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ABSTRACT 
 
The efficiency of the Newton-Raphson iteration method for solving nonlinear equations has 
made it popular, although the time required to achieve convergence inspires aspirations to 
find a more efficient alternative. In the current study a hybrid iterative algorithm is 
employed for solving nonlinear problems. To that effect, an alternative to the Newton-
Raphson method, and related classical methods in numerical computing based on a 
Homotopy Perturbation Method (HPM) is introduced. In perturbation methods, perturbation 
quantities are used to replace a nonlinear problem by a number of manageable linear sub-
problems. Then, an approximate solution is reached by summing up the results of these sub-
problems. In this paper three global methods belonging to this family are discussed and then 
it is shown how to combine a global method with Newton-Raphson method into a hybrid 
algorithm as a possible way to reduce computational cost. Several well-known and difficult 
applications are considered for testing the performance of the new approach. The results 
reveal that using 2nd HPM coupled with two-point method requires less time to achieve 
convergence and reduces the total number of iterations. 
 
Keywords: Nonlinear analysis; Homotopy perturbation method (HPM); Newton- iterative 
method 

 
 

1. INTRODUCTION 
 

Second-order nonlinear analysis of structures has been studied extensively over the past few 
decades and is referred in modern design codes of practice such as the American Load and 
Resistance Factor Design (LRFD) specification [1] and the British Standard 5950 [2]. The 
numerical solution algorithms constitute one of the most important aspects in the nonlinear 
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analysis of structures. Among these methods, the Newton-Raphson method is most widely 
used. Against the advantage of efficiency offered by this technique must be mentioned the 
relatively long time taken to achieve the necessary convergence Baltoz and Dhatt [3]. 

In recent decades, several applications of nonlinear structural analysis have been 
presented ([4,5]). Greco et al. [6] proposed a new formulation for geometrically nonlinear 
analysis of space trusses. Kassimali and Abbasnia [7] proposed a method for large 
deformation and stability analysis of elastic space frames based on Eulerian formulation. 
Based on a path-following approach, Saffari et al. [8] used a normal flow algorithm to pass 
limit points in nonlinear analysis of trusses.  

A range of nonlinear approaches to space truss analysis can be found in the literature: 
some use an iterative method, some an incremental method and others a simple incremental-
iterative method. Recently, a new approach to accelerate the nonlinear analysis of structures 
with low computational cost has been proposed ([9,10,11]). A concept to accelerate the trend 
in nonlinear analysis and aimed to gain the ability for analysis of complex structures has 
been introduced by Saffari et al. [12]. A new approach for nonlinear analysis of structures, 
which accelerates the convergence rate, has been introduced in references [13,14]. They 
employed a mathematical method, namely two–point method, to achieve the convergence 
state. Another mathematical technique namely homotopy perturbation method (HPM) has 
been applied to plane frames by Saffari et al. [15]; due to the complexity of the homotopy 
perturbation series they used only the first term of this series. 

In the current paper, the homotopy perturbation series is first simplified in order to 
include also higher-order terms. Then, the number of most efficient terms of the homotopy 
series is found. Finally, the effective terms are included in the algorithm and are combined 
with two-point method. As can be seen in the numerical example section, the present method 
can be very effective in increasing the speed of convergence and in reducing the number of 
iterations. 
 
 

2. NONLINEAR ANALYSIS OF STRUCTURES 
 

In the following, large deflection inelastic analyses of structures including both geometric 
and material nonlinearities are briefly discussed. This is then is followed by a detailed 
description of the concept developed in this study.  

 
2.1 Member behavior 
2.1.1 Truss element 
The accuracy in the prediction of the inelastic response of structures depends on the 
accuracy of the member’s load–displacement relationship used in the analysis. A number of 
models have been introduced in the literature to predict the nonlinear behavior of space 
trusses. A stress–strain relationship proposed by Hill et al. [16] is adopted here to predict the 
inelastic post–buckling behavior of trusses, as follows. A force–strain curve (Q–u/L) 
assumed applicable for steel material both in tension and compression states is shown in 
Figure 1.  
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Figure 1. Assumed force-deformation curve for loading and unloading path 

 
The relationship between load-displacement can be expressed by the following relations: 
For elastic material: 
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For inelastic material: 
members in tension 
 












yy

y

uuforAF

uuforu
L

AE

Q  (2)

 
where Fy denotes yield stress and uy = FyL / E. 
b) members in compression: 
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Here 22 / LEIQcr  (I=weak axis moment of inertia) and Qr is the asymptotic lower 

stress limit and is defined as Qr=rQcr. The corresponding critical buckling displacement is 
ucr = QcrL / (AE) while u′ is defined as u′ = u–ucr. Parameters X1 and X2 are constants 
depending on the slenderness ratio of the compressive members.  
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It should be noted that when a member is in compression state and cruu  , the tangent 

modulus, Et, has to be used instead of E. The tangent modulus is obtained as [12]: 
 

)/
2

3
(.).(

1
21

]/)/([ 21 LuXXeQQ
A
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lcrt    (4)

 
As the objective here is to evaluate numerical solution algorithms, the effects of 

imperfections are not considered. Moreover, sufficiently slender members are assumed, so 
that and material nonlinearity can be neglected in the pre-buckling stage. 

