cross-sectional areas (in?)
Element Lee & Camy Lamberti La:n;ert Kaveh & Vel &
Geem Lietal.[3] P Talatahari = Talatahari Degertekin [31] Present study
group [26] [1] [27] Pappalet 29] [30]
tee [28]
HS PSO PSOPC HPSO BB-BC CMLPSA IHS HPSACO HBB-BC EHS SAHS (in%) (cm?)
1 Ay 0.047 9.863 0.010 0.010 0.010 0.0100 0.0100 0.010 2.6622 0.010 0.010  0.01000 0'066451
12.7670
2 Ajr-As 2.022 1.798 1.979 1.970 2.092 1.9870 1.9871 2.054 1.9930 1.995 2.074 1.97889 1
19.3852
3 Ag-Ay 2.950 3.654 3.011 3.016 2.964 2.9935 2.9935 3.008 3.0560 2.980 2.961 3.00472 5
0.06451
4 Ajp-An 0.010 0.100 0.100 0.010 0.010 0.0100 0.0100 0.010 0.0100 0.010 0.010 0.01000 6
0.06451
5 Ap-Ags 0.014 0.100 0.100 0.010 0.010 0.0100 0.0100 0.010 0.0100 0.010 0.010  0.01000 6
4.44386
6 Ai-A;; 0.688 0.596 0.657 0.694 0.689 0.6894 0.6839 0.679 0.6650 0.696 0.691  0.68880 )
10.8279
7 Ajs-An; 1.657 1.659 1.678 1.681 1.601 1.6769 1.6769 1.611 1.6420 1.679 1.617 1.67834 3
8 Ajy-Ass 2.663 2.612 2.693 2.643 2.686 2.6621 2.6622 2.678 2.6790 2.652 2.674 2.65270 17.16141
Weight(lb) 54438  627.08 54527 | 545.19 545.38 545.15 545.15 544.99 545.16 545.49 5425'1 545'91687 212?)5(1(\)5
Average 545.9
weight N/A N/A N/A N/A 545.78 N/A N/A 545.52 545.66 546.52 4 ' 546.44644
(Ib)
Number of
structural 15,000 15%’00 15%’00 12%’00 20,566 400 1050 9875 12,500 10,391 9051 20,000
analyses

4.2 A 72-bar spatial truss
The second test case is the spatial 72-bar truss shown in Fig.6. The elastic modulus of the

material is 10,000 ksi (68,950 MPa) while density is 0.1 Ib/in® (2767.990 kg/m* ). The

cross-sectional areas members are included as design variables and are divided into 16
groups: (1) AI—A4, (2) A5—A12, (3) A13—A16, (4) A17—A13, (5) Alg—Azz, (6) A23—A30, (7) A31—
Asg, (8) Azs—Ass, (9) A3—As0,(10) Ag1—Ass, (11) Ago—Asz, (12) Asz—Ass, (13) Ass—Ass, (14)
Aso—Ags,(15) Agr—Ar0, (16) A7;—A7,.The allowable stress for all members is 25 ksi (172.375
MPa) (the same in tension and compression) and the displacement of top nodes must be less
than 0.25 in (0.635 c¢cm) in both the x and y directions. For the 72-bar the minimum permitted
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cross-sectional area of each member is 0.10 in* (0.6452 cm?), and the maximum cross-
sectional area of each member is 4.00 in? (25.81 cm?). Table 4 lists the values and directions
of the two load cases applied to the 72- bar spatial truss.

Convergence history of the average of ten independent optimization runs and the best run
are plotted in Fig.7.The best weight of the BA optimization is 380.05819 Ib, while it is the
best results after HBB-BC and BB-BC methods, results of some other methods are provided
in Table 5. Here, 0, and @, are taken as 1 and 0.001, respectively. Constraint violation

details are plotted in Fig.8 and Fig.9 for stress and displacement subjected to two load cases,
respectively.

