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ABSTRACT 
 

An exact formulation for computing the critical buckling load of semi-rigid steel frames 

with tapered columns will be obtained. The presented methodology is based on the precise 

solution of the governing differential equations for elastic buckling of the uniform and non-

uniform frames. These formulations also can be used for the tapered column with various 

support conditions. Moreover, the effect of tapered columns, with parabolic and quadratic 

functions for variation of the moment of inertia, flexibility of connections, and lateral 

support, such as bracing, on the equivalent buckling length factor of the frame will be 

studied parametrically as well as numerically. Comparing the findings with the available 

results indicates the accuracy, validity and capabilities of the proposed approach. 

 

Keywords: Stability analysis; tapered columns; semi-rigid connections; steel frames; 

equivalent buckling length factor; critical buckling load. 

 

 

1. INTRODUCTION 
 

Tapered or non-prismatic members have been extensively used in structural, mechanical and 

aeronautical engineering. The elastic, inelastic, fracture, and damage theories on the 

stability of structures were presented by Bažant and Cedolin [1]. Another famous book on 

the theory of elastic stability was written by Timoshenko and Gere [2]. The stability design 

of steel frames was investigated by Chen and Lui [3]. For the first time, Euler calculated 

accurately the column buckling load [4]. Stability analysis of tapered columns and 2D 

frames incorporating non-uniform members has been studied during the last century, and it 

still remains an important research topic. Closed-form buckling solutions for several special 

types of non-prismatic columns with simple boundary conditions are given by Gere and 

Carter [5]. In the field of analytical solutions, many investigations are based on the assumed 

stiffness distributions. Ermopoulos and Kounadis dealt with simple portal braced and un-

braced frames comprising tapered lattice columns by using a second-order polynomial 
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stiffness variation [6]. They found a closed-form buckling load via bifurcation analysis. 

Moreover, Raftoyiannis and Ermopoulos studied the effect of initial imperfections on the 

stability of tapered members [7]. In another event, Ermopoulos studied buckling length of 

framed compression members with semi-rigid connections [8].  

A general power series approach can be found in Refs. [9,10], where the expressions for 

stability functions of a general non-prismatic member are given. Another solution for a 

general stiffness distribution column, using Bessel functions, has been presented by Li 

[11,12]. In these works, the expression for describing the distribution of flexural stiffness is 

arbitrary. Coşkun and Atay used a variational iteration method (VIM) to obtain the buckling 

load of non-uniform columns under the constant axial loading [13]. They used exponential 

function and power law for variation of flexural rigidity. Based on the Wentzel-Kramers-

Brillouin (WKB) method, Darbandi et al. presented the closed-form solution for the 

buckling of variable section column under axial loading, recently[14].  

The other researchers have worked with the approximate techniques. O’Rourke and 

Zebrowski studied the buckling load of a non-uniform member by the finite difference 

method [15]. Similarly, Iremonger used a finite difference strategy to determine the 

buckling loads for tapered and stepped column [16]. For quick calculation of the critical 

load of tapered members and plane steel frames with tapered members, an approximate 

method was presented by Bazeos and Karabalis [17]. Li and Li used a generalized finite 

element in the buckling analysis of tapered lattice column [18]. More recently, Marques et 

al. developed a consistent buckling design procedure for taper columns based on the finite 

element method [19]. 

As it was mentioned by the researchers, the interest in obtaining more accurate and 

efficient results, using analytical or semi-analytical tools remains strong, even in the 

presence of some simplifying assumptions pertaining to geometry, loading or boundary 

conditions [20-24]. Based on this brief review, it can be seen that the comprehensive studies 

on the stability of non-prismatic column have been performed rather than non-uniform 

frames. Moreover, no attempt has been made for considering the joint flexibility and elastic 

bracing system in steel portal frames with tapered members, so far. The purpose of this 

study is to derive the exact expression, accounting for aforementioned parameters, for 

computing the critical buckling load of the frame. The outcomes presented here in can be 

readily used for stability design of the portal frame with tapered members. In fact, the 

critical buckling load and corresponding equivalent buckling length factor of semi-rigid 

portal frames will be calculated. Furthermore, the effect of tapered columns, flexibility of 

connections, and lateral support such as bracings on the stability of the frame will be 

investigated. 

 

 

2. STABILITY ANALYSIS 
 

It is intended to analysis the portal frames shown in Fig. 1. The frame in Fig. 1(a) has two 

pinned supports; while the frame in Fig. 1(b) is based on two fixed supports. Columns have 

both length lc, and moment of inertia is assumed to vary in the following form: 
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In this function Ii(xi) is the moment of inertia of the cross-section at a distance xi from the 

origin, as shown in Fig. 1, and Ic is the moment of inertia at a distance a from the origin. 

