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ABSTRACT

The main objective of this paper is to present & approach for seismic design of RC
shear-walls. In order to achieve the desired pevémce with the minimum possible cost, a
formulation is presented which fulfills the congtta of FEMA 365. The robust meta-

heuristic algorithm PSO and its recently enhancedion, PSOHS, are employed and the
results compared. This approach is‘applied to soraetical structural examples to certify

the proposed formulation, and to examine whethemB8OHS performs better than PSO in
this class of problems. The results. illustrate #ftectiveness of the PSOHS and its
suitability for design of shear-walls.

Keywords: Performance-based design; RC shear-wall; PSO; PSOHS

1. INTRODUCTION

Since most of engineering projects are cost-depergignificantly, in recent decades, meta-
heuristic algorithms have drawn the attention ohyn@searchers in the field of engineering
as an efficient tool to reduce the costs of thgeats. In the field of structural design,
numerous studies have been accomplished; for icstd?erez and Behdinan [1] employed
the PSO in design of truss structures. Some rasea devise new algorithms or improve
the performance of the existing algorithms by mgkigibrid algorithms. A good example of
the latter is the work of Kaveh and Talatahari if2]hybridizing PSO, ACO, and HS to
provide a robust algorithm for optimal design afsg structures. Lee and Geem [3] utilized
the HS algorithm for this purpose. Charged systearch is also proposed for structural
optimization by Kaveh and Talatahari [4]. LepS [grformed a discrete optimization of
reinforced concrete (RC) frames. Kaveh and Shakdahmud Abadi [6] used a harmony
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search algorithm for design optimization of compm$ioor systems. Kaveh and Zakian [7]
performed seismic design optimisation of RC monfesmines and dual shear wall-frame
structures via CSS algorithm.

Particle swarm Optimization (PSO) algorithm is preged by Kennedy and Eberhat [8],
and extensively employed in optimal design of strres [9-12]. This algorithm is inspired
from the social behavior of swarms and flocks, ead easily be implemented. The ability
of searching the continuous feasible space andstobss are the main characteristics of the
PSO. However, the lack of balance between exptoratind exploitation is the main
drawback of the PSO. Furthermore, dependency omrteeof algorithm constants, inertia
weight, is another deficiency attributed to the PSO

In order to remove the drawbacks of the PSO, séveadifications have been
performed. She and Eberhart [13] proposed a dynamamying inertia weight to provide
balanced global and local searches. Kaveh and Masrgl4] also hybridized the PSO
algorithm with HS, called PSOHS, in order to dedhwhe particles violating the feasibility
boundaries. The main objective of this paper ixoatemplate a new formulation and
approach for performance-based optimal design ofsRé€ar-walls. The constraints of this
problem are suggested based on FEMA 365 [15], atid BSO and PSOHS algorithm are
linked to the OPENSEES analysis package softwapettorm a Push-Over Analysis. The
results illustrates two main point: (a) the prombsest function and constraint formulating
and method for optimal design is properly adjustigd;the PSOHS is more robust than
original PSO in providing a design with less casthis type of problems.

2. PSO, HS AND PSOHS OPTIMIZATION ALGORITHMS

2.1 Particle Svarm Optimization

Particle Swarm Optimization (PSQ) is a multi-agemta-heuristic optimization algorithm
which has been introduced by Eberhart and Kenngfdyt[makes use of velocity vector to
update the current position of each particle in gsiv@arm. The velocity vector is updated
using a memory in which the best position of eaattigle and the best position among all
particles are stored. This can be considered asitbiographical memory. Therefore, the
position of each particle in the swarm which adaptsts environment by flying in the
direction of best position of the whole particlesdathe best position of particle itself
provides the search of PSO. The position of theaitticle at iteration k+1 can be calculated
using Eqg. (1)

Xir = X F VA (1)

where, x,,, is the new positiony, is the position at iteration ki, ., is the updated velocity

vector of the ith particle; andt is the time step which is considered as unity. &lecity
vector of each particle is determined using Eq. (2)

g _
#eur, AP (2)

iy P =%
Viy =WV, +C . kAth
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where, V, is the velocity vector at iteratidg r, andr, are two random numbers between 0
and 1; p, represents the best ever position of ith partideal best; pg is the global best

position in the swarm up to iteratidg c, is the cognitive parametei, is the social

parameter; andv is a constant named inertia weight.
With the above description of PSO, the algorithm lba summarized as follow:
1. Initialization

Initial position,x;,, and velocitiesy,, of particles are distributed randomly in feasible
search space.

