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ABSTRACT 
 

Quartic B-spline time integration method has been recently proposed for solving linear 

problems in structural dynamics. This paper developed this method to nonlinear dynamic 

analysis of single-degree-of-freedom (SDOF) systems under exploding loads. Using quartic 

B-spline basis function, this method gained second order of acceleration at each time-step. 

Thus it benefits from high accuracy compared to the methods in the literature. In this 

research, in order to applying the iterative process in the procedure, firstly, a series of 

standard formulas were derived from previous formulation. Then the Newton-Raphson 

iterative method used to develop new formulation for solving nonlinear dynamic problems. 

Finally, for the new scheme, a simple step-by-step algorithm is implemented and presented 

to calculate dynamic response of SDOF systems. The validity and effectiveness of the 

proposed method is demonstrated with two examples. The results were compared with those 

from the famous numerical method. The comparison shows that the proposed method is a 

fast and simple procedure with trivial computational effort. 

 

Keywords: Quartic B-spline; time integration; nonlinear dynamic analysis; SDOF; blast 

load; explosion. 

 

 

1. INTRODUCTION 
 

Due to the threat from such extreme loading conditions, efforts have been made during the 

past three decades to develop methods of structural analysis and design to resist blast loads. 

Research has been undertaken over the past half a century on the modeling of blast pressure 

on objects and structures [1-4]. The analysis and design of structures subjected to blast loads 

require a detailed understanding of blast phenomena and the dynamic response of various 

structural elements. Some paper presents a comprehensive overview of the effects of 

explosion on structures. In Reference [5], an explanation of the nature of explosions and the 
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mechanism of blast waves in free air is given. This paper also introduces different methods 

to estimate blast loads and structural response. 

In structural dynamics, direct time integration algorithms are often used to obtain the 

solution of temporally discretized equations of motion at selected time-steps. Various time 

integration algorithms have been developed in the time domain using different methods. 

Integration algorithms are widely used for solving equation of motion so that dynamic 

behaviors of the systems under a specific loading can be obtained. Numerous time 

integration algorithms have been proposed, including the Newmark family of integration 

algorithms [6], Wilson method [7], and Hilber-Hughes-Taylor  -method [8].  

Integration algorithms can be classified as either explicit or implicit. An integration 

algorithm is explicit if the displacements for the next time-step can be determined from the 

accelerations, velocities, and displacements at the current and previous time-steps, otherwise 

it is implicit. [9–14]. Meanwhile, integration algorithms are classified into two categories; 

conditionally and unconditionally stable. Conditionally stable algorithms require that a time-

step be taken which is less than a constant timeless than the smallest period of the structure. 

In unconditionally stable methods, instability never happens, even if a long time-step is 

chosen. Generally explicit algorithms are conditionally stable while most implicit methods 

are unconditionally stable. This method is subject to both phase and amplitude errors 

depending on the time-step used.  

The most significant advantage of explicit methods is that it is unnecessary to solve a 

system of equations or to involve any iterative procedure in each time step and less storage 

is required than for implicit methods [11]. This also leads to an easy implementation of 

explicit methods. Almost all of the explicit time integration schemes are conditionally stable 

and for a few of them with unconditional stability, the consistency is conditional, it is the 

major disadvantage of explicit methods. Consequently, a very small time step and thus a 

very large number of time steps may be required in a time-history analysis. This may not be 

a disadvantage since the use of a very small time step can easily overcome the difficulty 

caused by the linearization errors for nonlinear systems. In addition, explicit algorithms are 

very efficient for shock response and wave propagation problems in which the contribution 

of intermediate and high frequency structural modes to the response is important. The 

central difference method and explicit Runge-Kutta method are the very commonly used 

explicit methods. 

Application of cubic and quartic B-spline functions for the numerical solution of linear 

dynamic systems has been presented by Rostami and Shojaee in a series of papers [15-17]. 