According to Table (1), the shape factor, n, is equal to 2 for tapered members with varying 

depth and constant cross-sectional area, such as tower and open-web sections, whereas for 

solid circular and square sections, with varying diameter and dimension along their axis, 

respectively, this factor equals to 4. It should be noted, for the uniform member, the shape 

factor n is equal to zero. The beam has length lb, and moment of inertia Ib. Each frame is 

subjected to two vertical concentrated loads, P1 and P3, on the centerline of columns. The 

beam is connected to columns via semi-rigid connections. It is assumed that both beam-to-

column connections, has rotational stiffness Kc. The lateral elastic support is modeled by a 

horizontal spring with axial stiffness Kb, which is located at the top of the right column. 

 

  

(a) (b) 
Figure 1. Geometry and sign convention of non-uniform frames with: (a) pinned supports, and 

(b) fixed supports 

 
Table 1: Various cross sections and their associated shape factors for linear tapers [5] 

Shape Shape factor (n) 
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Solid square section (Varying dimension, 

d) 
 

4 

Tower section (Constant areas 

concentrated near corners Varying 

dimension, d) 
 

2 

Open –web section (Constant dimensions 

b, tf Varying depth, d) 

 

2 

 

Within the limitations of the beam-column theory, the governing forth-order differential 

equations for the columns and the beam are given below: 
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The general solutions of Eq. (2) for n = 0, 2 and 4 are presented in Eqs. (3) up to (5), 

respectively. 
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(5) 

 

where Ai, Bi, Ci, and Di (i=1,2,3) are integration constants to be determined using 

boundary and kinematic conditions. These constants can be calculated based on Tables (2) 

and (3) for prismatic and non-prismatic columns, respectively.  

 
Table 2: Kinematic and boundary conditions of a simple frame with prismatic columns 

Pinned- supports Fixed- supports 

Boundary 

conditions 
Kinematic conditions 

Boundary 

conditions 
Kinematic conditions 
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Table 3: Kinematic and boundary conditions of a simple frame with non-prismatic columns 

Pinned- supports Fixed- supports 

Boundary 

conditions 
Kinematic conditions 

Boundary 

conditions 
Kinematic conditions 
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In practice, both columns in a simple frame have the same sectional properties (i.e. 

I(x1)=I(x3)), and mostly loaded by equal compression forces (i.e. P1≈P3). Accordingly, it is 

assumed that P1=P3=P and I1=I3 . At this stage, by employing the boundary and kinematic 

conditions, and also the coming non-dimensional parameters, 
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of dimensionless equations can be found, when the shape factor, n, is equal to 4: 
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with respect to the dimensionless constants 

 333322211111 ,,,,,,,/,,, DCBACBAhDDCBA hD /3 . It should be noted that Eqs. (6) 

and (7) belong to pinned and fixed supports, respectively. By setting the determination of last 

equations to zero, and subsequently, the critical buckling load of the non-uniform semi-rigid 

frames with shape factor n=4, will be obtained:  

 

)2,1(0]det[  iKi  (8) 

 

The matrices [Ki] (i=1,2) are given explicity in Appendix A (see Eqs. (A1) and (A2)). 

Similarly, the stability matrices when the shape factor, n, is equal to 2 will be derived. 

Subsequently, the critical buckling load of the mentioned frame with pinned and fixed bases 

can be found by setting the determination of the stability matrices equal to zero: 

 

)4,3(0]det[  iK i  (9) 

 

The matrices K3 and K4 are presented explicitly in Appendix A (see Eqs. (A3) and (A4)). 

Furthermore, the corresponding matrices, [Ki] (i=5,6), for the uniform frames with pinned 

and fixed supports, are given explicitly in Appendix A (see Eqs. (A5) and (A6)). 

Accordingly, the critical buckling load of the these frame, could be respectively obtained as 

fallows: 

 

det[ ] 0 ( 5,6) iK i  (10) 

 

By solving Eqs. (8) up to (10), the non-dimensional critical buckling load, ρcr , is 

obtained, and consequently, the following critical buckling load of the frame is computed: 
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Moreover, Eq. (11) leads to the equivalent buckling length factor, k, of the column, 

which has the next value: 

 

*
cr

k
P




 

(12) 

 

It should be mentioned that P
*

cr=Pcrl
2

c/EIm , and Im is the moment of inertia at the middle 

of the column (i.e. for x=a+0.5lc). It is reminded that, if one assume the limit values of ν 

and K
*

b , this method can be used for the single non-uniform column. These particular cases 

are given in Table (4). 