X(i) = Xmin + r'(Xmax - Xmin) (3)
: o+, - .
V(l) — 'min r (ZTax Xmln) (4)

wherer is a random number uniformly distributed betweear@ 1; x_,, and X are

minimum and maximum possible variables for iteparticle, respectively.
2. Solution Evaluation

Evaluate the objective function values for eachiglar, f (x;() using the design variables

correspond to iteratiok .
3. Updating Memory

Update the local best of each partiq:{b, and the global besm'g‘ , at iterationk .

4. Updating Positions

Update the position of each particle utilizing pievious position and updated velocity
vector as specified by Egs: (1 and 2).

5. Stopping Criteria

Repeat steps 2~4 until the stopping criteria is met

For further information on recent meta-heuristgoaithms the reader may refer to [16].

2.2 Harmony Search

Harmony Search (HS) algorithm is a meta-heurislgorethm based on natural musical
performance that occurs when a musician searches lietter state harmony, such as jazz
improvisation. This algorithm has been presentedGiegm et al. [3] and works as: the
engineers seek for a global optimum of an objedtivetion, just like the musicians seek to
find a musical pleasing harmony as determined Byhaéics, Fig. 1.

This seeking for a new improvised harmony is a dearhich if can be regulated in
optimization; it can find the global minimum of théjective function.

HS algorithm includes a number of optimization @pers, such as the harmony memory
HM which is a memory that some best so far rearssaved in it, and if in a stage better
solution is obtained, it is saved in HM and the stavne is excluded from it; Harmony
memory size HMS, which is the number of solutiontees saved in HM; Harmony memory
considering rate HMCR varying between 0 and 1 tetsate of choosing a value in the new
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vector from the historic values stored in the HMd dhe pitch adjusting rate PAR. The pitch
adjusting process is performed only after a vakiehosen from HM and sets the rate of
choosing a value from neighboring of the best ve@teps of the HS are as follows:

A new harmony vector is improvised from the HM whea HMCR and PAR. With the
probability of HMCR the new vector is generatednirétiM and with the probability of
(1-HMCR) the new vector is generated randomly frzasible ranges of values. The pitch
adjusting process is performed only after a vatuselected from HM. The value (1-PAR)
sets the rate of doing nothing. A PAR of 0.25 iatks that the algorithm will select a

neighboring value with025X HMCR. It is recommended not to set HMCR as 1.0 bseat
is probable that the global minimum does not exisHM. With the aforementioned the
search of HM is summarized in Eq. (5). In which teem “w.p.” represents “with the
probability”.

100mm 300mm 500mm :) £(100, 300, 500
200mm 400mm 600mm (100, ) )
300mm S00mm T00mm

= 100mm = 300mm = 500mm

Figure 1. The resemblance between music improwisand optimization [3]

If the generated harmony vector is better thanrenbay vector in HM, judged in terms
of the objective function value, the new harmonyniduded in HM and the worst one is
excluded from it.

w.p. HMCR
—> select a value for a variable from HM
—=> w.p. (1-PAR) do nothing
Xy = (5)

= w.p. PAR choose a neighboring value
w.p. (1-HMCR)

—> select a new variable randomly

2.3 PSOHS

The hybrid PSO and HS is proposed by Kaveh anddNakr [14]. Previous to that, it is
necessary to explain why this modification is perfed. There are two main problems in
PSO: first, the lack of balance between exploratdod exploitation; second, there is no
good idea to control the violating variables fromagible search space. For definition of the
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first problem it should be mentioned that in megautstic optimization algorithms, there
should be a balance between exploration and eagitmitin a way that at initial iteration, the
algorithm should have a global search and thischestnould cover the whole search space
in a logical manner. In this stage, some pointscivtare expected to be near the global
minimum of the cost function are found. Then at ldtest iterations, the algorithm should
perform a local search using the solution vectoundl so far. As seen in Eq. (2), velocity
vector definition of PSO which is the search engofethe algorithm has not this
specification and at initial iteration is the satndatest iterations and this issue causes a lack
of balance between exploration and exploitatioR$0.

This problem has been solved using dynamic variatb inertia weight by linearly
decreasingnv with each algorithm iteration presented by Shi Bhérhart [13] as shown in

Eg. (6)

W,., =rand x (w —Wa;;wk] (6)

max

whererand represents a random number in the [0M]; IS the maximum considered

inertia weight; w_.. is the minimum considered inertia weigh; ., is the number of

iterations.

