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ABSTRACT 
 
The main objective of this paper is to present a new approach for seismic design of RC 
shear-walls. In order to achieve the desired performance with the minimum possible cost, a 
formulation is presented which fulfills the constraints of FEMA 365. The robust meta-
heuristic algorithm PSO and its recently enhanced version, PSOHS, are employed and the 
results compared. This approach is applied to some practical structural examples to certify 
the proposed formulation, and to examine whether the PSOHS performs better than PSO in 
this class of problems. The results illustrate the effectiveness of the PSOHS and its 
suitability for design of shear-walls. 
 
Keywords: Performance-based design; RC shear-wall; PSO; PSOHS 

 
 

1. INTRODUCTION 
 

Since most of engineering projects are cost-dependent significantly, in recent decades, meta-
heuristic algorithms have drawn the attention of many researchers in the field of engineering 
as an efficient tool to reduce the costs of the projects. In the field of structural design, 
numerous studies have been accomplished; for instance, Perez and Behdinan [1] employed 
the PSO in design of truss structures. Some researchers devise new algorithms or improve 
the performance of the existing algorithms by making hybrid algorithms. A good example of 
the latter is the work of Kaveh and Talatahari [2] in hybridizing PSO, ACO, and HS to 
provide a robust algorithm for optimal design of truss structures. Lee and Geem [3] utilized 
the HS algorithm for this purpose. Charged system search is also proposed for structural 
optimization by Kaveh and Talatahari [4]. Lepš [5] performed a discrete optimization of 
reinforced concrete (RC) frames. Kaveh and Shakouri Mahmud Abadi [6] used a harmony 
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search algorithm for design optimization of composite floor systems. Kaveh and Zakian [7] 
performed seismic design optimisation of RC moment frames and dual shear wall-frame 
structures via CSS algorithm. 

Particle swarm Optimization (PSO) algorithm is presented by Kennedy and Eberhat [8], 
and extensively employed in optimal design of structures [9-12]. This algorithm is inspired 
from the social behavior of swarms and flocks, and can easily be implemented. The ability 
of searching the continuous feasible space and robustness are the main characteristics of the 
PSO. However, the lack of balance between exploration and exploitation is the main 
drawback of the PSO. Furthermore, dependency on the one of algorithm constants, inertia 
weight, is another deficiency attributed to the PSO. 

In order to remove the drawbacks of the PSO, several modifications have been 
performed.  She and Eberhart [13] proposed a dynamic varying inertia weight to provide 
balanced global and local searches. Kaveh and Nasrollahi [14] also hybridized the PSO 
algorithm with HS, called PSOHS, in order to deal with the particles violating the feasibility 
boundaries. The main objective of this paper is to contemplate a new formulation and 
approach for performance-based optimal design of RC shear-walls. The constraints of this 
problem are suggested based on FEMA 365 [15], and both PSO and PSOHS algorithm are 
linked to the OPENSEES analysis package software to perform a Push-Over Analysis. The 
results illustrates two main point: (a) the proposed cost function and constraint formulating 
and method for optimal design is properly adjusted; (b) the PSOHS is more robust than 
original PSO in providing a design with less cost in this type of problems. 
 
 

2. PSO, HS AND PSOHS OPTIMIZATION ALGORITHMS 
 
2.1 Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a multi-agent meta-heuristic optimization algorithm 
which has been introduced by Eberhart and Kennedy [1]. It makes use of velocity vector to 
update the current position of each particle in the swarm. The velocity vector is updated 
using a memory in which the best position of each particle and the best position among all 
particles are stored. This can be considered as an autobiographical memory. Therefore, the 
position of each particle in the swarm which adapts to its environment by flying in the 
direction of best position of the whole particles and the best position of particle itself 
provides the search of PSO. The position of the ith particle at iteration k+1 can be calculated 
using Eq. (1) 
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where, i

kx 1+  is the new position; ikx  is the position at iteration k; ikv 1+  is the updated velocity 

vector of the ith particle; and t∆  is the time step which is considered as unity. The velocity 
vector of each particle is determined using Eq. (2) 
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where, i
kv  is the velocity vector at iteration k; 1r  and 2r  are two random numbers between 0 

and 1; i
kp  represents the best ever position of ith particle, local best; k

gp  is the global best 

position in the swarm up to iteration k; 1c  is the cognitive parameter; 2c  is the social 
parameter; and w  is a constant named inertia weight. 

