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ABSTRACT

This study is devoted to tracing the equilibriunthpaf structures with severe nonlinear
behavior. A new displacement increment is suggesiedo_ the analysis. Moreover, the
increment of the load factor is obtained by minimggz the residual displacement. To
evaluate the capabilities of the presented metlgaghat existing ones, a comparison study
is performed. In this process, five benchmark fraané truss problems are solved. Each of
the structures is analyzed more than 600 times tlamedutcomes are compared with each
other. According to the results, the authors' sehesrmore competent than the methods of
residual load minimization, normal plane; updatedmal plane, cylindrical arc length, work
control, residual displacement minimization, getieea displacement control and modified
normal flow.

Keywords. Displacement increment; nonlinear analysis; nunaéritability; nonlinear
solution techniques; equilibrium path; load factor.

1. INTRODUCTION

Due to the great importance of the structural maa@r analysis, researchers have always
been looking for capable schemes to achieve thineam equilibrium path. These strategies
should be efficient enough to traverse the varisngp-through, snap-back and buckling
points of all equilibrium states. This charactecisthould especially be taken into account
for the structures with intense nonlinear behavi&w. far, a variety of tactics have been
proposed, which are capable and efficient for sgjvionlinear problems. Traditional and
old procedures are not able to achieve the sewminear equilibrium path and diverge in
passing limit points. It is worth mentioning thasearchers have not yet obtained a method
which can trace all types of load-deflection curvks other words, the most efficient
techniques of nonlinear structural analysis failsome cases, and the intervention of the
analyst is necessary during the solution process.
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It should be pointed out that the traditional apgttes, such as, pure increment [1,2],
Newton-Raphson, modified Newton-Raphson, displacgncentrol [3] and its modified
versions [4-6], have less capability compared wita advanced ones. This disadvantage
may appear in the case of not passing the load lmints for Newton-Raphson and
modified Newton-Raphson methods [4,7-9], not pagsie displacement limit points for
displacement control technique [7,10,11], havinghhtost and analysis time, having low
convergence rate and increasing drift-off erromfréhe equilibrium path for the pure
incremental approach. The following is a brief tigtof the advanced nonlinear solution
schemes.

In 1980, Bergan calculated the load increment oheteration and proposed the residual
load minimization technique by minimizing the diface between the load applied on
structure and its internal force [12]. Other capatbnlinear analysis approaches are called
arc length method. For the first time, this proagedwas suggested by Wempner [13] and
Riks [14, 15]. After that, these schemes were widghployed and developed by other
researchers [7, 10, 16-18]. In 1981, Crisfield folawed the cylindrical arc length strategy
and called it the modified Riks approach [10]. e hormal plane arc length technique, the
locus of the iteration points is perpendicular tee ttangent passes through the prior
equilibrium point [7, 15]. If the perpendicular gess is repeated in each iterative step, then
the algorithm is called updated normal plane [7,21].

In 1981 and 1985, the constant work control tedmigias used by assuming that the
work increment is constant [8, 21]. After the NemARaphson method, which is unable to
pass the load limit points on the equilibrium pa#gsearchers presented various approaches
for overcoming this difficulty. The arc length ggy of Crisfield [10], Riks [14, 15] and
Ramm [7], the displacement control [4-6] and the&stant work control of Powell and
Simons [8] and Yang [6] were not efficient in soroases. On the other hand, these
techniques do not follow the shortest path to fthd equilibrium points. In 1988, the
residual displacement minimization tactic was psgabby Chan [22]. Following that, Yang
and Shieh suggested the generalized displacematrbtapproach in 1990 [23]. In 2008,
the modified form of the normal flow algorithm [256] was proposed by Saffari et al. [24].