Y &
! Typical story
X_, L
7 &
(17} (18} —
(13) (14)
@ an & Node and element
T numbering system
(5) (6)
L=60 in (152.4 cm)
(n 2y 4L
< pa\

Figure 6. A seventy two-bar spatial truss.
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Figure 7. The convergence history for the seventy two=bar spatial truss obtained by the BA.
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Figure 8. The stress constraints violation details for the optimum seventy two-bar spatial truss
obtained by the BA.
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Table 4: Loading details for the seventy two-bar spatial truss.

Case 1 Case 2
Node  P,kips _P,kips P,kips Pykips Pykips P, kips
(kN) (k) (kN) (kN) (kN) (kN)
17 5002255 500225  -5.0022.5) 0.0 0.0 -5.0(22.5)
18 0.0 0.0 0.0 0.0 0.0 -5.0(22.5)
19 0.0 0.0 0.0 0.0 0.0 -5.0(22.5)
20 0.0 0.0 0.0 0.0 0.0 -5.0(22.5)

Table 5: Optimal design comparison for the seventy two-bar spatial truss.

Element group

Optimal cross-sectional areas (in”)

Erbatur et al. Camp & Pe.rez & Camp [1] Kaveh.& Kaveh & Present study

[32] Bichon [33] Behdinan [34] Talatahari [30] Khayatazad [35]

GA ACO PSO BB-BC HBB-BC RO (in%) (em?)
1 A-Ay 1.755 1.948 1.7427 1.8577 1.9042 1.83649 1.85920 11.99481
2 As-Ap, 0.505 0.508 0.5185 0.5059 0.5162 0.502096 0.49308 3.18115
3 Ais-Aje 0.105 0.101 0.1000 0.1000 0.1000 0.100007 0.10025 0.64677
4 Ai-Agg 0.155 0.102 0.1000 0.1000 0.1000 0.10039 0.10178 0.65664
5 Ag-Ax 1.155 1.303 1.3079 1.2476 1.2582 1.252233 1.28534 8.29250
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6 Ay-As 0.585 0.511 0.5193 0.5269 0.5035 0.503347 0.51307 3.31012
T As-Ay 0.100 0.101 0.1000 0.1000 0.1000 0.100176 0.10073 0.64987
8 AssAsg 0.100 0.100 0.1000 0.1012 0.1000 0.100151 0.10248 0.66116
9 AyAg 0.460 0.561 0.5142 0.5209 0.5178 0.572989 0.51214 3.30412
10 Au-Ag 0.530 0.492 0.5464 0.5172 0.5214 0.549872 0.52547 3.39012
I AgAs 0.120 0.100 0.1000 0.1004 0.1000 0.100445 0.10029 0.64703
12 AgAs 0.165 0.107 0.1095 0.1005 0.1007 0.100102 0.10297 0.66432
3 As-Ass 0.155 0.156 0.1615 0.1565 0.1566 0.157583 0.15597 1.00626
14 ApAg 0.535 0.550 0.5092 0.5507 0.5421 0.52222 0.55473 3.57890
15 Ag-As 0.480 0.390 0.4967 0.3922 0.4132 0.435582 0.40627 2.62109
16 AuAsn 0.520 0.592 0.5619 0.5922 0.5756 0.597158 0.59617 3.84625
Weight (Ib) 385.76 380.24 381.91 379.85 379.66 380.458 380.05819 1690.58306 (N)
W[zivgelft‘%eb) N/A 383.16 N/A 382.08 381.85 382.5538 389.14389
Number of
structural N/A 18,500 N/A 19,621 13,200 19,084 20,000
analyses

4.3 A 200-bar planar truss considering frequency constraints
This case study is a planar 200-bar truss structure shown in Fig.10. The elastic modulus of

the material is 2.1x10"' N / m® while mass_ density is 7860 kg/ m’ . Only the frequency

constraints are included in the optimization process. The structure can be divided into 29
groups of elements as shown«in Table 6, as in the previous static constraints (stress and
displacement) studies. The lower bound cross-sectional area of all design variables is limited

to 0.1cm’.