With the above description of PSO, the algorithm can be summarized as follow: 
1. Initialization 
Initial position, ix0 , and velocities, iv0 , of particles are distributed randomly in feasible 

search space. 
 

( )minmaxmin0 . xxrxx i −+=  (3) 
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(4) 

 
where r is a random number uniformly distributed between 0 and 1; minx  and maxx are 

minimum and maximum possible variables for the ith particle, respectively. 
2. Solution Evaluation 
Evaluate the objective function values for each particle, ( )i

kxf , using the design variables 

correspond to iteration k . 
3. Updating Memory 
Update the local best of each particle,i

kp , and the global best,kgp , at iteration k . 

4. Updating Positions 
Update the position of each particle utilizing its previous position and updated velocity 

vector as specified by Eqs. (1 and 2). 
5. Stopping Criteria 
Repeat steps 2~4 until the stopping criteria is met. 

 
For further information on recent meta-heuristic algorithms the reader may refer to [16]. 
 

2.2 Harmony Search 
Harmony Search (HS) algorithm is a meta-heuristic algorithm based on natural musical 
performance that occurs when a musician searches for a better state harmony, such as jazz 
improvisation. This algorithm has been presented by Geem et al. [3] and works as: the 
engineers seek for a global optimum of an objective function, just like the musicians seek to 
find a musical pleasing harmony as determined by aesthetics, Fig. 1.  
This seeking for a new improvised harmony is a search which if can be regulated in 
optimization; it can find the global minimum of the objective function. 

HS algorithm includes a number of optimization operators, such as the harmony memory 
HM which is a memory that some best so far results are saved in it, and if in a stage better 
solution is obtained, it is saved in HM and the worst one is excluded from it; Harmony 
memory size HMS, which is the number of solution vectors saved in HM; Harmony memory 
considering rate HMCR varying between 0 and 1 sets the rate of choosing a value in the new 
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vector from the historic values stored in the HM; and the pitch adjusting rate PAR. The pitch 
adjusting process is performed only after a value is chosen from HM and sets the rate of 
choosing a value from neighboring of the best vector. Steps of the HS are as follows: 

A new harmony vector is improvised from the HM based on HMCR and PAR. With the 
probability of HMCR the new vector is generated from HM and with the probability of 
(1−HMCR) the new vector is generated randomly from possible ranges of values. The pitch 
adjusting process is performed only after a value is selected from HM. The value (1−PAR) 
sets the rate of doing nothing. A PAR of 0.25 indicates that the algorithm will select a 

neighboring value with ×25.0 HMCR. It is recommended not to set HMCR as 1.0 because it 
is probable that the global minimum does not exist in HM. With the aforementioned the 
search of HM is summarized in Eq. (5). In which the term “w.p.” represents “with the 
probability”. 

 

 
Figure 1. The resemblance between music improvisation and optimization [3] 

 
If the generated harmony vector is better than a harmony vector in HM, judged in terms 

of the objective function value, the new harmony is included in HM and the worst one is 
excluded from it. 

 

 

(5) 

 
2.3 PSOHS 
The hybrid PSO and HS is proposed by Kaveh and Nasrollahi [14]. Previous to that, it is 
necessary to explain why this modification is performed. There are two main problems in 
PSO: first, the lack of balance between exploration and exploitation; second, there is no 
good idea to control the violating variables from feasible search space. For definition of the 
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first problem it should be mentioned that in meta-heuristic optimization algorithms, there 
should be a balance between exploration and exploitation in a way that at initial iteration, the 
algorithm should have a global search and this search should cover the whole search space 
in a logical manner. In this stage, some points which are expected to be near the global 
minimum of the cost function are found. Then at the latest iterations, the algorithm should 
perform a local search using the solution vectors found so far. As seen in Eq. (2), velocity 
vector definition of PSO which is the search engine of the algorithm has not this 
specification and at initial iteration is the same to latest iterations and this issue causes a lack 
of balance between exploration and exploitation of PSO. 

This problem has been solved using dynamic variation of inertia weight by linearly 
decreasing w  with each algorithm iteration presented by Shi and Eberhart [13] as shown in 
Eq. (6) 
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where,rand  represents a random number in the [0,1];maxw  is the maximum considered 

inertia weight; minw  is the minimum considered inertia weight; maxk  is the number of 

iterations. 
Utilizing Eq. (6), at initial iterations there will be a large value of inertia weight providing 

a global search and by progression of algorithm this value reduces until at the latest 
iterations there only local search will be performed based on position of the best particle and 
the best ever position of particles as seen in Eq. (2). The random multiplier provides a 
random search which prevents the particles to move far from their best position during 
global search process. 