Implementation of quartic B-spline for the numerical solution of dynamic systems has been 

done in Reference [17]. The proposed method has appropriate convergence, accuracy and 

low time consumption. Accuracy and stability analysis has been done profoundly in that 

paper. This time integration method benefits from a high order accuracy compared to the 

methods in the literatures. Application of cubic spline on large deformation analysis of 

structures has been present in research paper [18].  

This paper is organized as follows. In the next section, we have a review of explosion and 

blast phenomenon. Section 3 is allocated to a brief review of quartic B-spline method in 

structural dynamic analysis. Section 4 is allotted to derivation of standard form of formulas 

from previous formulation. Section 5 is assigned to develop algorithm for nonlinear dynamic 

analysis. Finally a step-by-step algorithm of the proposed method has been introduced at the 
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end of this section. In section 6 the validity of this proposed method is illustrated with two 

examples. 

 

 

2. REVIEW OF EXPLOSIONS AND BLAST PHENOMENON 
 

An explosion is defined as a large-scale, rapid and sudden release of energy. Explosions can 

be categorized on the basis of their nature as physical, nuclear or chemical events. In 

physical explosions, energy may be released from the catastrophic failure of a cylinder of 

compressed gas, volcanic eruptions or even mixing of two liquids at different temperatures. 

Explosive materials can be classified according to their physical state as solids, liquids or 

gases. Solid explosives are mainly high explosives for which blast effects are best known. 

They can also be classified on the basis of their sensitivity to ignition as secondary or 

primary explosive. The latter is one that can be easily detonated by simple ignition from a 

spark, flame or impact. Materials such as mercury fulminate and lead azide are primary 

explosives. Secondary explosives when detonated create blast (shock) waves which can 

result in widespread damage to the surroundings. Examples include trinitrotoluene (TNT) 

and ANFO [5,19].  

The detonation of a condensed high explosive generates hot gases under pressure up to 

300 kilo bar and a temperature of about 3000-4000C°. The hot gas expands forcing out the 

volume it occupies. As a consequence, a layer of compressed air (blast wave) forms in front 

of this gas volume containing most of the energy released by the explosion. Blast wave 

instantaneously increases to a value of pressure above the ambient atmospheric pressure. 

This is referred to as the side-on overpressure that decays as the shock wave expands 

outward from the explosion source. After a short time, the pressure behind the front may 

drop below the ambient pressure (see Fig. 1). During such a negative phase, a partial 

vacuum is created and air is sucked in. This is also accompanied by high suction winds that 

carry the debris for long distances away from the explosion source [5]. 

 

 
Figure 1. Blast wave propagation 

 

2.1 Explosive air blast loading 

The threat for a conventional bomb is defined by two equally important elements, the bomb 

size, or charge weight W, and the stand-off distance R between the blast source and the 
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target. The observed characteristics of air blast waves are found to be affected by the 

physical properties of the explosion source. Fig. 2 shows a typical blast pressure profile. At 

the arrival time At , following the explosion, pressure at that position suddenly increases to a 

peak value of over pressure, soP , over the ambient pressure, oP . The pressure then decays 

to ambient level at time, then decays further to an under pressure 
soP   (creating a partial 

vacuum) before eventually returning to ambient conditions at time d dt t  the quantity soP  

is usually referred to as the peak side-on overpressure, incident peak overpressure or merely 

peak overpressure [20]. The incident peak over pressures soP  are amplified by a reflection 

factor as the shock wave encounters an object or structure in its path. Throughout the 

pressure-time profile, two main phases can be observed; portion above ambient is called 

positive phase of duration dt , while that below ambient is called negative phase of duration, 

dt  . The negative phase is of a longer duration and a lower intensity than the positive 

duration. As the stand-off distance increases, the duration of the positive-phase blast wave 

increases resulting in a lower-amplitude, longer-duration shock pulse. Charges situated 

extremely close to a target structure impose a highly impulsive, high intensity pressure load 

over a localized region of the structure; charges situated further away produce a lower-

intensity, longer-duration uniform pressure distribution over the entire structure. Eventually, 

the entire structure is engulfed in the shock wave, with reflection and diffraction effects 

creating focusing and shadow zones in a complex pattern around the structure. During the 

negative phase, the weakened structure may be subjected to impact by debris that may cause 

additional damage [5]. 