 
Table 4: Tapered column with limit value of ν and K

*
b and variant end boundary conditions 
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3. THE BEHAVIOR OF CONNECTIONS 
 

Commonly, the moment-rotation relationship describes the behavior of connections [3]. In 

the present investigation, it is assumed that the semi-rigid connections have a linear 

behavior. The basic equation for the linear model is defined as follows: 
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In this equation, M is the moment and Kc and θ are the rotational stiffness and rotation of 

the connection, respectively. The rotational stiffness of the connection, Kc, could be 

considered as either the initial stiffness or the secant connection stiffness. 

 

 

4. PARAMETRIC STUDY 
 

Solving numerically the buckling equations Eqs. (8) through (10), the dimensionless critical 

buckling load factor, ρcr, can be computed for the frame with non-uniform (n=4 and 2) and 

uniform (n=0) columns, respectively. This solution is valid for any desired combination of 

the defined non-dimensional parameters, namely the stiffness ratio ν, the dimensionless 

rotational stiffness of semi-rigid connections K
*

c, and the dimensionless axial stiffness of 

lateral elastic support K
*

b. The stiffness ratio ν varies up to 4, which is a reasonable range of 

beam-column characteristic properties for commonly designed steel frames. Concerning the 

rotational stiffness values of the connections )( *

cK , numerical results are presented for 

relatively low quantities )0.1,5.0,1.0( * cK , that correspond to bolted connections with 

low rigidity, as well as for higher ones ),10,5( * cK , that correspond to more rigid 

connections such as welded joints. Regarding the axial stiffness values of the lateral elastic 

support K
*

b, numerical responses are obtained for minimum value *( 0)bK   and relatively 

intermediate amounts *( 1, 10)bK  , that correspond to un-braced and semi-braced frames, 

respectively, as well as for maximum ones *( )bK   that correspond to fully-braced frames. 

It should be added, for tapered column, the taper ratio, r, varies in the range of 0 < r ≤ 1, 

where r = 1 denote a uniform member and if r → 0, the member would taper to a point at 

the base, which is only a theoretical limit and is not practical. 

 

4.1 Uniform section (n=0) 

The variation of the equivalent buckling length factor k , for the uniform frame with pinned 

supports, with respect to stiffness ratio ν for various values of the rotational stiffness K
*

c, 

and various amounts of the lateral support stiffness K
*

b, are plotted in Fig. 2. 

According to Fig. 2(a), in the case of the un-braced frame (i.e. 0* bK ), with pinned 

supports and ν→0, the equivalent buckling length factor tends to k→2, irrespective of the 

rotational stiffness K
*

c values. This case corresponds to a pinned-fixed sway column (see 

case (a) in Table (4)). Also, as the stiffness ratio ν→∞, the equivalent buckling length factor 

tends to k→∞ for all cases of K
*

c.  

For intermediate values of the stiffness ratio ν and low rotational stiffness amounts (i.e. 

K
*

c=0.1, 0.5 and 1) there is a substantial increase of the equivalent buckling length factor k , 

which is more pronounced when ν tends to low values. This effect is reversed in the case of 

high rotational stiffness quantities (i.e. K
*

c=5, 10 and ∞) as ν tends to high values. The same 

pattern pronounces also in the cases when a lateral support is present (i.e. 0* bK ), as 

shown in Figs. 2(b) up to 2(d). 

In addition, regardless of the rotational stiffness
*

cK quantities, when the stiffness ratio 
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tends to ν→0, the equivalent buckling length factor tends to k→1.854, 1.243 and 0.699 for 

K
*

b→1, 10 and ∞, respectively. The latter case corresponds to a pinned-fixed non-sway 

column (see case (e) in Table (4)). Also, for all cases of K
*

c when the stiffness ratio tends to 

ν→∞, the equivalent buckling length factor tends to k→4.339, 1.402 and 1.000 for K
*

b→1, 

10 and ∞, respectively. This last case (i.e. K
*

b→∞) corresponds to a pinned-pinned non-

sway column (see case (g) in Table (4)). 

In Fig. 3, the same plots as above are depicted for the frame with fixed supports. More 

specifically, in the case of the un-braced frame (i.e. K
*

b=0) with fixed supports and ν→0, 

the equivalent buckling length factor tends to k→1, irrespective of the rotational stiffness 

K
*

c values. This case corresponds to a fixed-fixed sway column (see case (b) in Table (4)). 

On the other hand, for ν→∞, the equivalent buckling length factor tends to k→2, also 

regardless of the K
*

c amounts. This case corresponds to a fixed-free sway column (see case 

(d) in Table (4)). 