Structural nonlinear solvers have been developéshsively in the last few decades. As
it has been described so far, the literature os $hibject is not very limited. In a recent
attempt, based on the Newton—Raphson algorithmyoapbint method was presented in
2011 [27]. This tactic worked as a predictor—caweone, most frequently taking Newton's
method in the first iteration. In spite of the faitte presented procedure was faster than the
classic Newton—Raphson algorithm; it had the pmobt# passing limit points. In 2012,
Mansouri and Saffari proposed an efficient functfon reducing the computing time and
number of iterations in the Newton—-Raphson methadipled with the two-point
methodology [28]. They performed the nonlinear gsialof planar frames, and reduced the
computing time and also the number of iteratiormnpared with the classic Newton—
Raphson algorithm. It is well known noted that New#tRaphson scheme, and all related
techniques cannot pass the limit points of disptee® curves. To broadly examine the
solution techniques' abilities for the structureghwgeometrical nonlinear behavior,
formulations of several famous approaches wereepted by Rezaiee-Pajand, et al. [29].
Moreover, other features of these approaches aen #igorithms for tracing of the
structural equilibrium path were also investigatedhe second part of the mentioned study,
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robustness and efficiency of the solution tacticeravcomprehensively evaluated by
performing numerical analyses [30]. In this invgation, criteria such as, number of
diverged and complete analyses, the ability ofipgdead limit and snap-back points, the
total number of steps and iteration process, tladyais running time and divergence points
were extensively examined. Furthermore, capalsliaed deficiencies of each solver, in
comparison with the other ones, were discussedinallly superior solution schemes were
introduced. In another event, a functionally gragete was analyzed for both thermal and
mechanical loadings by Phung-Van et al. [31]. A-baked smoothed three-node Mindlin
plate element was modeled to find geometricallylinear solution. In this study, the

higher-order shear deformation plate theory wassiclemed. A two-step procedure was
utilized, including a step of analyzing the tempera field along the thickness of the
structure, and another step for solving the geaoaly nonlinear behavior.

By reviewing nonlinear solution procedures of threctures, it will be evident that a very
significant issue of the numerical instability Iséikists in these solution strategies. The main
purpose of the authors' algorithm is preventingdivergence of nonlinear solution from the
load limit and snap-back points. In this paperew nlisplacement increment is proposed for
tracing the equilibrium path of structures. If tHmmulation and also the load factor
increment of the residual displacement minimizatiwa used simultaneously, remarkable
results can be obtained. These outcomes show hkapresented approach has a good
numerical stability in solving the structures witbvere nonlinear behavior. This merit will
be clarified in comparison study with the abilit@fsthe other advanced procedures.

In the coming lines, the proposed formulation rstfiaddressed. Afterwards, different
problems are solved by this technique, and thdtseate compared with the other advanced
solvers. In this procedure, the ability of the @ugh technique is demonstrated against the
residual load minimization, the normal plane, tipelated normal plane, the cylindrical arc
length, the residual displacement minimization #redgeneralized displacement control and
also the modified normal flow methods.

2. THE PROPOSED DISPLACEMENT INCREMENT

To find the behavior of structure, there is a néedsolve the governing equilibrium
equations in the load-displacement space. Thesaiegs can be written as follows:

f(u,A)=0 (1)

Parametersi andu show the scalar load factor and the displacemectby of structure,
respectively. Tracing the equilibrium path of austure with N degrees of freedom is done
in a N+1-dimension space. Therefore, another caimsirlike the below one, must be
utilized to analyze structure and find all unknowns

f"(u,1)=0 2

In order to solve the governing system of equatifimsthe structures with nonlinear
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behavior, incremental-iterative strategy can beduse these techniques, the following

equations are employed:
of of || A
- =—f
LM aquJ @)

Where, A and duare the load factor increment and the displacenmemément in the
iteration stages, respectively. Researchers havpoped various techniques in order to
calculate the displacement increment and the loadtof for tracing the nonlinear
equilibrium path of structure. Watson et al. emplbyhe normal flow algorithm in order to
solve the governing equation of structures' noalinbehavior [25, 26]. Based on the
mentioned algorithm, the displacement incrementcanrector step is obtained by the
minimum norm solution of Eq.3, in the following for