Utilizing Eq. (6), at initial iterations there witle a large value of inertia weight providing
a global search and by progression of algorithns thalue reduces until at the latest
iterations there only local search will be perfodhimsed on position of the best particle and
the best ever position of particles as seen in(By. The random multiplier provides a
random search which prevents the particles to nfavdrom their best position during
global search process.

The second problem that is involved in PSO like ynattier optimization algorithms, is
the violation of variables that should be contmbll&@here are many methods to control the
violating variables. One of the simplest approadbBagtilizing the nearest limit values for
the violating variable. Alternatively, one can ferthe violating particle to return to its
previous pesition, or reduce the maximum valuehef telocity to allow fewer particles to
violate the variable boundaries. Although theseragghes are simple, they are not
sufficiently efficient and may lead to reductiontbe exploration of the search space. This
problem has previously been addressed and solweg tie harmony search based handling
approach [2]. According to this mechanism, any congmt of the solution vector violating
the variable boundaries can be regenerated frordbhéy use of Eq. (11). This approach is
an efficient one which improves convergence ratelgbrithm because of simultaneous
action of two algorithms. If a particle is in theakible search space, PSO will work and if
violates from boundaries, HS will be activated. Kowr, in PSOHS it is necessary that the
memory in which the global best is stored be extenand some of best designed vectors
stored. This memory can be used as HM when a [gaviialates and HS becomes active.

With the above mentioned explanation, the stepBSDHS are shown in flowchart of
Fig. 2.
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1. Initialize
Define random positions and velocities using Eqs. (3) and (4)
Determine operational parameters of HS include of HMCR,
HMS, and PAR
k=1

v

D 2. Solution Evaluation
Evaluate the objective function values for each particle

v

3. Updating Memory
Update the HM of particles
and determine new globl best and local bests

v

4. Updating Positions
Update the position of each particle utilizing Eq. (1) and (2)

} !

5. Handling the Violated Variables
If new position of some particles does not exist in feasible search space,
reproduce themusing Eq. (5)

v

6. Updating Velocities
Update the velocity of each particle using Eqs. (2) and (6)

Figure 2. Flowchart of PSOHS

3. DEFINITION OF THE PROBLEM

3.1 Variables

For the purpose of optimal design of RC shear-waliset of predefined elements are considered
as the feasible search space; therefore, in thirhis set is built on chapter 14 of ACI 318-08
requirements for shear-wall design. In what follpthese requirements are presented:

Minimum portion of vertical reinforcement is 0.00fi®2 bars with diameter equal or less
than 16mm.

Minimum portion of vertical reinforcement is 0.00f5 the rest of bars.

Minimum portion of horizontal reinforcement is 0D@r bars with diameter equal or
less than 16mm.

Minimum portion of vertical reinforcement is 0.00f% the remaining bars.

For the RC shear-walls with the thickness more @&BOmm there should be two layers
reinforcement.

The space between reinforcement should be less4d@mm or less than threefold of
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wall thickness.

If the portion of vertical reinforcement is moreath0.01, there is no need to place any
closed loop.

Considering all these constraints, the initialdethear-walls is built characterized as follows:

The length of shear-wall is constant and equal.7on6 and the following constraint is
considered to be true:

|W:hw+2xtf (7)

In this correlation,| is the length of the shear-wall; hepresents the height of the shear-
wall; t; is the length of the wall flange.

In Fig. 3 different variables are delineated, anthbining these variables in the range
presented in Table 1, leads to a set of shear-walhtaining 7,653 elements which are
presented in Table 2, and values in this tableal@ilated using the following correlations:

Asf max — 004x (tf x bf ) (8)
A%f min — 001x (tf x bf ) (9)
bf _z(tc +dt)+sc
=2l =05
nw n{ 4 +s (10)
n\/\é=2ln{bf “Ard)rsl _2(t°+d‘)+‘°t—o.5J (11)
dp+s dp+s
b .
nrl . =max Int=—"—x Atmn 4 05 4 (12)
te+by &
nrl = min{lnt(tf b+fbf X% - 0.5} nle (13)
nud,,, = ma{lnt( ASfa:i” + O.SJ ,4} -nrl (14)

nud . = ma{lnt{% - 0.5} nwzj =0 (15)



690 A. Kaveh, M.H. Zakizadeh, A. Nasrollahi

[ 8 y T
~83= 8y |[—= -2) — +0.4
-~ Sa=5xs [ 52 T }
—— 8= 8xs/Bs
Sys/Bs —,'.