For intermediate values of the stiffness ratio ν and low rotational stiffness amounts (i.e. 

K
*

c=0.1, 0.5 and 1) there is a significant increase of the equivalent buckling length factor k 

which is also more pronounced as ν tends to low values. The similar pattern appears also in 

the cases when an elastic bracing support is present (i.e. 0* bK ), as shown in Figs. 3(b) 

through 3(d). 

It should be noted that regardless of the rotational stiffness K
*

c values, whenever the 

stiffness ratio tends to ν→0, the buckling length factor tends to k→0.980, 0.843 and 0.500 

for K
*

b→1, 10 and ∞, respectively. The last case (i.e. K
*

b→∞) corresponds to a fixed-fixed 

non-sway column (see case (f) in Table (4)). On the other hand, for ν→∞, the equivalent 

buckling length factor tends to k→1.838, 1.237 and 0.700 for K
*

b→1, 10 and ∞, 

respectively. The latter case (i.e. K
*

b→∞) corresponding to a fixed-pinned non-sway column 

(see case (h) in Table (4)). 

 

  
(a) (b) 

Arc
hive

 of
 S

ID

www.SID.ir



STABILITY OF SEMI-RIGID PORTAL FRAMES WITH TAPERED COLUMNS AND... 

 

145 

  
(c) (d) 

Figure 2: Buckling length factor k versus stiffness ratio ν for pinned support frame with 

prismatic columns (n=0) and various values of K
*
c and K

*
b 

 

  
(a) (b) 

  
(c) (d) 

Figure 3: Buckling length factor k versus stiffness ratio ν for fixed support frame with prismatic 

columns (n=0) and various values of K
*
c and K

*
b 
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4.2 Tower and open-web section (n=2)  

In Fig. 4, the variation of the equivalent buckling length factor k , with respect to stiffness 

ratio ν for various quantities of the rotational stiffness K
*

c, and various values of the lateral 

support stiffness K
*

b, and r=1/2, are investigated for the non-uniform frame with pinned 

supports. 

From Fig. 4(a), more specifically, in the case of the un-braced frame (i.e. 0* bK ), with 

pinned supports and ν→0, the equivalent buckling length factor tends to k→1.816, 

regardless of the rotational stiffness K
*

c values. This case corresponds to a pinned-fixed 

sway column (see case (a) in Table (4)). Also, as the stiffness ratio ν→∞, the equivalent 

buckling length factor tends to k→∞ for all cases of K
*

c. However, for the low values of the 

rotational stiffness in the un-braced frame, the solutions are unacceptable [6]. 

For intermediate amounts of the stiffness ratio ν and low rotational stiffness values (i.e. 

K
*

c=0.1, 0.5 and 1) there is a considerable increase of the equivalent buckling length factor k 

, which is more pronounced when ν tends to low quantities. This effect is reversed in the 

case of high rotational stiffness values (i.e. K
*

c=5, 10 and ∞) as ν tends to high values. The 

same pattern pronounces also in the cases when a lateral support is present (i.e. 0* bK ), as 

shown in Figs. 4(b) up to 4(d). 

Moreover, regardless of the rotational stiffness
*

cK quantities, when the stiffness ratio 

tends to ν→0, the equivalent buckling length factor tends to k→1.810, 1.757 and 0.726 for 

K
*

b→1, 10 and ∞, respectively. This latter case corresponds to a pinned-fixed non-sway 

column (see case (e) in Table (4)). Also, for all cases of K
*

c when the stiffness ratio tends to 

ν→∞, the equivalent buckling length factor tends to k→na, 5.904 and 1.033 for K
*

b→1, 10 

and ∞, respectively. This last case (i.e. K
*

b→∞) corresponds to a pinned-pinned non-sway 

column (see case (g) in Table (4)). 

In Fig. 5, the same plots as above are presented for the frame with fixed supports. In the 

case of the un-braced frame (i.e. K
*

b=0) with fixed supports and ν→0, the equivalent 

buckling length factor tends to k→1.033, irrespective of the rotational stiffness K
*

c values. 

This case corresponds to a fixed-fixed sway column (see case (b) in Table (4)). On the other 

hand, for ν→∞, the equivalent buckling length factor tends to k→2.4, also regardless of the 

K
*

c amounts. This case corresponds to a fixed-free sway column (see case (d) in Table (4)). 

For intermediate values of the stiffness ratio ν and low rotational stiffness amounts (i.e. 