 
2.1.2 Frame element 
A perfectly plastic material associated with plastic hinge concept is used in this study to 

consider material non-linearity effect. In an elastic perfectly-plastic material, the effects of 
strain hardening are disregarded. This further implies that once the yield moment Mp is 
reached, the material yields and cannot withstand further stress.  

It is noted that the yield moment is commonly defined by a yield criterion. A variety of 
yield criteria defining the yield moment have been introduced in structural engineering. In 
this paper, the AISC-LRFD criterion considering bending moment and axial force 
interaction is used for steel elements, according to which:  

 







































2.01
8

9

2.0
2

1

yy
p

yy
p

pc

Q

Q
for

Q

Q
M

Q

Q
for

Q

Q
M

M  (5)

 
where Mp is the full plastic moment capacity of the cross-section in the absence of axial 

force, equal to ZFy, Z stands for plastic modulus, Mpc represents reduced plastic moment 
capacity in the presence of axial force Q and Qy = AFy where Fy denotes yield stress. 

 
 

3. NONLINEAR ANALYSIS ALGORITHM 
 

The Newton-Raphson method is one of the most popular iterative methods for solving 
nonlinear equations. Via this method, an approximate solution is estimated, and then an 
unknown value is added as a corrector value to improve the initial solution. This procedure 
is illustrated in Figure 2 (a). 
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(a) Newton-Raphson method 

 

 
 

(b) 1st HPM 
 

 
(c) 2nd HPM 
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(d) Two-point method 

Figure 2. Iterative methods 
 
Since formation of the tangent stiffness matrix is a time-consuming process, some 

algorithms are combined together to accelerate the convergence rate. Such combinations are 
described in the following. 

 
3.1 Modified Homotopy Perturbation Method (HPM) for nonlinear problems 
In the current paper, the homotopy perturbation series is first simplified in order to include 
also higher-order terms. Then, the number of most efficient terms of the homotopy series is 
found. These sets of equations are then solved iteratively.  

This paper develops and improves the methodology which has been presented in 
reference Saffari et al. [15] for application to structural engineering problems. A schematic 
representation of this method is illustrated in Figure 2 (b). In the current paper, the 
homotopy perturbation series is first simplified in order to include also higher-order terms. 
Then, the number of most efficient terms of the homotopy series is found. 

Consider a series of n nonlinear 

equations 0,.....,0,0 )()(2)(1  xnxx QQQ with n unknown variables 

nxxx ,......,2,1  as follows: 

 

      0)()(  xx fPQ  (6)

 

in which P  and  )( xf  external and resultant internal forces respectively. If, respectively, 

nx
 and q are the exact solution of the system of equations and an initial guess, then using 

Taylor series expansion, Eqn 6 can be written as: 
 

        0}{)]([ )()()(  xqx RqxQQ   (7)
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where ][  is the system tangent stiffness matrix or ][

 
is Jacobin matrix of  )( xQ : 

 

j

i

j

i
ij x

f

x

Q








  (8)

 
Thus,  )(xR  is defined as follows:  

 
         )]([)()()( qxQQR qxx    (9)

 
Then {x} can be given by solving Eqn 7: 
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To reach approximate solution of  x  at first, homotopy is shaped: 
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In recent situation }{x will be the same }{ nx . In reference He [17] had been shown that: 
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Substituting Eqn 12 into Eqn. 11 then using Taylor series of   xG around 0x : 
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By equating the terms with power p, we have: 
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Neglecting high derivatives terms of Taylor series of   xR around 0x  then  2x  ,  3x
 

, 
 4x , … can be estimated as follows: 

 
       1)(

1
)(2 0

xx xq    (16)

www.SID.ir



Arc
hive

 of
 S

ID

I. Mansouri and H. Saffari 
 

 

220 

       2)(
1

)(3 0
xx xq   (17)

       3)(
1

)(4 0
xx xq   (18)

 
Using above approximation higher order of homotopy series can be available and then it 

can be applied to nonlinear analysis process. Graphically, the proposed method is shown in 
Figure 2 (c). 