_—Sa=SalB,T

Sx1/By 4 /
04845 £

Spectral response acceleration, S,

To Ts 1.0

Figure 3. Spectral response acceleration of FEM&\[35]

Table 1: Range of variables

Variable range Variable values
Shear-wall thickness 200mm- continuous between the range
400mm
The length of shear-wall 600mm- .
continuous between the range
flange 1200mm
The thickness of shear-wall 200mm- .
continuous between the range
flange 1200mm
Vertical reinforcement 300mm- .
continuous between the range
space 450mm

Reinforcement diameter 12mm-36mm 25 mM-32mm-36mm

12mm-14mm-16mm-18mm-20mm-22mm-

Table 2: set of RC shear wall elements used fdgdes

Section G b B S Yo ¢ Sy nw  nud nrl
(mm) (mm) . (mm) (mm) (mm) (mm) (mm)
1 200 600 300 300 16 32 130 38 4
2 200 600 300 300 16 32 140 38 4
3 200 600 300 300 16 32 150 38 4
4 200 600 300 350 16 32 130 34 4
5 200 600 300 350 16 32 140 34 4
3826 300 900 1000 400 16 32 110 26 12
3827 300 900 1000 400 16 32 120 26 10
3828 300 900 1000 400 16 32 130 26 10
3829 300 900 1000 400 16 32 140 26 8
3830 300 900 1000 400 16 32 150 26 8
7652 400 1200 1200 450 16 36 110 22 18
7653 400 1200 1200 450 16 36 120 22 16
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3.2 Cost function and constraints
The cost function of this problem is defined by Ekf), containing the cost of the concrete,
reinforcement, and forming.

fF(X)=C.,x(2xbyxt, xH, +I,xt,xH, —2xm xA; —m,xA_)
+HC Xy x((2xmx Ay +m,x A )xH, +2xI xInt(H,/Sy)xA,) (16)
+C, x(4x (b, +t, —05xt,)xH_ +2xh,xH,)

In this equation different parameters are as fatow
C..C,, andC, : cost of concrete per cubic meter, cost of steelkgogram, and cost of

forming per square meter respectivédiy;: total height of shear-wallA, and A,,: applied

reinforcement in the flange and web of shear-wedpectively;h,: length of shear-wall

web; m and m,: the number of longitudinal reinforcement of th@nfe and the web of
shear-wall, respectively.

The applied constraints are as follows:

The plastic rotation of elements as a performanceonstraint: The moment-curvature
of the elements are obtained after implementingishpver analysis and then the plastic
rotation of each element are calculated using as:

0,=(p.-9,)L, (17)

where 6, is the plastic rotation of the elemerg; represents the ultimate curvature of the
element;g, is the yielding curvature and is defined as:

0003
= (18)
Finally, L “is the probable length of plastic hinge and ideined by
ep
9 = 5 ™ -1<0 (19)

Pall

In this equation, i=1, 2, 3 are for the performateels of 10, LS, and CP respectively,
and HPZIL is the allowable plastic rotation for each perfanoe level according to the

FEMA-356 [15]. The allowable plastic rotations betRC shear wall are 0.005, 0.010, and
0.015 for these performances.
Shear Stress constraintThe shear stress constraint is defined as follows:
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V
0,= @\“/ -1<0 (20)

In which, V is the induced shear force in the waj]. is the shear resistance reduction

factor, and its value is equal to 0.75; ¥ the nominal shear resistance of a shear walljta
is defined as:

V, = %(%Jf_; +,0t-fyj (21)

where @, is equal to 1/6 wherf ' is in MPa; o, is the shear reinforcement ratios,4s the
total area of the shear wall and can be statedllasvt:

A, =t,xl,, (22)

1
Since in this research the value of shear foramase thanEw/ f'.A,, based on ACI-
318-08, two shear reinforcement plain is requiadtie wall.

Minimum Shear Reinforcement constraint: The constraint foff)t is defined as follows:

0; :pi -1=0 (23)
tmin

This is a constraint. which forces the shear reodorent fulfills its minimum
requirement.

3.3 Pushover analysis
In this study, FEMA 356 [15] requirements are cdesed for the static nonlinear analysis
(pushover analysis). According to this code, tlepstof implementing pushover analysis are
as follows:

The target displacement is determined using:

T?
4, =CL.C,C.S, yr g (24)

where,

Co is a modification factor to relate the spectraptihcement of an equivalent SDOF
system to the roof displacement of the MDOF systmd, here gis equal to 1.3.