K
*

c=0.1, 0.5 and 1) there is a substantial increase of the equivalent buckling length factor k 

which is also more pronounced as ν tends to low values. The similar pattern appears also in 

the cases when an elastic bracing support is present (i.e. 0* bK ), as shown in Figs. 5(b) 

through 5(d). 

It should be noted that regardless of the rotational stiffness K
*

c values, whenever the 

stiffness ratio tends to ν→0, the buckling length factor tends to k→1.032, 1.021 and 0.521 

for K
*

b→1, 10 and ∞, respectively. The last case (i.e. K
*

b→∞) corresponds to a fixed-fixed 

non-sway column (see case (f) in Table (4)). On the other hand, for ν→∞, the equivalent 

buckling length factor tends to k→2.383, 2.247 and 0.726 for K
*

b→1, 10 and ∞, 

respectively. The latter case (i.e. K
*

b→∞) corresponding to a fixed-pinned non-sway column 

(see case (h) in Table (4)). 
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(a) (b) 

  
(c) (d) 

Figure 4. Buckling length factor k versus stiffness ratio ν for pinned support frame with non-

prismatic columns (n=2) and various values of K
*
c and K

*
b (r=1/2) 

 

  
(a) (b) 
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(c) (d) 

Figure 5. Buckling length factor k versus stiffness ratio ν for fixed support frame with non-

prismatic columns (n=2) and various values of K
*
c and K

*
b (r=1/2) 

 

4.3 Solid circular and square section (n=4)  

The variation of the equivalent buckling length factor k , for the non-uniform frame with 

pinned supports, with respect to stiffness ratio ν for various amounts of the rotational 

stiffness K
*

c, and various values of the lateral support stiffness K
*

b, and r=1/2, are depicted 

in Fig. 6. 

According to Fig. 6(a), in the case of the un-braced frame (i.e. 0* bK ), with pinned 

supports and ν→0, the equivalent buckling length factor tends to k→1.742, irrespective of 

the rotational stiffness K
*

c values. This case corresponds to a pinned-fixed sway column (see 

case (a) in Table (4)). Also, as the stiffness ratio ν→∞, the equivalent buckling length factor 

tends to k→∞ for all cases of K
*

c.  

For intermediate values of the stiffness ratio ν and low rotational stiffness amounts (i.e. 

K
*

c=0.1, 0.5 and 1) there is a substantial increase of the equivalent buckling length factor k , 

which is more pronounced when ν tends to low values. This effect is reversed in the case of 

high rotational stiffness quantities (i.e. K
*

c=5, 10 and ∞) as ν tends to high values. The same 

pattern pronounces also in the cases when an lateral support is present (i.e. 0* bK ), as 

shown in Figs. 6(b) up to 6(d). 

In addition, regardless of the rotational stiffness
*

cK quantities, when the stiffness ratio 

tends to ν→0, the equivalent buckling length factor tends to k→1.742, 1.740 and 0.787 for 

K
*

b→1, 10 and ∞, respectively. The latter case corresponds to a pinned-fixed non-sway 

column (see case (e) in Table (4)). Also, for all cases of K
*

c when the stiffness ratio tends to 

ν→∞, the equivalent buckling length factor tends to k→25.847, 8.855 and 1.125 for K
*

b→1, 

10 and ∞, respectively. This last case (i.e. K
*

b→∞) corresponds to a pinned-pinned non-

sway column (see case (g) in Table (4)). 

In Fig. 7, the same plots as above are depicted for the frame with fixed supports. More 

specifically, in the case of the un-braced frame (i.e. K
*

b=0) with fixed supports and ν→0, 

the equivalent buckling length factor tends to k→1.076, irrespective of the rotational 

stiffness K
*

c values. This case corresponds to a fixed-fixed sway column (see case (b) in 
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Table (4)). On the other hand, for ν→∞, the equivalent buckling length factor tends to 

k→3.027, also regardless of the K
*

c amounts. This case corresponds to a fixed-free sway 

column (see case (d) in Table (4)). 

For intermediate values of the stiffness ratio ν and low rotational stiffness amounts (i.e. 

K
*

c=0.1, 0.5 and 1) there is a significant increase of the equivalent buckling length factor k 

which is also more pronounced as ν tends to low values. The similar pattern appears also in 

the cases when an elastic bracing support is present (i.e. 0* bK ), as shown in Figs. 7(b) up 

to 7(d). 