_V'ar

a=Vv *T o
A

ar (4)

Here, the answer V is found by employing an arbjtonstraint. It should be noted that
the vector V is a particular solution for Eq.3. Tparametera* shows the incremental
vector of displacement. Although Eq.3 has infimteswers, its minimum norm solution is
unique, because the iterative steps move on theestgpath or the normal path until
reaching the equilibrium curve of «the structure ][3Zhus, the iterative analyses are
performed along the lines normal to the DavidenKtsv curve until achieving the
equilibrium point [33]. Fig. 1 illustrates Davidewik flow curve and the equilibrium paths. It
should be mentioned that the equation of the Dads flow lines, utilizing perturbation
parameter; , is written as follows:

f(u,A)=n (5)

By changing the parametey, a set of curves is obtained, which are knownhas t

Davidenko's flow curves [33]. Fig. 1 presents thentioned solution process. Based on Fig.
2, the displacement increment can be determinetidyinear equation of Batoz and Dhatt
[4]:

Ay =N +ay” (6)

where, aun is the displacement increment due to the referévae. The displacement
incrementayn is also caused by the residual load. These paeasnate illustrated in Fig. 2.

The superscript n is used here to denote the asadysp number and the subscript
indicates the iterative cycle i within the analysi®p n. The mentioned displacement
increments are obtained by the following equations:
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Figure 1. Tracing the equilibrium path utilizingetbavidenko flow curves

ar=(kp)'e )
aur" = (KR ®)

In these formulationsp ‘and R" are the reference load and the residual load k&cto

respectively.K is the stiffness matrix of the structure. Refegrio Fig. 2, vectoR" is

calculated by the following equation representing tifference between the external load
applied on structure and the internal force.

R =AP-F’ (9)

Vector Fn is the internal force of structure. This forcecédculated using the following
relation at each point, based on the internal siwéstructure:

"= ” BinTain dv (10)

Where, B is the strain matrix, and;" is the vector of internal stresses at thetage.

In the proposed method, the solutignis replaced with the linear relationship of Batoz
and Dhatt. After the selection of various paransetey the authors, the minimum norm
answer of EQ.3 is written as follows. It is form@ld based on the displacement due to the
reference load:



638 M. Rezaiee-Pajand, M. Salehi-Ahmadabad and M. Ginadiyan

via"
n_\/ _ A
o .

)\ P Predictor stage Iteration surface

corrector stages

AN P

Equilibrium path

|
|
|
|
I
|
|
|
|
|
l
|
|
|
i
T
|
|
|
|
|
|
|

- U

Figure 2. Nonlinear analysis of a structure witle olegree of freedom

Where, ||5u'1n|| shows the norm of the displacement increments licaused by the

reference load, in thefirst iteration. This paréenés employed constantly until the end of
the iterative cycles. The load factor incrementhe equation of Batoz and Dhatt must be
calculated with an arbitrary constraint. In the haws' technique, the constraint of the
residual displacement minimization [22] is utilizéat finding the load factor increment.
Consequently, the equations of and the load factor increment are expressed in the
following forms:

V=olau" + A (12)
nnT m

In the presented strategy, the load factor increnf@ntracing the equilibrium path is
obtained employing the residual displacement mipation relationship. The displacement
and the total load are formulated as follows:
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u' =u"t AU + > A (14)

i
i=1

AP =A"P+AAP+> AP (15)

i=1

The displacement increment and the load factorement in the first iteration of each
analysis step are indicated ly and aAl, respectively. These parameters are shown in
Fig. 2. The capability of the suggested approadinaicing the equilibrium path of truss and
frame structures, in comparison with other solutmethods, will be demonstrated latter.
The obtained numerical results indicate that the gelution technique is robust and has
good numerical stability, when compared to the o#uyanced algorithms.
The modified normal flow algorithm was proposed ®&ffari et al. in 2008. In this

solution scheme, the constraint equation of thelues displacement minimization is used.