The second problem that is involved in PSO like many other optimization algorithms, is 
the violation of variables that should be controlled. There are many methods to control the 
violating variables. One of the simplest approaches is utilizing the nearest limit values for 
the violating variable. Alternatively, one can force the violating particle to return to its 
previous position, or reduce the maximum value of the velocity to allow fewer particles to 
violate the variable boundaries. Although these approaches are simple, they are not 
sufficiently efficient and may lead to reduction of the exploration of the search space. This 
problem has previously been addressed and solved using the harmony search based handling 
approach [2]. According to this mechanism, any component of the solution vector violating 
the variable boundaries can be regenerated from the HM by use of Eq. (11). This approach is 
an efficient one which improves convergence rate of algorithm because of simultaneous 
action of two algorithms. If a particle is in the feasible search space, PSO will work and if 
violates from boundaries, HS will be activated. However, in PSOHS it is necessary that the 
memory in which the global best is stored be extended and some of best designed vectors 
stored. This memory can be used as HM when a particle violates and HS becomes active. 

With the above mentioned explanation, the steps of PSOHS are shown in flowchart of 
Fig. 2. 
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Figure 2. Flowchart of PSOHS 

 
 

3. DEFINITION OF THE PROBLEM 
 

3.1 Variables 
For the purpose of optimal design of RC shear-walls, a set of predefined elements are considered 
as the feasible search space; therefore, in this paper this set is built on chapter 14 of ACI 318-08 
requirements for shear-wall design. In what follows, these requirements are presented: 

Minimum portion of vertical reinforcement is 0.0012 for bars with diameter equal or less 
than 16mm. 

Minimum portion of vertical reinforcement is 0.0015 for the rest of bars. 
Minimum portion of horizontal reinforcement is 0.002 for bars with diameter equal or 

less than 16mm. 
Minimum portion of vertical reinforcement is 0.0025 for the remaining bars. 
For the RC shear-walls with the thickness more than 250mm there should be two layers 

reinforcement. 
The space between reinforcement should be less than 450mm or less than threefold of 
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wall thickness. 
If the portion of vertical reinforcement is more than 0.01, there is no need to place any 

closed loop. 
Considering all these constraints, the initial set of shear-walls is built characterized as follows: 
The length of shear-wall is constant and equal to 6.7m, and the following constraint is 

considered to be true: 
 

fww thl ×+= 2  (7) 
 
In this correlation, lw is the length of the shear-wall; hw represents the height of the shear-

wall; tf is the length of the wall flange. 
In Fig. 3 different variables are delineated, and combining these variables in the range 

presented in Table 1, leads to a set of shear-walls containing 7,653 elements which are 
presented in Table 2, and values in this table are calculated using the following correlations: 
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Figure 3. Spectral response acceleration of FEMA 356 [15] 

 
Table 1: Range of variables 

Variable range Variable values 

Shear-wall thickness 
200mm-
400mm 

continuous between the range 

The length of shear-wall 
flange 

600mm-
1200mm 

continuous between the range 

The thickness of shear-wall 
flange 

200mm-
1200mm 

continuous between the range 

Vertical reinforcement 
space 

300mm-
450mm 

continuous between the range 

Reinforcement diameter 12mm-36mm 
12mm-14mm-16mm-18mm-20mm-22mm-

25mm-32mm-36mm 

 
Table 2: set of RC shear wall elements used for design 

Section wt
(mm) 

ft

(mm) 
fb

(mm) 
shS

(mm) 
wφ

(mm) 
fφ

(mm) 
fS

(mm) 
nw  nud  nrl  

1 200 600 300 300 16 32 130 38 4 4 
2 200 600 300 300 16 32 140 38 4 4 
3 200 600 300 300 16 32 150 38 4 4 
4 200 600 300 350 16 32 130 34 4 4 
5 200 600 300 350 16 32 140 34 4 4 
… … … … … … … … … … … 

3826 300 900 1000 400 16 32 110 26 12 18 
3827 300 900 1000 400 16 32 120 26 10 16 
3828 300 900 1000 400 16 32 130 26 10 14 
3829 300 900 1000 400 16 32 140 26 8 14 
3830 300 900 1000 400 16 32 150 26 8 14 
… … … … … … … … … … … 

7652 400 1200 1200 450 16 36 110 22 18 22 
7653 400 1200 1200 450 16 36 120 22 16 20 
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3.2 Cost function and constraints 
The cost function of this problem is defined by Eq. (16), containing the cost of the concrete, 
reinforcement, and forming. 
 