First, second and third natural frequencies are lower bounded to be more than 5, 10 and
15 Hz, respectively. Lumped masses of 100 kg are assigned to the nodes at the top of the
structure. Table 7 shows the optimal results obtained by bat algorithm and previous works.
As indicated in Table 8, it .can be seen that all of the constraints are satisfied.

Optimum designs found by bat algorithm are the best overall. BA has found the optimum
design after about 25,000 structural analyses corresponding to 50 bats and 500 iterations due
to large search space of the problem. Here, €  and 6 are taken as 5 and 0.001,

respectively. Fig.11 shows the convergence progress of the average of ten independent
optimization runs and the best optimization run.
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Figure 10. A Planar 200-bar truss.
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Figure 11. The convergence history for the 200-bar truss obtained by the BA.
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Table 6: Member group details for the planar 200-bar truss.
Element Element
Member number Member number
group group
82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107,
! 1,2,3,4 16 109, 110, 112, 113
2 5,8,11,14,17 17 115,116,117, 118
3 19,20, 21,22, 23, 24 18 119,122, 125, 128, 131
4 18,25, 56, 63, 94;71;”’ 132, 139,170, 19 133,134, 135, 136, 137, 138
5 26,29, 32,35,38 20 140, 143, 146, 149, 152
) 6.7.9. 10, 12, 13, 15, 16, 27, 28, 30, N 120, 121, 12%1411241‘;1??:1;21215152?’5(1)30’ 141, 142,
31,33, 34,36, 37 A T TR O
151
7 39, 40, 41, 42 22 153, 154, 155, 156
8 43,46, 49, 52, 55 23 157, 160, 163, 166, 169
9 57, 58,59, 60, 61, 62 24 171,172, 173,174, 175, 176
10 64,67, 70,73, 76 25 178, 181, 184, 187, 190
44, 45,47, 48, 50, 51, 53, 54, 65, 66, 158, 159, 161, 162, 164, 165, 167, 168, 179, 180,
1 68,69, 71,72, 74, 26 182, 183, 185, 186, 188,
75 189
12 77, 78,79, 80 27 191, 192, 193, 194
13 81, 84,87, 90, 93 28 195,197, 198, 200
14 95, 96, 97, 98, 99, 100 29 196, 199
15 102, 105, 108, 111, 114
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Table 7: Optimal design comparison for the planar 200-bar truss.

Optimal cross-sectional areas (cm?)

Kaveh & Zolghadr [36] Present study
Element group
CSS CSS-BBC BA
1 1.2439 0.2934 0.40416
2 1.1438 0.5561 0.38121
3 0.3769 0.2952 0.12583
4 0.1494 0.1970 0.10000
5 0.4835 0.8340 0.43709
6 0.8103 0.6455 0.84414
7 0.4364 0.1770 0.11662
8 1.4554 1.4796 1.58675
9 1.0103 0.4497 0.20642
10 2.1382 1.4556 1.85576
11 0.8583 1:2238 1.04687
12 1.2718 0.2739 0.10000
13 3.0807 1.9174 3.06720
14 0.2677 01170 0.10000
15 4.2403 3.5535 3.27762
16 2.0098 1.3360 1.50602
17 1.5956 0.6289 0.44824
18 6.2338 4.8335 4.97758
19 2.5793 0.6062 0.15685
20 3.0520 5.4393 3.69226
21 1.8121 1.8435 2.26427
22 1.2986 0.8955 0.62648
23 5.8810 8.1759 7.79338
24 0.2324 0.3209 3.64212
25 7.7536 10.98 6.96567
26 2.6871 2.9489 3.33012
27 12.5094 10.5243 10.96128
28 29.5704 20.4271 19.58939
29 8.2910 19.0983 15.59020