C.is a modification factor to relate the expected mmaxn inelastic displacements to the
calculated linear elastic response displacemenis;&jual to 1.0 for this structure.
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C,is the modification factor to represent the effeicpinched hysteretic shape, stiffness
degradation and strength deterioration on maximigplacement response for 10 level and
for this structure it is considered as 1.0.

Csis the modification factor to represent the incesbdisplacements due to dynamia P-

effects; for buildings with positive post-yieldfftiess, this is equal to 1.8, is the spectral

acceleration which in this paper are calculatedaftype D soil according to FEMA 356 and
it is calculated by:

=5 -2) T v
B, JTs 0<T<T,
S
s, === (25)
Bs T<T,
S :(ij
BT T>T,
where S, and S, are determined by:
S(S v FaSS (26)
S)(l FVS. (27)

where for soil type D, the value oF,, F,,S;, and S are 1.0, 1.5, 1.5, and 0.6,
respectively.
Also, Tg and T, are determined using Egs. (28) and (29), &ydand B, are 1.0 based

of FEMA 356. Determining.the spectral acceleratisimg the abovementioned parameters
is depicted in Fig. 3.

S.,B
T — “X1~s (28)
° SeB
T, = 02T (29)

where g is the gravity acceleration; anli represents the effective period of the structure
and is determined using the following equation:

K.
T=T 30
< (30)

e

where,l. represents period of the structure when the strechas not experienced any
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nonlinearity;K; is the lateral stiffness of the structure at tlegibning of the pushover

curve; andK, is the elastic stiffness of the structure obtaifrech bilinear approximating

the pushover curve based on FEMA 356 requirem@&hisse parameters along with FEMA
356 requirements are delineated in Fig. 4.

Approximately balanca
areas above and below

= L

Figure 4 Pushover curve and approximate biIine'aahier of structure based on FEMA 356
requirements [15]

4. NUMERICAL EXAMPLES

To examine the proposed approach and formulatiothis section three RC shear walls are
designed using PSO, HS, and PSOHS. Three examm@esoasidered in this section: RC
shear wall of a four-story, an eight-story, andaelve-story frame. In all examples, the
value of Whax and Wi, in PSOHS are 1 and 0, respectively. The numbepadticles is
taken as 20, and in HMS it is considered as 5. HM@R PAR are 0.85 and 0.53 based on
the study of Ref. [3]. In order to reduce the dffeicrandom initialization, each problem is
run twenty times independently, and statisticallysig is performed to explain the results.
For the purpose of pushover analysis of RC sheds WaPENSEES package is used. The
optimization algorithms are coded in MATLAB, andughthe optimization code provides
new sections; and then it is analyzed by OPENSBE®¢ck the constraints. For design of
RC shear walls, it is considered that the sheak seakion can vary in each story; therefore,
the number of selections is too large to be deteethby try-and-error. Once a shear wall is
constructed by the optimization algorithm, its pdris determined by performing a modal

analysis, andd, is calculated using the first mode period which ais acceptable

approximate approach for determinidy. In all examples, OPENSEES Uniaxial Material

Concrete06 and Uniaxial Material Steel02 are @dizo model the shear walls. Mechanical
properties of these materials are included in TahleThe elements are modeled by
dispBeamColumnint which not only considers the effects of axial foroet also the effect of
shear-bending interactions. In these examples, firs structure is modeled in ETABS; then
the forces on the shear walls are obtained. Imthe step, the shear wall along with the
forces is modeled in OPENSEES to design it by rhetaristics. In this study, dead and live
loads are taken as 600 kg/emd 200kg/r respectively.
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Table 3: Material characteristics used in the aialgf numerical examples
concrete
f 'C (MPa) gCO f ICr (MPa) £CI‘

Uniaxial Material

Concrete06 ) -
30 00021 278 0.00008
Reinforcing steel
f (MPa
Uniaxial Material Steel02 , (MPa) E (MPa)
400 200000

4.1 Four-story RC shear wall

The shear wall of a six-bay, four-story frame shawrFig. 5 is considered as the first

example to examine the proposed approach. Sindestaxy can be constructed from 7653
sections, the number of possible designs’{e*®.56x13%", as a result, reaching to the

design with minimum cost by a try and error metionpossible. Thus, in this paper, some
meta-heuristics are employed to reach the optiresigth. This example is designed by PSO,
HS, and PSOHS to prove the efficacy of the improsets