)2)5.0(4(
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2

wwwwfff
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××+××−+××+
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×−××−××+××××=

γ  (16) 

 
In this equation different parameters are as follows: 

cC , sC , and fC : cost of concrete per cubic meter, cost of steel per kilogram, and cost of 

forming per square meter respectively;wH : total height of shear-wall; sfA  and swA : applied 

reinforcement in the flange and web of shear-wall respectively; wh : length of shear-wall 

web; 1m  and 2m : the number of longitudinal reinforcement of the flange and the web of 
shear-wall, respectively. 

The applied constraints are as follows: 
The plastic rotation of elements as a performance constraint: The moment-curvature 

of the elements are obtained after implementing a pushover analysis and then the plastic 
rotation of each element are calculated using as: 

 
( ) pyup L.φ−φ=θ

 (17) 

 
where pθ  is the plastic rotation of the element; uφ  represents the ultimate curvature of the 

element; yφ  is the yielding curvature and is defined as: 

 

w
y l

003.0=φ
 

(18) 

Finally, pL  is the probable length of plastic hinge and is determined by 

 

01≤−
θ
θ

=
PL

allp

p
ig

 
(19) 

 
In this equation, i=1, 2, 3 are for the performance levels of IO, LS, and CP respectively, 

and 
PL

allpθ  is the allowable plastic rotation for each performance level according to the 

FEMA-356 [15]. The allowable plastic rotations of the RC shear wall are 0.005, 0.010, and 
0.015 for these performances. 

Shear Stress constraint: The shear stress constraint is defined as follows: 
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014 ≤−=
nv

u

V

V
g

φ  
(20) 

 
In which, Vu is the induced shear force in the wall. vφ  is the shear resistance reduction 

factor, and its value is equal to 0.75; Vn is the nominal shear resistance of a shear wall, and it 
is defined as: 

 








 += ytccvn ffAV .'
6

1 ρ  (21) 

 
where cα  is equal to 1/6 when cf ' is in MPa; tρ  is the shear reinforcement ratio; Acv is the 

total area of the shear wall and can be stated as follows: 
 

wwcv ltA ×=  (22) 

 

Since in this research the value of shear force is more than cvc Af '
6
1

, based on ACI-

318-08, two shear reinforcement plain is required for the wall. 

Minimum Shear Reinforcement constraint: The constraint for tρ is defined as follows: 
 

01
min

3 ≥−=
t

tg
ρ
ρ

 
(23) 

 
This is a constraint which forces the shear reinforcement fulfills its minimum 

requirement. 
 

3.3 Pushover analysis 
In this study, FEMA 356 [15] requirements are considered for the static nonlinear analysis 
(pushover analysis). According to this code, the steps of implementing pushover analysis are 
as follows: 

The target displacement is determined using: 
 

g
T

SCCCC e
at 2

2

3210 4π
δ =

 
(24) 

 
where, 

C0 is a modification factor to relate the spectral displacement of an equivalent SDOF 
system to the roof displacement of the MDOF system, and here C0 is equal to 1.3.  

C1 is a modification factor to relate the expected maximum inelastic displacements to the 
calculated linear elastic response displacements; C1 is equal to 1.0 for this structure. 
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C2 is the modification factor to represent the effect of pinched hysteretic shape, stiffness 
degradation and strength deterioration on maximum displacement response for IO level and 
for this structure it is considered as 1.0. 

C3 is the modification factor to represent the increased displacements due to dynamic P-∆ 
effects; for buildings with positive post-yield stiffness, this is equal to 1.0.aS  is the spectral 

acceleration which in this paper are calculated for a type D soil according to FEMA 356 and 
it is calculated by: 
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(25) 

 
where XSS  and 1XS  are determined by: 

 

SaXS SFS =  (26) 

11 SFS vX =  (27) 

 
where for soil type D, the value of aF , vF , SS , and 1S  are 1.0, 1.5, 1.5, and 0.6, 

respectively. 
Also, ST  and 0T  are determined using Eqs. (28) and (29), and sB  and 1B  are 1.0 based 

of FEMA 356. Determining the spectral acceleration using the abovementioned parameters 
is depicted in Fig. 3. 