It should be noticed that regardless of the rotational stiffness K
*

c values, whenever the 

stiffness ratio tends to ν→0, the buckling length factor tends to k→1.075, 1.070 and 0.563 

for K
*

b→1, 10 and ∞, respectively. The last case (i.e. K
*

b→∞) corresponds to a fixed-fixed 

non-sway column (see case (f) in Table (4)). On the other hand, for ν→∞, the equivalent 

buckling length factor tends to k→3.012, 2.882 and 0.786 for K
*

b→1, 10 and ∞, 

respectively. The latter case (i.e. K
*

b→∞) corresponding to a fixed-pinned non-sway column 

(see case (h) in Table (4)). 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Buckling length factor k versus stiffness ratio ν for pinned support frame with non-

prismatic columns (n=4) and various values of K
*
c and K

*
b (r=1/2) 
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(a) (b) 

  
(c) (d) 

Figure 7. Buckling length factor k versus stiffness ratio ν for fixed support frame with non-

prismatic columns (n=4) and various values of K
*
c and K

*
b (r=1/2) 

 

Comparing the Figs. 2 through 7, it is evident that the increase of the lateral stiffness K
*

b 

from low or zero values (corresponding to the un-braced frames) to infinity (corresponding 

to the fully-braced frames), will lead to a significant decrease of the equivalent buckling 

length factor. Consequently, the critical buckling load of the frame increases substantially. 

The similar pattern follows also in the presence of the rotational stiffness K
*

c. When the 

rotational stiffness K
*

c reduced from infinity (corresponding to the rigid connections) to very 

low or zero values (corresponding to the pinned connections), the buckling load of frame 

changed strongly. These patterns are more apparent when the shape factor increases. 

Furthermore, these effects are more pronounced in the case of the frame with pinned 

supports. 

From Figs. 2 through 7, it is obvious that the effect of the joint flexibility on the buckling 

load of the un-braced frame, especially for the shape factor n=4, is higher than the braced 

ones. In addition, a substantial reduction of the frames critical buckling load will be seen, 

which is caused by effects of the columns shape factor, lateral support, and the flexibility of 

joints. This reduction is declared for low values of the rotational stiffness as the stiffness 

ratio ν decreases and for high connection flexibility when ν increases. 
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5. NUMERICAL EXAMPLES 
 

To show the robustness of the proposed method, several numerical examples are analyzed in 

this section. The findings are compared with the other references. Moreover, the effects of 

taper ratio, shape factor of columns, connection flexibility, and axial stiffness of the lateral 

support on the critical buckling load of the non-uniform frames are investigated. 

 

5.1 Example 1 

The semi-rigid frame with based pinned supports and lateral elastic support Kb, as shown in 

Fig. 8, was studied recently by Mageirou [25]. The sections of the beam and column are 

IPE400 and HEB360, respectively. The rotational stiffness of semi-rigid connections is 

150kN/rad. The elasticity modulus of materials is also 210GPa. By setting ν=3.73454, 

K
*

c=0.06176 and K
*

b=0,11.02548,∞ and solving the stability non-dimensional matrix [K5], 

i.e. Eq. (A5), the critical buckling loads of the uniform semi-rigid frames are found and 

presented in Table (5). From Table (5), it is observed the proposed method for computing 

the critical buckling load has a high accuracy. 

 

 
Figure 8. Example 1: uniform frame with pinned supports and semi-rigid connections 

 
Table 5: Critical buckling load Pcr (kN) 

Kb(kN/m) Present study Mageirou [25] F.E.M. 

0 (un-braced) 14.766 14.77 14.77 

1000 (semi-braced) 5000.679 5000.01 5000.64 

∞ (fully-braced) 8980.670 8980.67 8980.67 

 

5.2 Example 2 

At this example, consider the tapered column with various boundary conditions (i.e. Pinned-

Pinned, Clamped-Pinned and Clamped-Free) and shape factor n=2. The equivalent buckling 

length factor k of mentioned columns arranged in Table (6). The authors' results show the 

validity and capability of the proposed method. It is reminded that the solutions of 

Pcr Pcr 

IPE400 

H
E

B
3

6
0

 

20.00 m 

1
0

.0
0

 m
 

Kc 

Kb 

Kc=150 kNm/rad 

E=210 GPa 

Kc 

H
E

B
3

6
0
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Ermopoulos are based on the slope-deflection method[26]. From Table (6), it is observed 

that the equivalent buckling length factor of frame increases, as the taper ratio decreases. In 

particular, when r=1, the presented outcomes for the three cases are identical to the well-

known Euler’s results. 