Therefore, the load factor increme@h ) is obtained by Eq.13.In the modified normal flow

algorithm, the load factor increment of Eq.13 ahd Eq. 12 is employed to compute the
particular solutionv . Furthermore, the displacement increment in #@iive steps is given
by the below formula:

AN =V - (16)

Notably, the subsequent consideration indicatessttieamentioned equation with a little
simplification gives the displacement incrementlod residual displacement minimization
constraint. It should be noted that the two sideds¢p16 do not have compatible units. This
incompatibility is removed by utilizing the exponef 2 in the denominator of the fraction.
Employing Egs.7, 8, the solution can be found by Eq.12. The following formulaticanc
be achieved by substituting Eg.12 in Eq.16:

ovar +ar-] arr
d,ll'an,ll'n
nT T
_OHAT AT o An" A"
dJI'anJI'n ! dj:anJ:n
a3y
d,lllan,llln

ar= (oray +ar)

&y
= oy + ar) "
(17)

= o ay + arn)- avay - "

n nT nm
d'Ii d'Ii d,llm

= dji"n -
d"i'an'Ii'n

Clearly, this equation is the displacement incretmesulting from the constraint of the
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residual displacement minimization method.

3. COMPARISON STUDY

To obtain accurate results, nine solution techrsquil be utilized throughout this study.
All equilibrium paths of the benchmark problems Ivwbe traced with the same load
increment assigned at the beginning of the analysis aimed to find the number of
complete curve tracings. At the beginning of eaddlysis, the load factor increment will be
given to the computer, as an input data. It is meet that the load factor increment is
calculated based upon the chord length of the gi@dstep by the next formula:

n_y Lo
A =+ fa (18)

In the former equation)/; is the load increment in the first iteration, ahd parameter
L, denotes the chord length of the predictor stes&hfactors are shown in Fig. 2. It

should be noted that for each problem, the chargtfeof the predictor step is identical for
all methods and remains constant throughout th&sisgrocess. As usual, the achieved
point from the predictor step returns to the eguiilim path on the iteration surface, by the
constraint equation of the solution strategy. Bamethese assumptions, only the numerical
performances of the constraint equations 'in retgrrio the equilibrium path will be
compared and evaluated. Some researchers hazeditilieir techniques by determining the
chord length in the first iteration. The generaliziisplacement control method can be stated
as an example [23]. For implementing similar candiffor all techniques, the chord length
determinations will not be employed throughout #tisly.

The benchmark problems will be analyzed severatdiiny each strategy. In this regard,
maximum allowed iteration, divergence toleranceximam and minimum chord length,
the number of analyses and the target point areifsgge The target point is employed to
terminate the solution. This is determined withpacsfic load factor or a displacement or
both. These properties will be given in correspogdiables for each problem. The
mentioned parameters will be chosen in such a Wwalythe performance capability of the
tactics can be reliably distinguished from eactentfihe first load factor increment will be
calculated as a specific percentage of the firsical load of the equilibrium path. The
results of this selection will be obtained aftemwyarials and errors. These parameters will
be similar for all approaches. The analysis prooedwwmmences with the minimum arc
length and continues to reach the maximum arc terfdt the outcomes will be given in the
corresponding tables. Convergence criterion usediginout this paper, will be based on the
structural residual load, and it will be formulategthe following inequality:

R'R"<¢ (19)

The parameteR" indicates the residual force veictahe ' iteration within the H
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analysis step. The facter shows the solution tolerance, and it is definedth®y analyst.
Iterative calculations continue until the convergewriterion will be satisfied. If the number
of iterations exceeds the maximum allowed valueige$atisfying the Eq. 19, the solution is
recognized as a diverged one. Other kinds of dererg may occur when the answers go
away from the structural equilibrium path. Thikwn as a jump failure. In this situation,
the process cannot trace the correct path.