 
3.2 Two-point technique  
It is possible to accelerate the convergence rate of analysis using an approach which has 
been recently proposed by Saffari and Mansouri [14]. Briefly, in this method, displacements 
are updated as follows: 
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in which: 
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and parameter t is explained in detail in reference Saffari and Mansouri [14]. The 

graphical representation of the method is indicated in Figure 2 (d). 
 

3.3 Implementation of hybrid methods in structural engineering  
Combining the simplified homotopy perturbation method and two-point method produces 
the following formulation to estimate the displacement vector nx : 

 
       nxxn xy

n )(
1

)( 0
   (21)

          )()(
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)(1 0
tgyyx nxxnn n

 
  (22)

 
 

4. NORMAL FLOW ALGORITHM 
 

The Newton–Raphson method is one powerful approach to evaluate the response of a 
structure to a set of successive loads. However, this method diverges when the solution is 
close to limit point [18]. As mentioned earlier, in this research normal flow algorithm is used 
to trace the equilibrium path. If i is the number of the step, j is the number of the iteration, 

and the total load on the structure is j
iP , or equivalently, the product of a total ratio j

i  and 

a given reference external load refP , applied through a series of load increments. 
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Mathematically, this is written as: 

   ref
j
i

j
i PP   (23)

 
The method of normal flow algorithm is schematically presented in Figure 3 and a 

detailed discussion is provided in reference Saffari et al. [8]. 
 

 
Figure 3. The modifying iterative steps in the normal flow algorithm 

 
In this paper, a modified Euclidian convergence criterion is adopted for displacement 

control which is defined Saffari et al. [8]. 
A direct method of updating is adopted, such that the load increment is related to the 

number of iterations. The sign of the determinant of the tangential stiffness matrix of the 
previous step can be computed through the following relationship: 
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where the exponent  is a certain number, JD is the number of iterations assumed at the 

beginning of the calculations and JM is the number of iterations performed in the previous 
step. 

 
 

5. NUMERICAL EXAMPLES 
 

A program implementing HPM and two-point method has been written in MATLAB and 
representative results are provided. Three numerical examples were solved in a 
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microcomputer environment (32 bit Pentium 1.66 GHz processor: 2CPUs) such that the 
efficiency of the proposed procedure (developed as above) and the Newton-Raphson method 
of predicting the nonlinear behavior of space trusses and frames could be compared. Using a 
tolerance ε=10-5, the nonlinear equations were subject to successive iterations until the 
convergence criteria were satisfied. Newton–Raphson method as well as other hybrid 
algorithms has been applied to two cases of elastic and inelastic post–buckling (IPB) 
analyses of structures. 
 
5.1 Example 1 
The geometric dimensions of the geodesic dome truss shown in Figure 4 are taken from 
Ramesh and Krishnamoorthy [19]. 
 

 
Figure 4. Geodesic dome truss, dimensions are given in cm 

 
This truss has 156 members and 61 nodes with pin supports at the outer nodes and one 

vertical load P = 8 kN at the center, 01.01
1  , 5.0max  , 1.0 , 10DJ , 100max J . 

The elevation of the truss is defined by the following equation: 
 

84.60)2.7( 222  zyx  (25)
 
All members have identical cross sections, i.e., with E = 6895 kN/cm2, A = 6.5 cm2, Fy = 

400 kN/cm2, I = 1 cm4. The load-displacement curve for this structure is shown in Figure 5. 
A comparison between obtained curves and those available in reference [19], demonstrates 
the accuracy of proposed algorithm. 
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Figure 5. Load-displacement curves of geodesic dome truss at apex 

 
The comparison between the results of applying the four approaches is listed in Table 1. 
It is observed that in all cases the N-R +2nd HPM coupled with two-point algorithm has 

better performance than the other methods. 
 

Table 1: Comparison of CPU time and num. of iteration for example 1 

method Time (sec) Number of iterations 

 Elastic analysis IPB 
Elastic 

analysis 
IPB 

N-R 27.5306 48.0764 111 201 

N-R +1st HPM 21.0562 36.6521 89 184 

N-R +2nd HPM 11.0312 19.2401 62 121 

N-R +2nd HPM + 
Two-point 

10.7811 18.5207 55 94 

 
5.2 Example 2 
The circular dome truss taken from [20] is shown in Figure 6. This structure is subjected to a 
vertical load P = 500 kN at the apex and has 168 elements with 73 nodes with a total of 147 
degrees-of-freedom. There are pin supports around the truss. 
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Figure 6. Circular dome truss, dimensions are given in cm 

 
The cross-sectional area A is equal to 50.431cm2 for all the members. The elastic 

modulus of the members E is 2.04×104 kN/cm2, Fy = 25 kN/cm2, I = 52.94 cm4, 01.01
1  , 

2max  , 5DJ , 100max J , 1.0 . 