 

 
Figure 2. Blast wave pressure – Time history 

 

2.2 Blast wave scaling laws 

All blast parameters are primarily dependent on the amount of energy released by a 

detonation in the form of a blast wave and the distance from the explosion. A universal 

normalized description of the blast effects can be given by scaling distance relative to 
1/3

0( / )E P  and scaling pressure relative to 0P , where E is the energy release (kJ) and 0P  the 
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ambient pressure (typically 100 2/KN m ). For convenience, however, it is general practice to 

express the basic explosive input or charge weight W as an equivalent mass of TNT. Results 

are then given as a function of the dimensional distance parameter (scaled distance) 
1/3/Z R W , where R is the actual effective distance from the explosion. W is generally 

expressed in kilograms. Scaling laws provide parametric correlations between a particular 

explosion and a standard charge of the same substance. 

 

2.3 Prediction of blast pressure 

Blast wave parameters for conventional high explosive materials have been the focus of a 

number of studies during the 1950’s and 1960’s. Estimations of peak overpressure due to 

spherical blast based on scaled distance 1/3/Z R W  were introduced by Brode in 1995 [1] 

as: 

 

2 3

3

0.975 1.455 5.85
0.019   (0.1 10  )

6.7
1   ( 10 )

SO SO

SO SO

P P bar
Z Z Z

P P bar
Z

     

  
 

(1) 

 

Henrych in 1979 [2] introduced the relations same as Brode formulas as:  

 

2 3 4

2 3

2 3

14.072 5.54 0.375 0.00625
   (0.05 0.3)

6.194 0.326 2.132
   (0.3 1)

0.662 4.05 3.288
   (1 10)

SO

SO

SO

P Z
Z Z Z Z

P Z
Z Z Z

P Z
Z Z Z

     

    

    
 

(2) 

 

Brad relations had good adaptation with experimental results for intermediate distances 

away from the source of explosion. While the Henrych formulas had good adaptation with 

experimental results for nearly distances of the source of explosion. It is recommended that 

for near distance ( 0.5Z  ) we use Henrych relations and for far distance ( 0.5Z  ) use Brad 

results. 

Newmark and Hansen in 1961 [21] introduced a relationship to calculate the maximum 

blast overpressure, soP , in bars, for a high explosive charge detonates at the ground surface as: 

 
1

2
3 3

6784 93 ( )SO

W W
P

R R
 

 
(3) 

 

Another expression of the peak overpressure in kPa is introduced by Mills in 1987 [22], 

in which W is expressed as the equivalent charge weight in kilograms of TNT, and Z is the 

scaled distance: 

 

Arc
hive

 of
 S

ID

www.SID.ir



M. Amini, S. Shojaee and S. Rostami 

 

 

188 

3 2

1772 114 108
 SOP

Z Z Z
  

 
(4) 

 

 

3. REVIEW OF QUARTIC B-SPLINE INTEGRATION METHOD 
 

Quartic B-spline is an explicit time integration method for structural dynamics which has 

been proposed by Rostami et.al in a research paper [17]. In that paper by use of periodic 

quartic B-spline interpolation polynomial function, the authors proceeded to solve the 

differential equation of motion governing structural systems. In the proposed approach, a 

straightforward formulation was derived in a fluent manner from the approximation of the 

response of the system with B-spline basis. Because of using the quartic function, the system 

acceleration is approximated with a parabolic function. In order to access some 

comprehensive and exhaustive content about this method, see Reference [17]. 

Here the complete step-by-step algorithm of this proposed method for dynamic analysis 

of SDOF systems is given in Table 1. 