 

1

1

BS

BS
T

XS

sX
S =

 
(28) 

STT 2.00 =  (29) 

 
where g  is the gravity acceleration; and eT  represents the effective period of the structure 

and is determined using the following equation: 
 

e

i
ie K

K
TT =

 
(30) 

 
where, iT  represents period of the structure when the structure has not experienced any 
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nonlinearity; iK  is the lateral stiffness of the structure at the beginning of the pushover 

curve; and eK  is the elastic stiffness of the structure obtained from bilinear approximating 

the pushover curve based on FEMA 356 requirements. These parameters along with FEMA 
356 requirements are delineated in Fig. 4. 

 

 
Figure 4 Pushover curve and approximate bilinear behavior of structure based on FEMA 356 

requirements [15] 
 
 

4. NUMERICAL EXAMPLES 
 
To examine the proposed approach and formulation, in this section three RC shear walls are 
designed using PSO, HS, and PSOHS. Three examples are considered in this section: RC 
shear wall of a four-story, an eight-story, and a twelve-story frame. In all examples, the 
value of Wmax and Wmin in PSOHS are 1 and 0, respectively. The number of particles is 
taken as 20, and in HMS it is considered as 5. HMCR and PAR are 0.85 and 0.53 based on 
the study of Ref. [3]. In order to reduce the effect of random initialization, each problem is 
run twenty times independently, and statistical analysis is performed to explain the results. 
For the purpose of pushover analysis of RC shear walls, OPENSEES package is used. The 
optimization algorithms are coded in MATLAB, and thus the optimization code provides 
new sections; and then it is analyzed by OPENSEES to check the constraints. For design of 
RC shear walls, it is considered that the shear wall section can vary in each story; therefore, 
the number of selections is too large to be determined by try-and-error. Once a shear wall is 
constructed by the optimization algorithm, its period is determined by performing a modal 
analysis, and tδ  is calculated using the first mode period which is an acceptable 

approximate approach for determining tδ . In all examples, OPENSEES Uniaxial Material 

Concrete06 and Uniaxial Material Steel02 are utilized to model the shear walls. Mechanical 
properties of these materials are included in Table 3. The elements are modeled by 
dispBeamColumnInt which not only considers the effects of axial force, but also the effect of 
shear-bending interactions. In these examples, first, the structure is modeled in ETABS; then 
the forces on the shear walls are obtained. In the next step, the shear wall along with the 
forces is modeled in OPENSEES to design it by meta-heuristics. In this study, dead and live 
loads are taken as 600 kg/m2 and 200kg/m2, respectively. 
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Table 3: Material characteristics used in the analysis of numerical examples 

concrete 

Uniaxial Material 
Concrete06 

cf ' (MPa) 0cε  crf ' (MPa) crε  

-30 
-

0.0021 
2.78 0.00008 

Reinforcing steel 

Uniaxial Material Steel02 yf (MPa) E (MPa) 

400 200000 

 
4.1 Four-story RC shear wall 
The shear wall of a six-bay, four-story frame shown in Fig. 5 is considered as the first 
example to examine the proposed approach. Since each story can be constructed from 7653 
sections, the number of possible designs is 37653=2.56×103651; as a result, reaching to the 
design with minimum cost by a try and error method is impossible. Thus, in this paper, some 
meta-heuristics are employed to reach the optimal design. This example is designed by PSO, 
HS, and PSOHS to prove the efficacy of the improvements. 
 

 
Figure 5. Geometry of the six-bay four-story frame with RC shear wall 

 
Optimal design of four-story shear wall using HS, PSO, and PAOHS is presented in 

Table 4. It is observed in the table that the best result among these three algorithms is 
attributed to PSOHS with the value of 6658, while this value for HS and PSO is 7127 and 
7862 which are 7% and 18.1% greater than the value for PSOHS, respectively. The values of 
the constraints are presented in Table 5, and it is observed that all constraints are below 0; 
therefore, none of the constraints is violated. The convergence history of the best run and 
average of twenty independent runs are illustrated in Figs. (7) and (8). It can be concluded 
from these figures that PSOHS has a faster convergence, and optimal result is achievable in 
fewer iterations; therefore, it is practical when a nonlinear analysis are performed. 
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Figure 6. Convergence history of the best run of algorithms 

 

 

Figure 7. Convergence history of the average of runs 

 
From Table 5, it can be concluded that the active constraint is the minimum ratio of shear 

reinforcements. 
 