After identifying the number of converged and dgext analyses, location of the
divergence points will be specified in the figur@herefore, ability or deficiency of the
solution techniques becomes clear in passing dmapgh and snap-back points. It should
be noted that there are a lot of points in theldsgment curve, which make the examining
of diverged states difficult. To overcome this sboming, instead of indicating all diverged
points, divergence ranges will be specified. It ngethat just the points of beginning and
end are drawn in each divergence range. Squarésptiustrated in the figures show the
locations that number of negative diagonal arrdythe stiffness matrix changes. For this
purpose, the number of negative diagonal arraythefstiffness matrix will be calculated.
When this number is increased or decreased, apadysp is recorded. These are called
singular points. It is interesting to note that Hgand Atluri have developed a technique
based on the mentioned arrays for tracing postimgckpath of the structures, after
bifurcation points [35].

4. NUMERICAL EXAMPLES

In order to present the efficiency and reliabilifiithe proposed method, some benchmark
structures with severe nonlinear behaviors willabpalyzed in this part. The criteria of the
comparison are selected in such a way that thewsaspects of the techniques' abilities can
be accurately evaluated and compared. In fact,ntimaber of complete tracings of the
equilibrium path illustrates the ability to traverthe snap-through and snap-back points.
The tables of results clarify the numerical stépiiif the suggested approach in passing the
load limit and snap-back points. For simplicitye tshort form of the methods' name is used
throughout the article. Table 1 shows the compéete abbreviation name of the solution
techniques. The authors' approach is shown by RDI.

Table 1: Short form of the solution technique

Row Solution Technique Short Form

1 Residual Load Minimization RLM

2 Normal Plane NP

3 Updated Normal Plane UNP

4 Cylindrical Arc Length CAL

5 Work Control wC

6  Residual Displacement Minimization RDM

7 Generalized Displacement Control GDC
8 Modified Normal Flow MNF

9 Robust Displacement Increment RDI
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4.1 Example one

Fig. 3 illustrates a three-member truss, whichthase pinned supports. This structure has
four nodes and two degrees of freedom. The tip modebjected to horizontal and vertical
point loads ¢ =10000N ). Axial rigidity of the members iAE = 2x10° N . Fig. 4 shohe
load-displacement curve of structure for verticagicte of freedom (u).

o S, AL
| |
L Sem 1 (5cCm |
Figure 3. Three-member truss

Table 2: Analysis properties of the three-membessr

Max. of Tolerance Arc Length Target Point
Num. of Load

lteration for Conv. Minimum Increment Displacement
analyses Factor

5 1x10* 0.250 0.015 45 -18.11 -5.9

Table 3: Numerical results of the three-memberstrus

Analysis Number of Number of Number of Number Convergence
Method Analyses Convergences Failures of Jumps Percentage

RLM 45 31 2 12 68.89
NP 45 29 11 5 64.44
UNP 45 35 5 5 77.78
CAL 45 43 2 0 95.56
wC 45 0 45 0 0
RDM 45 45 0 0 100
GDC 45 6 39 0 13.33
MNF 45 45 0 0 100
RDI 45 45 0 0 100
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Table.3 indicates that the residual displacemenimization, the modified normal flow
and the suggested techniques have entirely tr&aeedguilibrium path in all analyses. These
are the superior procedures. Constant work costrategy failed in all the solutions. Other
results are presented in the corresponding table.
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Figure 4. Equilibrium path of the three-member ¢rus

As it is shown in Fig. 4, the behavior of this sture has the load, and displacement limit
points. The residual load minimization method diezt in point A and in the range of EF.
This technique presents poor performance in pagsiagoad limit points. The constant
work control procedure diverged before the snagch@mint and in the interval BD. The
diverged analyses of the generalized displacementra method are located in BE.
Cylindrical arc length, updated normal plane, realddisplacement minimization and the
modified normal flow strategies diverged in thegarDE. The diverged analyses of the
normal plane method occurred in CE.