Figure 7 illustrates the numerical responses obtained from the proposed formulation for 
the three analyses. Obtained curves are the same in reference [20]. 

 

 
Figure 7. Load-displacement curves of circular dome truss at node 2 
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The computational results in Table 2 show that N-R + 2nd HPM coupled with two-point 
algorithm requires less CPU time among other methods. Therefore, they are of practical 
interest and can compete with Newton-Raphson method and work better than it. 

 
Table 2: Comparison of CPU time and num. of iteration for example 2 

method Time (sec) Number of iterations 

 Elastic analysis IPB 
Elastic 

analysis
IPB 

N-R 26.86136 87.29523 188 251 

N-R +1st HPM 20.17294 
64.7803 153 201 

N-R +2nd HPM 11.56912 
37.3771 105 174 

N-R +2nd HPM + 
Two-point 

10.02325 33.5691 100 146 

 
5.3 Example 3 
This truss, shown in Figure 8 with 264 elements and 97 nodes with pin supports at the outer 
nodes, gives a possibility of comparison with results in the reference Greco et al. [6]. The 
axial stiffness for all members is EA = 640×103 kN, Fy = 25 kN/cm2, I = 30.04 cm4. The 
external loading is due to equipment self-weight, consisting of P = 50 kN at the crown node 
and 01.01

1  , 1max  , 1.0 , 2DJ , 100max J . 

 

 
Figure 8. Schewdeler’s dome truss, dimensions are given in cm 

 
Figure 9 shows the variation of vertical displacement at central node with the load P. 

Achieved curves show a good accuracy between obtained and available results in reference [6]. 
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Figure 9. Central node vertical displacement-force of Schewdeler’s dome 

 
To compare the performance of the proposed method, the results of analyses are 

summarized in Table 3. The computations are carried out with a high precision. It can be 
easily seen that less computing time are used by N-R +2nd HPM coupled with Two-point 
algorithm rather than the others. 

 
Table 3: Comparison of CPU time and num. of iteration for example 3 

method Time (sec) Number of iterations 

 Elastic analysis IPB 
Elastic 

analysis
IPB 

N-R 115.6921 184.1164 195 266 

N-R +1st HPM 84.6741 
134.2376 162 214 

N-R +2nd HPM 48.0445 
76.3232 114 183 

N-R +2nd HPM + 
Two-point 

40.9501 65.5133 111 157 

 
5.4 Example 4 
Figure 10 shows a two-bay six-storey frame subjected to distributed gravity and lateral loads. 
The beam and column cross-sections are shown in the figure while all loading magnitudes are 
scaled to a predefined reference value P (Chan 2000). The elastic modulus for all members E is 
adopted as 20500 kN/cm2. Incremental load (ΔP) is selected equal to 2.044 kN. 
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Figure 10. Two-bay six-storey frame 

 
Obtained curve (Figure 11) is compatible with reference [21]. The efficiency and 

performance of the proposed method can be deduced from the results shown in Table 4. 
 

 
Figure 11. Load-deflection curve for example 4 
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Table 4: Comparison of CPU time for example 4 (sec) 

method Time (sec) Number of iterations 

 Elastic analysis IPB 
Elastic 

analysis 
IPB 

N-R 19.62 24.35 87 101 

N-R +1st HPM 9.019
11.19 71 98 

N-R +2nd HPM 8.037 
9.97 41 66 

N-R +2nd HPM + 
Two-point 

6.2316 7.82 30 59 

 
As can be seen in the table, when proposed HPM is used the computational time is 

reduced compared with those taken by other methods. In particular, in the current example, 
the rate of reduction in the computing time is up to 68% when compared with the classic 
Newton-Raphson method. Therefore, the proposed method is of practical interest whenever 
the accuracy and efficiency are both concerned in the nonlinear analysis of structures. 

 
 

6. CONCLUSIONS 
 

In this paper, a new hybrid approach was developed aiming at achieving convergence 
acceleration compared to conventional Newton-Raphson algorithms. Both geometrical and 
material nonlinearity was considered. A mathematical formulation, known as Homotopy 
Perturbation Method, was numerically extended, applied and combined for nonlinear 
analysis of structures. In the examples under consideration, the proposed hybrid methods 
converged in less time and number of iterations than the classical Newton-Raphson method. 
It is thus concluded that this method can be regarded as an efficient technique for nonlinear 
analysis of large structures for which computational time aspects impose practical 
constraints. 
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