Total mass (kg) 2559.86 2298.61 2234.33397
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Table 8: Natural frequencies comparison of optimal design for the 200-bar truss.
Freque Kaveh & Zolghadr Kaveh & Zolghadr

ncy no. [36],CSS [36].CSS-BBBC  resent study
1 5.000 5.010 5.0012
2 15.961 12911 12.9291
3 16.407 15.416 15.0942
4 20.748 17.033 17.0751
5 21.903 21.426 21.0042
6 26.995 21613 219117

4.4 A 72-bar spatial truss considering frequency constraint

A 72-bar space truss is considered for structural design optimization incorporating frequency
constraints as shown in Fig.12. This structure topologically is identical to the structure in
Example 2, but nodal and element numberings are different. The design variables are the
member cross sectional areas, treated as continuous design variables; which are divided into
16 groups in order to maintain the structural symmetry,as shown in Table 9. As can be seen
in Fig.12, in the four nodes on the top of the structure (nodes 1-4) it is attached a non-
structural mass of 2268 kg (5000 /b). The material is aluminum, with elastic modulus equal

to 68.95 GPa (107 Psi) and mass density of 2767.99 kg/m3 (0.1 Zb/i”3). The natural
frequency constraints are f, =4 Hzand f; = 6. The allowable minimum area of the cross

sections is 6.45x107° m?(0.1in”). This problem was also studied by [18] via the so-called
Dual Method (DM). [19] utilized the Force Method (FM). Recently, [2], using particle
swarm optimization algorithm (PSO), solved this problem. [20] used two of the most recent
metaheuristic algorithms: Harmony Search (HS) and Firefly Algorithm (FA), to solve truss
sizing optimization with multiple natural frequency constraints. In this article, proposed
improved version of bat algorithm is selected and adjusted to overcome this problem. The
convergence progress of ten independent runs that is accomplished for this problem is
depicted in Fig.13. As it can be observed in Table 10, the result of bat algorithm is better
than the results of the literature works and lighter truss structure has been obtained
considering multiple frequency constraints. It is important to point out that in this paper, first
frequency constraint slightly is violated but it is very small, in other words, it can be
neglected as may be seen from Table 11. Here, 6, and 6, are taken as 1 and 0.001,

respectively.
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Figure 12. A seventy two-bar truss.

1300 T T T T T T T T T

The Best Result

The Average of 10 Runs
1200 B

—
—_
]
[

900

“Yalue of Ohjective Function
=
=
[

goa

TDD 1 1 1 1 1 1 1 1 1
0 a0 100 150 200 260 300 350 400 450 &00
[teration

Figure 13. The convergence history for the seventy two-bar spatial truss considering frequency
constraint obtained by the BA.
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Table 9: Member group details for the 72-bar space truss

Group Members

number

1 1-4

2 5-12
3 13-16
4 17-18
5 19-22
6 23-30
7 31-34
8 35-36
9 37-40
10 41-48
11 49-52
12 53-54
13 55-58
14 59-66
15 67-70
16 71-72

Table 10: Optimal design comparison for the 72 bar space truss with frequency constraints

Optimal cross-sectional areas (cm?)

Kaveh &

Element \ ) Kaveh & Present study
o S ooy b W VRS e ol O
BBBC
1 3.499 3.499 2.987 3.6803 3.3411 2.528 2.854 3.49980 0.54247
2 7.932 7.932 7.849 7.6808 7.7587 8.704 8.301 8.06315 1.24979
3 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.64516 0.10000
4 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.64516 0.10000
5 8.056 8.056 8.765 9.4955 9.0202 8.283 8.202 8.50521 1.31831
6 8.011 8.011 8.153 8.287 8.2567 7.888 7.043 7.90676 1.22555
7 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.64632 0.10018
0.645 0.645 0.645 0.6461 0.645 0.645 0.645 0.65006 0.10076
9 12.812 12.812 13.45 11.451 12.045 14.666 16.328 12.94043 2.00577
10 8.061 8.061 8.073 7.899 8.0401 6.793 8.299 8.00353 1.24055
11 0.645 0.645 0.645 0.6473 0.645 0.645 0.645 0.65471 0.10148
12 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.64581 0.10010
13 17.279 17.279 16.684 17.406 17.38 16.464 15.048 16.47984 2.55438

14 8.088 8.088 8.159 8.2736 8.0561 8.809 8.268 7.98315 1.23739
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Optimal cross-sectional areas (cm?)