4.2 Example two

The arch truss, shown in Fig. 5, is subjected veréical downward point load of 10 kN at
its tip. Arch's radius of the trussks= 48cm. Axial rigidity of the members is identical and
is considered to b&A = 50MN. The load-deflection curve of this structure fagcee of
freedom u is given in Fig. 23. It should be notkdttthis truss was investigated by other
researchers, as well [36-38].

Table 4: Analysis properties of 101-member archgru

Max. of Tolerance Arc Length Target Point
Num. of Load

lteration  for Conv.  Minimum Increment Displacement
Increments Factor

8 1x10° 0.01 0.0005 120 200 NA
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Figure 5. 101-member arch truss

Table 5: Numerical results of 101-member arch truss

Analysis  Number of Number of Number of Number of Convergence
Method Analyses Convergences Failures Jumps Percentage
RLM 120 0 0 120 0
NP 120 44 24 52 36.67
UNP 120 90 3 27 75
CAL 120 62 55 3 51.67
wC 120 0 75 45 0
RDM 120 93 2 25 75.5
GDC 120 6 17 97 5
MNF 120 7 99 14 5.83
RDI 120 94 0 26 78.33

As it is shown in Fig. 6, the load-displacementveuof this structure has two load limit
points and two displacement limit points. The prsgxb strategy is the most efficient
technique, and it could completely trace the eguuim path in 78 percent of all solutions.

Equilibrium Path
o Singular Points
o Divergence Points

Figure 6. Equilibrium path of 101-member arch truss
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The residual load minimization method jumped oweréquilibrium path in range of AB.
The diverged analyses of the work control and thiemal plane approaches are located in
CD and CE, respectively. The updated normal plrecylindrical arc length, the residual
displacement minimization and the modified normaWf methods and also the suggested
technique diverged in the range of DE. It shoulshbied that the residual load minimization
tactic returns on the equilibrium path after reaghthe first load limit point in all analyses.
It is obvious that this approach faces difficultieshe snap-through points.

4.3 Example 3

The truss structure shown in Fig. 7 is subjectethébasymmetrical loading. On the other
hand, the geometry of the structure is also asymendihese characteristics result in intense
nonlinear behavior in the load-displacement cuiMeis bridge has 33 members and 32
degrees of freedom. The cross section areas ofehbers areA=3cn? . The modulus of
elasticity is E=3x10'kN /cnf? . The nonlinear behavior of this Igedis studied for the
degree of freedormu . Fig. 8 illustrates the equlitor path. Previously, Powell and Simons

[8] and also Saffari et al. [24] analyzed this staue

P, u

Figure 7. 33-member truss bridge

Table 6: Analysis properties of the 33-member thradge

Max. of ~Tolerance Arc Length Target Point
Num. of  Load

lteration for Conv.” Minimum Increment Displacement
analyses Factor

5 1x10° 5 0.05 300 NA 150

Table 7: Numerical results of the 33-member truk!gb

Analysis  Number of Number of Number of Number of Convergence
Method Analyses Convergences Failures Jumps Percentage
RLM 300 0 300 0 0
NP 300 170 130 0 56.67
UNP 300 197 103 0 65.67
CAL 300 222 78 0 74
wC 300 0 300 0 0
RDM 300 200 100 0 66.67
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GDC 300 94 206 0 31.33
MNF 300 0 300 0 0
RDI 300 206 94 0 68.67

Referring to Fig. 8, several snap-through and greqk points are seen in the load-
displacement path. Based on Table.7, the Crisgetdlength scheme and the suggested
technique have the highest convergence efficie@oythe other hand, the work control and
the modified displacement control solution procedutid not completely trace the curve.