 
Table 6: Equivalent critical buckling load factor P

*
cr and equivalent buckling length factor k for 

a tapered column (n=2) with different boundary conditions 

Taper 

ratio (r) 
lc/a 

P-P C-P C-F 

P
*
cr=Pcrl

2
c/

EIm 

k P
*

cr=Pcrl
2
c/EIm k P

*
cr=Pcrl

2
c/EIm k 

1 0.0 
9.867 

- 

1.000 

- 

20.191 

- 

0.699 

- 

2.467 

- 

2.00 

- 

2/3 0.5 
9.645 

(9.62) 

1.012 

(1.012) 

19.637 

(19.64) 

0.709 

(0.709) 

2.030 

(2.01) 

2.205 

(2.211) 

1/2 1.0 
9.241 

(9.22) 

1.033 

(1.034) 

18.715 

(18.70) 

0.726 

(0.726) 

1.705 

(1.69) 

2.406 

(2.415) 

1/3 2.0 
8.427 

- 

1.082 

- 

16.816 

- 

0.766 

- 

1.274 

- 

2.783 

- 

1/4 3.0 
7.755 

- 

1.128 

- 

15.257 

- 

0.804 

- 

1.009 

- 

3.128 

- 

1/6 5.0 
6.784 

(6.77) 

1.206 

(1.207) 

13.022 

(13.02) 

0.872 

(0.871) 

0.705 

(0.68) 

3.741 

(3.784) 

Results in parenthesis are taken from Ermopoulos [26] 

 

5.3 Example 3 

Consider the semi-rigid portal frame shown in Fig. 9. The beam has a uniform built-up 

section consisting of four angles 45×5 connected by lacing bars. The non-prismatic columns 

consist of two symmetric tees, IPE270, connect by lacing bar. The elasticity modulus of the 

materials is 210GPa. The mentioned frame with rigid connection (i.e. K
*

c=∞) was 

investigated by Kounadis and Ermopoulos [6]. By bifurcation analysis, the dimensionless 

critical buckling load factor of the frame is founded as 1.141. In this paper, solving the 

stability determinant [K3] (i.e. Eq. (A3)) by setting r=5.25/15.75=1/3, 

ν=(20655×10)/(34900×15.75)=0.37577, K
*

c=∞ and K
*

b=0 will be computed ρcr=1.1409 and 

P
*

cr = 1.5518, which is very close to the value obtained by Kounadis and Ermopoulos [6]. 

For the corresponding frame, having uniform columns with a constant moment of inertia Im 

and utilizing of the unknown dimensionless constant matrix [K5] (i.e. Eq. (A5)), the 

dimensionless equivalent critical load is calculated as P
*

cr = 1.3451. Accordingly, the 

critical buckling load of the non-uniform frame is 15% higher than the corresponding 

uniform frame. In order to demonstrate the effect of the joint flexibility, the mentioned 

frame with K
*

c=3 is analyzed. In this case, the equivalent critical buckling load factor is 
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obtained as P
*

cr=0.7266. As a result, the flexibility of connection reduces the load-carrying 

capacity approximately 53% and 46% with respect to the similar rigid non-uniform and 

uniform frame, respectively. 

 

 
Figure 9. Example 3: Geometry and cross-sectional properties of un-braced semi-rigid portal 

frame with tapered columns 

 

In the next study, the corresponding non-uniform semi-rigid frame with fixed supports is 

investigated. By utilizing of the matrix [K4] (i.e. Eq. (A4)), the equivalent critical buckling 

load factor of this frame is evaluated as P
*

cr=2.4573. It is worth emphasizing that the rigidity 

of the bases, increase the load-carrying capacity more than 238% (i.e. ≈3.4 times more) with 

respect to the corresponding frame with pinned supports. 

 

5.4 Example 4 

In order to demonstrate the effect of the elastic bracing system, the braced non-uniform steel 

frames, as shown in Fig. 10, are studied. The structural modulus of elasticity is 210GPa. In 

addition, the rotational stiffness of semi-rigid beam-to-column connections, Kc , in both 

frames is assumed to be constant and equal to 2198700 kN.cm/rad. Accordingly, the 

dimensionless rotational stiffness K
*

c is obtained as below: 

3
3490021000

10002198700* 





b

bc
c

EI

lK
K  

Both bracing members consist of two L30×5 angle sections (with area Ad=2×2.78 cm
2
). 