Kaveh &

Element < , Miouel Miouel Kaveh & Zolehad Present study
group onzelman . 1guel et 1guel et olghadr
[18] Sedaghati [19]  Gomes [2] al. [20LHS  al. [20)FA é(;l]gléasdsr [361.CSS- (o) i)
’ BBBC
15 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.64516 0.10000
16 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.64516 0.10000
Total 327.605 327.605 328.823 328.334 327.691 328.814 327.507 326.00504 718.71810 (Ib)
Mass (kg)
Table 11: Natural frequencies comparison of optimal design for the 72 bar space truss.
Frequency Konzelman Sedaghati Gomes [2] Miguel et al. Miguel et Kaveh & Kayeh & Present
no. [18] [19] [20, 31] ,HS al. Zolghadr Zolghadr study

[20],FA [36],CSS [36],CSS-
BBBC

4.0000 4.0000 4.0000 4.0000 4.0000 _-4.000 4.000  3.9999

4.0000 4.0000 4.0000 4.0000 4.0000  4.000 4.000  3.9999

6.0000 6.0000 6.0000 6.0000 6.0000 <76.006 6.004  5.9998

6.2470 6.2470 6.2190 6.2723 6.2468  6.210 6.2491  6.2686

N[ B |W|N| —

9.0740 9.0740 8.9760 9.0749 9.0380  8.684 8.9726  9.1031

4.5 Eight-story frame under static loading
This 8-story frame structure has been optimized by [21, 22] using the optimality criterion
method. [23] optimized it via genetic algorithm. Optimum design procedure using ant
colony optimization is performed by [24].

The 24 members of the structure have been categorized into eight groups, as indicated in
Fig.14. The lateral displacement at the top of the structure is the only performance constraint
(limited to 2 in). The modulus of elasticity is taken as £ =200 GPa (29x10° ksi) and for the
material density p =76.8 kN/m3 (2.83x107* kips/in3). A set of 273 discrete W-sections

from American Institute of Steel Construction (AISC) shapes database v14.0 are used for the
possible cross-sectional areas of each member. Fig.15 shows the history of optimization for
iterations: By proposed improvement for bat algorithm, it can be simply used for discrete
optimization problems, 6, and @, are taken as 14 and 0.1, respectively. In Table 12 the
results of designs performed by the present algorithm are depicted. Top displacement of the
attained optimum structure is equal to 1.9868769 inch, so the constraint is not violated.
Values of 6 for discrete optimization are larger than continuous ones. Because discrete

domain space is along with greater design variable intervals.
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A 4448 kN (100 kips) downward
load is applied at each connection

: 8
12.592 kN (2.831 kips) — “r
4 4
8.473 kN (1.905 kips) —» —8
4 4
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Figure 14. An eight-story planar moment frame under static loading.
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Figure 15. The convergence history for the eight-story moment frame under static loading
obtained by the BA.
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Table 12: Optimal design comparison for the eight story moment frame under static loading

Group  Number Narendra S Khot Camp et al., [23] Kaveh & Present study
number of etal. [21] Shojaee [24]
members

1 4 W14x34 W18x46 W21x50 WI18x%35

2 4 W10x39 W16x31 W16x26 W16x31

3 4 W10x33 W16x26 W16x26 W16x31

4 4 WS8x18 WI2x16 WI12x14 WI12x14

5 2 W21x68 WI18x%35 W16x26 WI18x%35

6 2 W24x55 WI18x%35 W18x40 W18x%35

7 2 W21x50 W18x%35 W18x35 W18x%35

8 2 W12x40 W16x26 Wi14x22 W16x%31

Total (Y{Vi‘;lsg)ht kN 41.02(9.22) 32.83(7.38) 31.68(7.12) » 31.86492(7.16352)

4.6 Eight-story frame under time history dynamic loading

An eight-story frame structure subjected to time history dynamic loading of El Centro (S-N
component, 1940, PGA=0.349g) earthquake record with 2688 points and time interval of
0.02 second is performed. This example is an extremely nonlinear optimization problem that
is recently solved by [14] via charged system search (CSS) and an improved harmony search
(IHS) algorithms. The 16 design variables for the 8-story moment frame consist of 8 groups
for columns and 8 groups for beams as shown in Fig.16.