According to Fig. 8, all analyses of the residuwad minimization method diverged in
AB. This method could trace the equilibrium pattiobe reaching the load limit point. The
diverged solutions of the normal plane, the worktod and the generalized displacement
control techniques occurred within the range of De diverged analyses of residual
displacement minimization algorithm and the propgosehnique situate in point E.

0
T T T T T T T T
I I [l [l 1 1 i I -
_____ J._____L____L_____I_____L_____I__.-;_:'L__m-._B.J.__.I.gg_ A
[ I I I 1 -I(_/ 1 L
i i i i i i b
————— e s o IS L S T B
I i i i 1 i I
_____ J._____|_____J_____J_____L_ﬁ__J_____L_____i\\__W_
1 I L] I ] L] i ]
_____ I S, R . | YR A, ____I:. 120
K T T T 2 i N E — Exquilibrium Path
i | i i S i I i . .
| B e T | S R ¥ ——E——I ————— I—————T——““',:“Bg— o Singuiar Ponts
I I | | | I I I \ Poi
————— b e e e e e e S R e e e s Diergence Points
I LY I ] [l P A I I I \
i N i A i :
e Y S H— WA L v 4B) it .
I b [} [ I [} I I L}
- - - - - ---l)d-‘----l----- o - - " - - C
[ F\ [ il 1 ! I [ -Lq-l
] ] 41— L 1 L] I ] 1
| RSy S B I____H_T _____ T g N e T L |
I I I I 1 I i I nl
=180 =160 =140 =120 =100 B0 60 <40 20 o
u (mm)

Fig.8. Equilibrium path of the 33-member trussigd

4.4 Example four

The arch frame shown in Fig. 9 is subjected toiatpf load P =1N with an eccentricity
of 200. The span-and height of the frame aobeoo and 500, respectively. 12 identical
elements have been used to model the structuree Hne hinged on the structural supports
at its two ends. Fig. 10 displays the nonlinearavedr of the frame for the vertical nodal
degree of freedom under the point load. The cresia area, the second moment of area
and Young's modulus of elasticity are=1, 1=1 and E=200, respectively. Harrison
analyzed this structure using the discrete elertaaic [34]. Other researchers also studied
this frame [40-42].

Table 8: Analysis properties of shallow arch frame

Max. of  Tolerance Arc Length Target Point
Num. of Load

lteration ~ for Conv.  Minimum  Increment Displacement
analyses Factor

20 1x10* 20 0.5 100 NA 1000
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Figure 9. Shallow arch frame

200

5000

Table 9: Numerical results of shallow arch frame

Analysis  Number of Number of Number of Number of Convergence
Method Analyses  Convergences Failures Jumps Percentage
RLM 100 0 100 0 0
NP 100 73 27 0 73
UNP 100 58 36 6 58
CAL 100 75 25 0 75
wC 100 0 100 0 0
RDM 100 94 6 0 94
GDC 100 17 83 0 17
MNF 100 0 100 0 0
RDI 100 97 3 0 97

Fig. 10 shows the complex behavior of this struetwith the snap-through and snap-
back points. The mentioned nonlinear algorithmseasduated by performing 100 analyses.
Among them, the suggested technique has the b&streas with 97 converged solutions.
The residual load minimization, the constant wookitcol and the modified work control
methods failed before the target point in all asa$y The results are given in Table.9.

— Equilibnum Path
o Singular Points

+ Diergence Points

Figure 10. Equilibrium path of Shallow arch frame
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Based on Fig. 10, the residual load minimizatiorthoé diverged in domain AB. All
analyses of this approach failed to make forwawmhpass before the load limit point. The
constant work control method diverged in the reg@id. The diverged analyses of the
normal plane, and the generalized displacementaaetchniques occurred at points E and
D. The updated normal plane, the cylindrical aragth, the residual displacement
minimization, the modified normal flow and the poged methods diverged in point D.