Table 4: Results of optimal design of four-story RC shear wall by different algorithms 

Algorithm Story tw(mm) tf(mm) bf(mm) Ssh(mm) ϕw(mm) ϕf(mm) nud nrl 
Cost 
($) 

HS 

1 200 1100 300 450 16 32 12 4 

7127 2 200 900 300 450 16 32 8 4 
3 200 600 300 450 16 32 4 4 
4 200 600 200 450 16 32 4 2 

PSO 

1 300 1000 500 450 16 36 10 8 

7862 
2 200 900 400 450 16 36 8 6 
3 200 600 200 450 16 32 4 2 
4 200 600 200 350 16 32 4 2 

PSOHS 

1 200 600 300 450 16 32 4 4 

6658 
2 200 600 300 450 16 32 4 4 
3 200 600 300 450 16 32 4 4 
4 200 600 300 450 16 32 4 4 
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Table 5. The value of constraints of the four-story RC shear wall designed by different 
algorithms 

Algorithm HS PSO PSOHS 

story 
constraint 

1 
constraint 

2 
constraint 

3 
constraint 

1 
constraint 

2 
constraint 

3 
constraint 

1 
constraint 

2 
constraint 

3 
1 -1.3 -0.6 -0.5 -1.3 -0.705 -0.327 -1.3 -0.65 -0.41 
2 -1.3 -0.64 -0.43 -1.3 -0.603 -0.495 -1.3 -0.69 -0.35 
3 -1.3 -0.72 -0.3 -1.3 -0.694 -0.342 -1.3 -0.76 -0.25 
4 -1.3 -0.85 -0.15 -1.3 -0.83 -0.165 -1.3 -0.87 -0.12 

 
4.2 Eight-story RC shear wall 
The shear wall of a six-bay eight-story frame shown in Fig. 9 is considered as the second 
example to examine the efficiency of the proposed approach. Since each story can be 
constructed from 7656 sections, the number of possible designs is 87653=2.23×106911; as a 
result, reaching to the design with minimum cost by a try-error method is impossible. Again, 
for this example, some meta-heuristics are applied to reach the optimal design. This example 
is optimized by PSO, HS, and PSOHS to prove the efficiency of the algorithms. 
 

 
Figure 8. Geometry of the six-bay, eight-story frame with RC shear wall 

 
Optimal design of four-story shear wall using HS, PSO, and PAOHS is presented in 

Table 6. It can be observed from this table that the best result among these three algorithms 
is attributed to PSOHS with the value of 14937, while this value for HS and PSO is 15481 
and 17032 which are 3.64% and 14.02% greater than the value for PSOHS, respectively. 
Also, the value of constraints are presented in Table 7, and it can be observed that all 
constraints are below 0; therefore, none of the constraints is violated. The convergence 
history of the best run and average of twenty independent runs are illustrated in Figs. 10 and 

Arc
hive

 of
 S

ID

www.SID.ir



A. Kaveh, M.H. Zakizadeh, A. Nasrollahi 
 

 

698 

11. It can be concluded from these figures that PSOHS has a faster convergence, and 
optimal result is achievable in fewer iterations; therefore, it is practical when nonlinear 
analyses are performed. 

 

 

Figure 9. Convergence histories of the best run of algorithms 

 

 

Figure 10. Convergence history of the average of runs 

 
Again, from Table 7, it can be concluded that the active constraint is the minimum ratio 

of shear reinforcements. 
 

Table 6: Geometry of the six-bay, eight-story frame with RC shear wall 
Algorithm Story tw(mm) tf(mm) bf(mm) Ssh(mm) ϕw(mm) ϕf(mm) nud nrl Cost ($) 

HS 

1 200 1200 500 400 16 32 12 6 

15481 

2 200 1100 400 450 16 32 12 6 

3 200 1100 400 450 16 32 10 6 

4 200 1100 400 450 16 32 10 6 

5 200 900 300 450 16 32 8 4 

6 200 900 300 450 16 32 8 4 

7 200 600 300 450 16 32 4 4 

8 200 600 300 450 16 32 4 4 

PSO 1 400 1100 700 450 16 36 14 12 17032 

Arc
hive

 of
 S

ID

www.SID.ir



PERFORMANCE-BASED OPTIMAL DESIGN OF RC SHEAR-WALLS UTILIZING PSO ... 
 