In order to achieve an optimal weight for this frame, an appropriate algorithm should be
used with well-tuned parameters, because the frame has 90 DOFs and the dynamic analysis
process is very time consuming. Here, bat algorithm is chosen as an optimizer. Four
optimization runs is performed for this design and convergence curves are shown in Fig.17.
The linear (elastic) time history dynamic structural analysis is performed using the
Newmark-Beta direct integration method.

Drift constraints-are as follows:

% <DR, i=12,..,ns (14)

i

Where 9, is the lateral displacement of the center of the mass in the story i, 4, is the height

of the story 7, and DR, is the allowable drift ratio of each story. ns is the number of the frame
stories. This constraint is time-dependent.
Dynamic equilibrium equation of a structure under seismic loading can be expressed as:

Mii(t)+ Ci) + K u(r) = —Mrii, (1) (15)
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rk — 1 for xdirection DOFs

r= (16)
for remaining DOFs

where M, C, and K are the mass matrix, damping matrix, and stiffness matrix of the
structure, respectively. (?), u(t), u(t) are the acceleration, velocity and displacement
vectors. The column matrix » is an influence coefficient vector which represents the
displacements resulting from a unit support displacement. ;. is the kth array of the » vector.
U, (?) is the ground acceleration scalar value at the time 7. For damping matrix, the Rayleigh

relationship is employed in the analysis.

The drift constraint is imposed to the structure, for more information one can see [14].
The damping ratio is considered as 5 percent. Nodal masses are provided in Table 7. It
should be noted that only these lumped masses are applied on the frame for dynamic
analysis and mass matrix of the frame members is neglected such as prescribed reference.
The database of the profiles for discrete optimization is provided in Table 14. The drift
constraint is limited to 0.0045, based on the ASCE specification. Objective function is the
total weight of frame, where only the weight of the frame members are considered. Weight
density and modulus of elasticity are equal t60.077 N/cm® and 20593965 N/cm®,
respectively. Results of the bat algorithm for this problem are provided in Table 15. Also,
comparison of the maximum drift ratios of the optimized 8-story frame designs with their
allowable drift ratio is provided in Table 16 showing the constraint is not violated. For this
example, 6 and 6 . are selected as 14 and 0.1, respectively.

10 10 10 10

| 4 |
wd
I

Figure 16. An eight-story planar moment frame under dynamic loading.
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Figure 17. The convergence history for the eight-story moment frame under dynamic loading
obtained by the BA.

Table 13: Lumped masses assigned with each node

Inner nodes Outer nodes
Min Mout
my my mg my my mpg
12200 kg 12200 kg 17300 kg.m* 6100 kg 6100 kg 2500 kg.m’

Table 14: Available cross-section properties

No Profile Area Moment of No Profile Area Moment of

(em?) Inertia (cm®) (cm?) Inertia (cm®)
1 1PE240 39.1 3890 11 1PB300 149 25170
2 IPE270 45.9 5790 12 1PB320 161 30820
3 IPE300 53.8 8360 13 1PB340 171 33660
4  IPE330 62.6 11770 14 1PB360 181 43190
5 IPE360 72.7 16270 15 1PB400 198 57680
6 IPB200 78.1 5700 16 1PB450 218 79890
7 1PB220 91 8090 17 1PB500 239 107200
8 1PB240 106 11260 18 IPB550 254 136700
9 IPB260 118 14920 19 I1PB600 270 171000
10 IPB280 131 19270 20 IPB650 286 210600
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Table 15: Optimal design comparison for the 8-story planar moment frame under dynamic
seismic loading

Optimal cross-sectional areas (cm?)