4.5 Example five

The frame of Fig. 11 was studied by Harrison [38Jing et al. have also analyzed this
structure [23, 35]. The arch radius R=127cm (R= 50in) . The mosdldtielasticity and
the second moment of inertia ae=1378kPa (E =200psi) ang 4162nt (1 =1in*)
respectively. Moreover, the cross section area h&f member is considered to be
A= 645cnT (A=10in2). The structure is divided into 26 equal elemeAtzording to Fig.
11, this structure is subjected to a point lod@<1N with eccentricity of b= 798cm

(b=314in). The load-displacement curve for the vertical @imn of the top node (V) is
presented in Fig. 12.

Figure 11. Deep arch frame

Table 10: Analysis properties of deep arch frame

Max. of  Tolerance Arc Length Target Point
Num. of  Load

lteration  for Conv. Minimum Increment Displacement
analyses Factor

8 1x10% 5 0.1 40 1.75 -22.6
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Table 11: Numerical results of the deep arch frame

Analysis ~ Number of Number of Number of Number of Convergence

Method Analyses  Convergences Failures Jumps Percentage

RLM 40 0 40 0 0

NP 40 27 13 0 67.5
UNP 40 21 19 0 52.5
CAL 40 26 14 0 65

wcC 40 0 40 0 0
RDM 40 27 13 0 67.5
GDC 40 2 38 0 5
MNF 40 0 40 0 0

RDI 40 40 0 0 100

Referring to Fig. 12, the equilibrium path of theeg arch frame has several snap-
through and snap-back points. In this problem, preposed method has the best
performance and could completely trace the pathallinanalyses. The residual load
minimization and the constant work control techeisjdiverged in all analyses. Table 11
indicates the numerical results.

T T 3
1 I
1 I
1 I
_______ S
1 |
1 |
1 |
_______ B
1 I
! ! Equilibrium Path
I =" S o Singular Points
-120 D_1 8 7 « Divergence Points
ey Sy - gy S SIS NSRRI
CETT /
1 I
_______ ':_______-;:-"'C—____.T' aT T T T T T
| e
1 |

Figure 12. Equilibrium path of the deep arch frame

All solutions of the load minimization and the ctarg work control methods diverged in
ranges AB and CD, respectively. Some of the analygethe generalized displacement
control approach failed to converge in region DEl aome other at the point F. The
diverged solutions of the normal plane, the updatednal plane and the cylindrical arc
length techniques occurred in point F. Consequetitly last three methods traced a longer
path before reaching the divergence point.
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5. CONCLUSION

In this paper, a displacement increment was prapémegeometrically nonlinear structural
analysis. This approach can be employed with thews constraints for calculating the load
factor. According to the numerical results, thehaus' method can trace the equilibrium path
of the structures with severe nonlinear behavitie ddvantage of the presented algorithm
was illustrated in the comparison with eight adwhcsolution techniques, including
residual load minimization, normal plane, updatedwal plane, cylindrical arc length, work
control, residual displacement minimization, geheea displacement control and modified
normal flow. To examine the suggested approachifoqusions, five benchmark truss and
frame problems were solved. These structures weaéyzed more than 5000 times. The
numerical outcomes indicated high capability anihbdity of the proposed strategy in
passing the load limit and snap-back points. Asvas demonstrated numerically, the
presented procedure has numerical stability irsthectural analysis. Fig. 13 shows the total
result of performed analyses. This bar chart ptssdre percentage of the fully traced
equilibrium path, in which no fail or jump was ocied.

390
80

79.
7 | 759
70.7
66.3 70
56.7 60
50
40
30
20.7
20
8.6 5.1 10
| 0
[ 0
RDI  RDM CAL™ UNP NP GDC MNF  RLM

wc

Completely Traced Equilibrium Path
Percent

Figure 13. Total result of the fully traced paths
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