) [}

3.50m

1

3.50m
| 14.00 m
3.50m

b
)

3.50m

4 1

75— R5—06.710—5.55——4.55—
Figure 5. Geometry of the six-bay four-story frawith RC shear wall

Optimal design of four-story shear wall using HSQ? and PAOHS is presented in
Table 4. It is.observed in the table that the estult among these three algorithms is
attributed to PSOHS with the value of 6658, whiles tvalue for HS and PSO is 7127 and
7862 which are 7% and 18.1% greater than the yalueSOHS, respectively. The values of
the constraints are presented in Table 5, andabserved that all constraints are below O;
therefore, none of the constraints is violated. €bevergence history of the best run and
average of twenty independent runs are illustrateéigs. (7) and (8). It can be concluded
from these figures that PSOHS has a faster conneegand optimal result is achievable in
fewer iterations; therefore, it is practical whenamlinear analysis are performed.
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Figure 7. Convergence history of the average of run

From Table 5, it can be concluded that the actorestraint is the minimum ratio of shear

reinforcements.

Table 4: Results of optimal design of four-story &@ar wall by different algorithms

Algorithm ~ Story. t,(mm) t{(mm) b{(mm) Su(mm) ¢(Mmm) J(mm) nud nrl (Zg)s t
1 200 1100 300 450 16 32 12 4
2 200 900 300 450 16 32 8 4

HS 3 200 600 300 450 16 32 4 4 712t
4 200 600 200 450 16 32 4 2
1 300 1000 500 450 16 36 10 8
2 200 900 400 450 16 36 8 6

PSO 3 200 600 200 450 16 32 4 2862
4 200 600 200 350 16 32 4 2
1 200 600 300 450 16 32 4 4
2 200 600 300 450 16 32 4 4

PSOHS 3 200 600 300 450 16 32 4 4 6658
4 200 600 300 450 16 32 4 4
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Table 5. The value of constraints of the four-ste€y shear wall designed by different

algorithms
Algorithm HS PSO PSOHS
story constraint constraint constraint constraint constraint constraint constraint constraint constraint
1 2 3 1 2 3 1 2 3
1 -1.3 -0.6 -0.5 -1.3 -0.705 -0.327 -1.3 -0.65 10.4
2 -1.3 -0.64 -0.43 -1.3 -0.603 -0.495 -1.3 -0.69 .350
3 -1.3 -0.72 -0.3 -1.3 -0.694 -0.342 -1.3 -0.76 250.
4 -1.3 -0.85 -0.15 -1.3 -0.83 -0.165 -1.3 -0.87 120.

4.2 Eight-story RC shear wall

The shear wall of a six-bay eight-story frame showirig. 9 is considered as the second
example to examine the efficiency of the propospdr@ach. Since each story can be
constructed from 7656 sections, the number of ptessiesigns is ‘8°£2:23x16° as a
result, reaching to the design with minimum cosalyy-error method is impossible. Again,
for this example, some meta-heuristics are appigdach the optimal design. This example
is optimized by PSO, HS, and PSOHS to prove theieficy of the algorithms.

3.50m

\

|

3.50m ‘
\

3.50m

3.50m

28.00m
3.50m

3.50m

3.50m ]

3.50m | |‘ |
] L

- 475-2.75- 670 —5.55 —4.55~
Figure 8. Geometry of the six-bay, eight-story feawith RC shear wall

Optimal design of four-story shear wall using HS@? and PAOHS is presented in
Table 6. It can be observed from this table thatlist result among these three algorithms
is attributed to PSOHS with the value of 14937, levltinis value for HS and PSO is 15481
and 17032 which are 3.64% and 14.02% greater tharvalue for PSOHS, respectively.
Also, the value of constraints are presented inlddh and it can be observed that all
constraints are below 0; therefore, none of thesttamts is violated. The convergence
history of the best run and average of twenty ietejent runs are illustrated in Figs. 10 and



698 A. Kaveh, M.H. Zakizadeh, A. Nasrollahi

11. It can be concluded from these figures that PSas a faster convergence, and
optimal result is achievable in fewer iterationserefore, it is practical when nonlinear
analyses are performed.
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Again, from Table 7, it can be concluded that tbeva constraint is the minimum ratio
of shear reinforcements.