 

699

2 400 1100 500 400 16 36 12 6 

3 300 1000 300 350 16 32 10 4 

4 300 900 300 350 16 32 8 4 

5 300 900 300 300 16 32 8 4 

6 300 700 300 300 16 32 6 4 

7 200 700 300 300 16 32 6 4 

8 200 600 300 300 16 32 4 4 

PSOHS 

1 400 900 500 450 16 36 8 6 

14937 

2 200 600 500 450 16 36 4 6 

3 200 600 500 450 16 36 4 6 

4 200 600 500 450 16 36 4 6 

5 200 600 300 450 16 32 4 4 

6 200 600 200 450 16 32 4 2 

7 200 600 200 450 16 32 4 2 

8 200 600 200 450 16 32 4 2 

 
Table 7: The value of constraints of the eight-story RC shear wall designed by different 

algorithms 

Algorithm HS PSO PSOHS 

story 
constraint 

1 
constraint 

2 
constraint 

3 
constraint 

1 
constraint 

2 
constraint 

3 
constraint 

1 
constraint 

2 
constraint 

3 

1 -1.3 -0.582 -0.535 -1.3 -0.756 -0.255 -1.3 -0.791 -0.211 

2 -1.3 -0.594 -0.512 -1.3 -0.763 -0.246 -1.3 -0.593 -0.513 

3 -1.3 -0.618 -0.468 -1.3 -0.702 -0.33 -1.3 -0.617 -0.468 

4 -1.3 -0.653 -0.406 -1.3 -0.73 -0.29 -1.3 -0.653 -0.407 

٥ -1.3 -0.701 -0.332 -1.3 -0.767 -0.241 -1.3 -0.701 -0.333 

٦ -1.3 -0.76 -0.25 -1.3 -0.813 -0.184 -1.3 -0.76 -0.25 

٧ -1.3 -0.83 -0.165 -1.3 -0.802 -0.198 -1.3 -0.83 -0.165 

٨ -1.3 -0.912 -0.079 -1.3 -0.897 -0.094 -1.3 -0.912 -0.08 

 
4.3 Twelve-story RC shear wall 
The shear wall of a six-bay twelve-story frame shown in Fig. 12 is considered as the third 
example to examine the efficiency of the proposed approach. Since each story can be 
constructed from 7656 sections, the number of possible designs will be 127653=9.42×108258; 
as a result, reaching to the design with minimum cost by a try-error method is impossible. 
Again, for this example, some meta-heuristics are applied to reach the optimal design. This 
example is optimized by PSO, HS, and PSOHS to prove the efficacy of the algorithms. 
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Figure 11. Geometry of the six-bay twelve-story frame with RC shear wall 

 
Optimal design of a four-story shear wall using HS, PSO, and PAOHS is presented in 

Table 8. Similar to previous examples, it can be observed from the table that the best result 
among these three algorithms is attributed to PSOHS with the value of 24567, while this 
value for HS and PSO is 26747 and 28870 which are 8.87% and 17.51% greater than the 
value for PSOHS, respectively. Also, the value of constraints are presented in Table 9, and it 
can be seen that all constraints are below 0; therefore, none of the constraints are violated. 
The convergence history of the best run and average of twenty independent runs are 
illustrated in Figs. 13 and 14. From these figures it can be concluded that PSOHS has a 
faster convergence, and optimal result is achievable in fewer iterations; therefore, it is 
practical when nonlinear analyses are performed. 

 

 

Figure 12. Convergence history of the best run of algorithms 
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Figure 13. Convergence history of the average of runs 

 
Similar to previous examples, from Table 9 it can be concluded that the active constraint 

is the minimum ratio of shear reinforcements. 
 