As a result, the lateral stiffness, Kb, and the dimensionless lateral stiffness, K
*

b , are 

evaluated, in the below form: 
2 2

3 3

21000 2 2.78 1000
38.30

1450

d b
b

d

EA l
K

l

  
   kN/cm 

Pcr Pcr 

1
0

.5
0

m
 

1
.0

0
m

 

0
.5

0
m

 
0.45m 

0.4643

m 

A A 

B 

B 

10.00m 

0.15m 

B - B 

4L45×4 

0.50m 

A - A 

2IPE27 

0.15~0.45

m 

CL 

Kc Kc 
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31.38
3

1

2065521000

157530.38
23

2

3

* 












 r

EI

hK
K

c

b

b  

Solving the stability determinant [K3] (i.e. Eq. (A3)), with r=1/3, ν=0.37577 K
*

c=3 and 

K
*

b=38.31, ρcr=2.9612 will be computed. Consequently, using Eqs. (11) and (12), will lead 

to Pcr=14193 kN and k=1.046, respectively. The critical buckling load of the similar un-

braced non-uniform with semi-rigid connection is obtained as 1143kN. It is worth 

emphasizing that the bracing members increase the critical buckling load more than 1141% 

(i.e. ≈12.5 times more). Furthermore, for the corresponding braced frame, having uniform 

columns with a constant moment of inertia Im (r=1) and semi-rigid connections, the critical 

load is equal to 17080 kN, which is unpredictably greater than the same non-uniform frame 

by about 20%. 

 

 
Figure 10. Example 4:  Geometry and cross-sectional properties of braced non-uniform steel 

frames 

 

5.5 Example 5 

Finally, consider the semi-rigid portal frame as shown Fig. 11. The beam has a uniform 

square section, and the columns have a taper square section. In this case, the columns' 

moment of inertia varies according to the law given in Eq. (1), with n=4, whereas the beam 

has a constant moment of inertia. The elasticity modulus of the materials is 210GPa. 

Solving the stability determinant, [K1] (i.e. Eq. (A1)), and employing r=4/12=1/3, 

ν=(10
4
/12×12)/(30

4
/12×12)=1/81, K

*
c=3 and K

*
b=0 will lead to ρcr=4.3291. The non-

dimensional equivalent critical buckling load is obtained as P
*

cr = 4.6852. For the 

corresponding frame having uniform columns with a constant moment of inertia Im, by 

utilizing the matrix [K5] (i.e. Eq. (A5)), and setting ν=(20
4
/12×12)/(30

4
/12×8)=8/27, K

*
c=3 

and K
*

b=0, the dimensionless equivalent critical buckling load is calculated as P
*

cr=7.5855. 

Accordingly, the load-carrying capacity of the semi-rigid frame with taper square columns is 

smaller than that of the corresponding semi-rigid frame with uniform square columns by 

about 38%. 

 

Pcr Pcr 
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2
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Figure 11. Example 5: Geometry and cross-sectional properties of un-braced semi-rigid portal 

frame with square tapered columns 

 

 

6. CONCLUSIONS 
 

This paper was devoted to the stability analysis of a general portal frame. For the first time, 

a closed-form solution for stability analysis of a semi-rigid frame with non-uniform column 

and elastic bracing was obtained. The proposed formulation can compute the "exact" critical 

load, and corresponding equivalent buckling length of non-uniform frames with semi-rigid 

connections and elastic bracing system. Moreover, the presented expressions can be used for 

the non-prismatic column with various end boundary conditions. Parametric studies for 

simple non-uniform frames reveal the effect of tapered members, flexibility of joint, and 

elastic bracing on their buckling load. Comparing the outcomes with the previous published 

results shows the accuracy, validity and capabilities of the proposed approach. According to 

all the findings in this study, including parametric and numerical solution, the following 

points are concluded: 

1. The combined effect of the shape factor, taper ratio, elastic bracing system, and joint 

flexibility on the critical buckling load and corresponding equivalent buckling length factor 

of portal steel frames is very significant. As a result, these effects should be considered in 

design of such structures. 

2. The connection flexibility will reduce critical buckling load of the frame. 

Consequently, it increases the corresponding equivalent buckling length factor. These 

effects are similar to the elastic bracing system. 

3. As the taper ratio decreases, the equivalent critical buckling load factor decreases, 

while the corresponding equivalent buckling length factor as well as critical buckling load 

increases. 

4. The equivalent buckling length factor of the non-uniform portal frames will increase, 

when the shape factor as well as stiffness ratio increases. For the un-braced frames with 

pinned supports, this effect is even more pronounced.   
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5. In some cases, the critical buckling load of non-uniform frames is lesser than the 

corresponding frame with uniform columns. 

 

 

7. APPENDIX A 
 

The unknown constants matrixes, K1 and K2, for the fixed and pinned supports' frame with 

shape factor n = 4, respectively, are defined below: 
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The unknown constants matrixes, K3 and K4, for the fixed and pinned supports' frame 

with shape factor n = 2, respectively, have the next values: 
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The following parameters are used in the last matrices: 
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The unknown constants matrixes, K5 and K6, for the fixed and pinned supports' frame 

with shape factor n = 0, respectively are defined by the next relationships: 
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