Kaveh & Zakian [14]  Present study

Element group

No. S(érc‘;ssn THS CSS BA
1 A 286 286 270
2 As 286 286 270
3 As 198 286 239
4 Ay 198 286 239
5 As 198 286 218
6 As 198 239 218
7 A; 171 198 218
8 As 131 198 149
9 Ao 727 53.8 39.1
10 Amo 198 286 254
11 An 286 45.9 171
12 A 286 286 286
13 An 286 254 286
14 Ad 286 198 218
15 Aus 254 286 239
16 Afe 239 45.9 161

Weight (V) 342330 326630  319697.07000

Table 16: Comparison of the maximum drift ratios of the optimized 8-story frame designs with
their allowable ratios subjected to El Centro earthquake record

Moment frame with drift constraint

Story level : Allowabl
driftratio  Kaveh & Zakian gy e drift
No. [14] ratio
IHS CSS BA

Level 1 0.00262  0.00250 0.003449 0.0045
Level 2 0.00411  0.00321 0.004366 0.0045
Level 3 0.00396  0.00383 0.003806 0.0045
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Level 4 0.00441  0.00444 0.004485 0.0045
Level 5 0.00455  0.00325 0.003979 0.0045
Level 6 0.00407  0.00429 0.004028 0.0045
Level 7 0.00449  0.00434 0.003776 0.0045
Level 8 0.00448  0.00408 0.004420 0.0045

4.7 Twelve-story truss tower under time history dynamic loading

The last design example is a truss tower consisting of 314 members and-84 nodes, where all
members are categorized into 45 groups employing the symmetry of the structure, illustrated
in Figure 18. The material and cross-sectional properties are as follows: the modulus of
elasticity and the yield stress of the steel are taken as 10000 ksi (68943 MPa) and 35 ksi

241.3 MPa), respectively. The material density is 0.3 /b/in” (8304kg/m’ ). It should be
g

noticed that in the Ref. [25], the range of cross-sectional areas varies from 0.5 to 15 in’
which makes the search space, but here for sake of reducing computational effort, the upper
bound of search space is reduced to 12 in’, therefore, in this study the range of cross-
sectional areas is defined from 0.5 to 12 in’. The nodal displacements are limited to 8 in
(20.32 cm). The radius of gyration of each member (7;) is expressed in terms of its cross-

sectional area as’; = aA,-b, where a and b are the constants depending on the types of
sections selected for the members. In this example, pipe sections of @ = 0.799 and b = 0.669
are utilized.

This structure is subjected to the Coalinga ground motion with peak ground acceleration
of 2.0g in both the x- and y-directions; depicted in Figure 19. Hence, here, the influence
vector is defined as:

(16)

=1 for x and y directions DOFs
o=
=

rk » 0 Jfor remaining DOFs

Total duration of the selected record is 21.235 seconds, with time interval of 0.005
second leading to 4320 time points. The effective duration of this record finalizes at second
9.51, which leads to 1902 points, thus, dynamic analysis of the structure is accomplished till
this time step based on Ref [25].

This example has been solved more than 10 times for parameter tuning and only the
average convergence history of four runs with identical parameter values is shown in Figure
20. This figure presents the convergence history of the best solution as well.

According to (AISC 1995), the stress restriction for tension members is Caiowarie = 0-6F, |
in which F, is the yield stress of steel. For compression members this restriction is given by
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2 3
1- A F §+ 34 _ /1"3 for A, <C,
2c )1/ (37 8C sC

O-allowable = (1 7)
127°E

237

E is the modules of elasticity, A, = &/, /r, , the slenderness ratio of member i where k and 7;

are the effective length factor and the radius of gyration, respectively, C, =./27°E / F, is

the slenderness ratio dividing the elastic and inelastic buckling regions:

This structure before being exposed to ground motions has to sustain the static loads
applied on them including their own self-weight. It means to achieve the ultimate response
of a structure, the member stresses and nodal displacements calculated by static analysis
must sum up to those of calculated by dynamic analysis. For further details about imposing
total stress constraint, one can refer to [14].