Table 8: Geometry of the six-bay twelve-story frame with RC shear wall 
Algorithm Story tw(mm) tf(mm) bf(mm) Ssh(mm) ϕw(mm) ϕf(mm) nud nrl Cost ($) 

HS 

1 400 700 1200 450 16 32 10 24 

26747 

2 300 700 1000 450 16 32 8 18 

3 300 700 1000 450 16 32 8 18 

4 200 700 1000 450 16 32 8 16 

5 200 700 600 450 16 32 8 10 

6 200 600 600 450 16 32 4 8 

7 200 600 500 450 16 32 4 8 

8 200 600 400 450 16 32 4 6 

9 200 600 400 450 16 32 4 6 

10 200 600 400 450 16 32 4 6 

11 200 600 400 450 16 32 4 6 

12 200 600 300 450 16 32 4 4 

PSO 

1 400 900 1200 450 16 36 8 16 

28870 

2 400 900 1100 450 16 36 10 16 

3 400 800 1100 450 16 36 6 14 

4 400 600 800 450 16 36 4 12 

5 300 600 800 450 16 32 4 12 

6 300 600 800 400 16 32 4 12 

7 200 600 800 350 16 32 4 10 

8 200 600 600 350 16 32 4 8 

9 200 600 600 300 16 32 4 8 

10 200 600 500 300 16 32 4 6 
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11 200 600 500 300 16 32 4 6 

12 200 600 500 300 16 32 4 6 

PSOHS 

1 200 600 1200 450 16 36 4 16 

24567 

2 200 600 1200 450 16 36 4 16 

3 200 600 900 450 16 36 4 12 

4 200 600 800 450 16 36 4 10 

5 200 600 600 450 16 36 4 8 

6 200 600 500 450 16 36 4 6 

7 200 600 500 450 16 32 4 6 

8 200 600 300 450 16 32 4 4 

9 200 600 300 450 16 32 4 4 

10 200 600 300 450 16 32 4 4 

11 200 600 300 450 16 32 4 4 

12 200 600 300 450 16 32 4 4 

 
Table 9: The value of constraints of the twelve-story RC shear wall designed by different 

algorithms 

Algorithm HS PSO PSOHS 

Story 
constraint 

1 
constraint 

2 
constraint 

3 
constraint 

1 
constraint 

2 
constraint 

3 
constraint 

1 
constraint 

2 
constraint 

3 

1 -1.3 -0.745 -0.27 -1.3 -0.744 -0.271 -1.3 -0.539 -0.624 

2 -1.3 -0.664 -0.389 -1.3 -0.748 -0.266 -1.3 -0.545 -0.611 

3 -1.3 -0.673 -0.374 -1.3 -0.754 -0.258 -1.3 -0.557 -0.585 

4 -1.3 -0.529 -0.645 -1.3 -0.764 -0.245 -1.3 -0.575 -0.549 

5 -1.3 -0.556 -0.587 -1.3 -0.703 -0.329 -1.3 -0.599 -0.502 

6 -1.3 -0.589 -0.521 -1.3 -0.725 -0.297 -1.3 -0.629 -0.448 

7 -1.3 -0.628 -0.449 -1.3 -0.627 -0.451 -1.3 -0.664 -0.389 

8 -1.3 -0.673 -0.374 -1.3 -0.672 -0.376 -1.3 -0.705 -0.326 

9 -1.3 -0.726 -0.295 -1.3 -0.726 -0.296 -1.3 -0.753 -0.259 

10 -1.3 -0.784 -0.219 -1.3 -0.784 -0.22 -1.3 -0.805 -0.194 

11 -1.3 -0.851 -0.142 -1.3 -0.851 -0.142 -1.3 -0.865 -0.126 

12 -1.3 -0.924 -0.067 -1.3 -0.924 -0.068 -1.3 -0.932 -0.06 

 
 

5. CONCLUSION 
 
In this paper, performance based optimal design of RC shear walls was investigated using 
different meta-heuristic algorithms. One of the robust algorithms is PSO which has been 
utilized in many engineering problems. However, unbalanced exploration and exploitation 
reduces its robustness; moreover, there is not an appropriate mechanism to deal with 
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violated particles from side boundaries. Therefore, this paper followed two main purposes: 
first, to reach to performance based optimal design of RC shear walls using pushover 
analysis; second, examine the recently developed modified version of PSO which is called 
PSOHS. To show the efficiency of the PSOHS, the design of shear walls were performed by 
PSO, HS, and PSOHS, and results were compared. Results show that a linear varying inertia 
weight in PSO provides a balanced exploration and exploitation for the algorithm, and this 
improvement prevents PSO to be trapped in a local minimum or particles move far from the 
global minimum due to high velocity. In conclusion, PSOHS seems to be a suitable 
algorithm for performance based optimal design of shear walls, and it can be utilized in 
professional applications successfully. 
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