Table 6: Geometry of the six-bay, eight-story framth RC shear wall

Algorithm  Story t,(mm) t(mm) b(mm) Sp(mm) @(mm) @(mm) nud nrl  Cost ($)

T 200 1200 500 400 16 32 2 6
2 200 1100 400 450 16 32 12 6
3 200 1100 400 450 16 32 10 6
4 200 1100 400 450 16 32 10 6
HS 5 200 900 300 450 16 32 g 4 15481
6 200 900 300 450 16 32 8 4
7 200 600 300 450 16 32 4 4
8 200 600 300 450 16 32 4 4
PSO 1 400 1100 700 450 16 36 14 1217032
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2 400 1100 500 400 16 36 2 6

3 300 1000 300 350 16 32 10 4

4 300 900 300 350 16 32 8 4

5 300 900 300 300 16 32 8 a4

6 300 700 300 300 16 32 6 4

7 200 700 300 300 16 32 6 4

8 200 600 300 300 16 32 4 a4

1 400 900 500 450 16 36 8 6

2 200 600 500 450 16 36 4 6

3 200 600 500 450 16 36 4 6

4 200 600 500 450 16 36 4 6
PSOHS 5 200 600 300 450 16 32 4 4 18997

6 200 600 200 450 16 32 4 2

7 200 600 200 450 16 32 4 2

8 200 600 200 450 16 32 4 2

Table 7: The value of constraints of the eightysR€ shear wall designed by different

algorithms
Algorithm HS PSO PSOHS
story constraint constraint constraint constraint -constraint constraint constraint constraint constraint
1 2 3 1 2 3 1 2 3
1 -1.3 -0.582 -0.535 -1.3 -0.756 -0.255 -1.3 -0.791 -0.211
2 -1.3 -0.594 -0.512 -1.3 -0.763 -0.246 -1.3 -0.593 -0.513
3 -1.3 -0.618 -0.468 -1.3 -0.702 -0.33 -1.3 -0.617 -0.468
4 -1.3 -0.653 -0.406 -1.3 -0.73 -0.29 -1.3 -0.653 0.407
o -1.3 -0.701 -0.332 -1.3 -0.767 -0.241 -1.3 -0.701 -0.333
1 -1.3 -0.76 -0.25 -1.3 -0.813 -0.184 -1.3 -0.76 250.
v -1.3 -0.83 -0.165 -1.3 -0.802 -0.198 -1.3 -0.83 .166
A -1.3 -0.912 -0.079 -1.3 -0.897 -0.094 -1.3 -0.912 -0.08
4.3 Twelve-story RC shear wall

The shear wall of a six-bay twelve-story frame shaw Fig. 12 is considered as the third
example to examine the efficiency of the propospdr@ach. Since each story can be
constructed from 7656 sections, the number of ptessiesigns will be 18°-9.42x1§%%#

as a result, reaching to the design with minimurst &y a try-error method is impossible.
Again, for this example, some meta-heuristics g@ied to reach the optimal design. This
example is optimized by PSO, HS, and PSOHS to pitewefficacy of the algorithms.
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Optimal design of a four-story shear wall using S0, and PAOHS is presented in
Table 8. Similar to previous examples, it can bseobed from the table that the best result
among these three algorithms is attributed to PS@#il$ the value of 24567, while this
value for HS and PSO.is 26747 and 28870 which &8é%8 and 17.51% greater than the
value for PSOHS, respecitively. Also, the valueafstraints are presented in Table 9, and it
can be seen that all constraints are below O; fibverenone of the constraints are violated.
The convergence history of the best run and aveddgi®venty independent runs are
illustrated in Figs. 13 and 14. From these figutesan be concluded that PSOHS has a
faster convergence, and optimal result is achievailfewer iterations; therefore, it is

practical when nonlinear analyses are performed.

33 ¢
32 |
31 ¢
3
2.95‘_
28 |i
27 ¢
26 |
25 F
24 B0 L

Penalized cost (x10000$)

........
.............

0

200 400 600
Number of analysis

800 1000

Figure 12. Convergence history of the best rungdrithms
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Similar to previous examples, from Table 9 it cancbncluded that the active constraint
is the minimum ratio of shear reinforcements.