The best found solution is mentioned in Table 17. Figure 21 and Figure 22 figure out
absolute values of the obtained stress ratios and displacement values, respectively. For this
example, 6 and 6 . are selected as 1 and 0.001; respectively. 35 bats are selected and the

number of iterations is taken as 200. So the number of the objective function evaluations is
equal to 7000. Optimum solution is not better than result of the aforementioned reference
which was performed without meta-model; but it is better than another case (with
incorporating meta-model). Further parameter tuning or increasing the number of iterations
shall be lead to better solutions:.
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Figure 18. A twelve story truss tower: geometry and member grouping [25].
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Figure 20. The convergence history for the twelve=story truss tower under dynamic loading

obtained by the BA.
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Figure 21. Stress ratios of optimum solution for the truss tower.
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Figure 22. Nodal displacements of optimum solution for the truss tower.

Table 17: Optimal design comparison for the twelve-story truss tower under dynamic seismic loading

Kaveh et al [25]

Optimal cross-sectional areas (in%)

Group No. Area Group No. Area Group No. Area Group No. Area Group No. Area
1 2.0912 10 3.3100 19 6.3445 28 3.66600 37 5.24849
2 1.2039 11 2.2384 20 3.3805 29 6.32790 38 2.6631
3 8.9772 12 5.1180 21 5.3277 30 4.92120 39 11.1094
4 3.2545 13 4.4017 22 22399 31 6.77040 40 4.03505
5 8.3155 14 6.8504 23 6.4469 32 3.39510 41 5.27015
6 6.0712 15 6.1707 24 3.6142 33 11.70200 42 3.22022
7 2.8874 16 9.1762 25 3.4791 34 2.37664 43 7.61367
8 4.754 17 1.7435 26 2.2465 35 7.77521 44 4.4382
9 6.8169 18 8.8065 27 7.0078 36 3.83677 45 7.29304

Weight = 68783 1b (31199 kg) without meta-model Number of structural analysis = 8352

Weight = 72006 Ib (32661 kg) with meta-model Number of structural analysis = 8591

Present study

Optimal cross-sectional areas (in”)

Group No. Area Group No. Area Group No. Area Group No. Area Group No. Area
1 7.27991 10 6.62126 19 4.92187 28 4.10477 37 5.87967
2 9.17897 11 11.26577 20 3.96622 29 3.84340 38 6.89639
3 5.80939 12 3.81637 21 5.95883 30 291791 39 3.88387
4 2.75550 13 5.59757 22 2.13438 31 7.78403 40 3.79460
5 2.80413 14 2.04268 23 8.01173 32 3.28494 41 6.15935
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6 7.58819 15 3.01986 24 2.54369 33 3.42851 42 7.63224

7 3.56051 16 6.88387 25 7.74382 34 6.03642 43 3.91622

8 5.59871 17 1.34087 26 1.66557 35 5.08316 44 4.46628

9 5.91082 18 6.11623 27 7.09057 36 3.18900 45 3.76706
Weight = 71706.45828 1b (32525.50235 kg) Number of structural analysis =7000

5. CONCLUDING REMARKS

In this paper, an improved version of recently proposed natural inspired meta-heuristic bat
algorithm is implemented to solve skeletal structures optimization. problems. The
comparisons of numerical results of various structural design optimizations using the BA
method with the results obtained by other meta-heuristic and evolutionary approaches are
performed to demonstrate the robustness of the present algorithm.

Different types of optimization problems lead to.reliable assessment of the algorithm.
Also, proposed improvement can simply adjust the algorithm for discrete optimization
problems. This algorithm has appropriate exploration ability and can be used for various
discrete or continuous optimization problems.
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