Table 8: Geometry of the six-bay twelve-story franith RC shear wall

Algorithm  Story t(mm) t(mm) b(mm) Sy(mm)  d(mm) J(mm) nud nrl  Cost ($)

1 200 700 1200 450 16 32 10 24
2 300 700 1000 450 16 32 8 18
3 300 700 1000 | 450 16 32 8 18
4 200 700 1000 450 16 32 8 16
5 200 700 . 600 450 16 32 8 10
6 200 600 600 450 16 32 4 8

HS 7 200 600 500 450 16 32 4 g 26747
8 200 600 400 450 16 32 4 6
9 200 . 600 400 450 16 32 4 6
10 200 600 400 450 16 32 4 6
1177200 © 600 400 450 16 32 4 6
12 200 600 300 450 16 32 4 4
1 400 900 1200 450 16 36 8 16
2 400 900 1100 450 16 3% 10 16
3 400 800 1100 450 16 36 6 14
4 400 600 800 450 16 36 4 12
5 300 600 800 450 16 32 4 12

PSO 6 300 600 800 400 16 32 4 12 28870
7 200 600 800 350 16 32 4 10
8 200 600 600 350 16 32 4 8
9 200 600 600 300 16 32 4 8
10 200 600 500 300 16 32 4 6




702 A. Kaveh, M.H. Zakizadeh, A. Nasrollahi

11 200 600 500 300 16 32 2 6
12 200 600 500 300 16 32 4 6
1 200 600 1200 450 16 36 4 16
2 200 600 1200 450 16 36 4 16
3 200 600 900 450 16 36 4 12
4 200 600 800 450 16 36 4 10
5 200 600 600 450 16 36 4 8
6 200 600 500 450 16 36 4 6

PSOHS 200 600 500 450 16 32 4 g 24567
8 200 600 300 450 16 32 a4
9 200 600 300 450 16 32 4 a4
10 200 600 300 450 16 32 4 a4
11 200 600 300 450 16 32 4 a4
12 200 600 300 450 16 32 4 4

Table 9: The value of constraints of the twelveys®®C shear wall designed by different

algorithms
Algorithm HS PSO PSOHS
Story constraint constraint constraint constraint constraint constraint constraint constraint constraint
1 2 3 1 2 3 1 2 3
1 -1.3 -0.745 -0.27 -1.3 -0.744 -0.271 -1.3 -0.539 -0.624
2 -1.3 -0.664 -0.389 -1.3 -0.748 -0.266 -1.3 -0.545 -0.611
3 -1.3 -0.673 -0.374 -1.3 -0.754 -0.258 -1.3 -0.557 -0.585
4 -1.3 -0.529 <0.645 -1.3 -0.764 -0.245 -1.3 -0.575 -0.549
5 -1.3 -0.556 -0.587 -1.3 -0.703 -0.329 -1.3 -0.599 -0.502
6 -1.3 -0.589 -0.521 -1.3 -0.725 -0.297 -1.3 -0.629 -0.448
7 -1.3 -0.628 -0.449 -1.3 -0.627 -0.451 -1.3 -0.664 -0.389
8 -1.3 -0.673 -0.374 -1.3 -0.672 -0.376 -1.3 -0.705 -0.326
9 -1.3 -0.726 -0.295 -1.3 -0.726 -0.296 -1.3 -0.753 -0.259
10 -1.3 -0.784 -0.219 -1.3 -0.784 -0.22 -1.3 -0.805 -0.194
11 -1.3 -0.851 -0.142 -1.3 -0.851 -0.142 -1.3 -6.86 -0.126
12 -1.3 -0.924 -0.067 -1.3 -0.924 -0.068 -1.3 -2.93 -0.06

5. CONCLUSION

In this paper, performance based optimal desigR@fshear walls was investigated using
different meta-heuristic algorithms. One of the ustbalgorithms is PSO which has been
utilized in many engineering problems. However, alahced exploration and exploitation
reduces its robustness; moreover, there is notpgmopriate mechanism to deal with
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violated particles from side boundaries. Therefties paper followed two main purposes:
first, to reach to performance based optimal desifiRC shear walls using pushover
analysis; second, examine the recently developedifi@d version of PSO which is called
PSOHS. To show the efficiency of the PSOHS, thégdesf shear walls were performed by
PSO, HS, and PSOHS, and results were comparedlt&kelsaw that a linear varying inertia
weight in PSO provides a balanced exploration aquo&ation for the algorithm, and this
improvement prevents PSO to be trapped in a log@hmim or particles move far from the
global minimum due to high velocity. In conclusioRSOHS seems to be a suitable
algorithm for performance based optimal designtafas walls, and it can be utilized in
professional applications successfully.
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