 
Table 1: Traditional Quartic B-spline step-by-step time integration algorithm; linear systems 

1. Initial calculation 

1.1. Determine stiffness k, mass m, and damping ratio   of the system. 

1.2. Specify the force values applied to the system in each time instant iF .  

1.3. Determine initial value of displacement 0u  and velocity 
0u . Then determine the initial 

acceleration using relation below: 

20
0 0 0( 2 )

F
u u u

m
   

 
1.4. Select appropriate time-step ( criticalt t   ) and calculate constant parameters , ,   and 

  as 
2 2 2

2 2

2 2

2 2

1 1 11
             

2 3 24 2 24

1 11 1
                   where    

2 24 2 3 24

t t t t

k

t t t t m

   
 

   
  

   
        

      

   
         

        

1.5. Using the below relations, first determine 0F 
 unknown value and then obtain 

0u . 

22 1 0 0
0 0 0 0

( ) 4 ( ) 3 ( ) ( )
( )       ( 2 )

2

F t F t F t F t
F t u u u

t m
 

  
     

  
1.6. Using the below terms determine the four unknown coefficients ( 4 ,C  3,C  2C   and 1C  ). 

2 2 2 3 2

0 0
4 0 0

11 3 11 11 ( )
(1 ) ( )

12 2 6 4 12

t t t t u t F t
C u u

m

 


    
     

 
2 2 2 3 2

0 0
3 0 0

( )
(1 ) ( )

12 2 6 12 12

t t t t u t F t
C u u

m

 


    
     

 
2 2 2 3 2

0 0
2 0 0

( )
(1 ) ( )

12 2 6 12 12

t t t t u t F t
C u u

m

 


    
     
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2 2 2 3 2

0 0
1 0 0

11 3 11 11 ( )
(1 ) ( )

12 2 6 4 12

t t t t u t F t
C u u

m

 


    
     

 

 

2. For each time-step ( 0 1, , ...,i n ) 

2.1. Calculate displacement, velocity and acceleration simultaneously, by 

   4 1 3 2

1 11
( )

24 24
i i i i iu t C C C C      

 

   1 4 2 3

1 1
( )

6 2
i i i i iu t C C C C

t t
      

   

 4 3 2 12

1
( )

2
i i i i iu t C C C C

t
      

  

   1 4 3 23 3

1 3
( )i i i i iu t C C C C

t t
      

   

2.2. Calculate unknown coefficients jC  from 0j   to ( 1)n  by 

1
3 2 1

1 ( )
 i

i i i i

F t
C C C C

m
  




  

 
    

   

 

 

4. ALGORITHEM IN STANDARD FORM 
 

In order to enable the algorithm to solve the nonlinear problems it is necessary to, first, convert 

previous formulation to a standard form. For this purpose, it is necessary to solve equations 

below in order to obtain the 4iC   to iC . These equations are derived from Table 1. 

 

   4 1 3 2

1 11
( )

24 24
i i i i iu t C C C C      

 
(5.a) 

   1 4 2 3

1 1
( )

6 2
i i i i iu t C C C C

t t
      

   
(5.b) 

 4 3 2 12

1
( )

2
i i i i iu t C C C C

t
      

  
(5.c) 

   1 4 3 23 3

1 3
( )i i i i iu t C C C C

t t
      

   
(5.d) 

 

Now, having Eq. (5) in hand, it is possible to solve the system equations and write this 

four unknowns in terms of displacement, velocity, acceleration and variation of acceleration 

as 

 
2 3

1

3 11

2 12 4
i i i i i

t t t
C u u u u

  
   

 

(6.a) 

2 3

2
2 12 12

i i i i i

t t t
C u u u u

  
   

 

(6.b) 
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2 3

3
2 12 12

i i i i i

t t t
C u u u u

  
   

 

(6.c) 

2 3

4

3 11

2 12 4
i i i i i

t t t
C u u u u

  
   

 
(6.d) 

 

Setting Eq. (6.a) at the current time ( )t  equal to the Eq. (6.b) at the next time ( )t t  , we 

will get to 

 
2 3 2 3

1 1 1 1 1

3 11

2 12 4 2 12 12
i i i i i i i i i

t t t t t t
C u u u u u u u u    

     
       

 
(7) 

 

Then, if we arrange the above equation in terms of 1iu  , it can be expressed by 

 
2 3

1 1 1 1(3 ) (11 ) (3 )
2 12 12

i i i i i i i i

t t t
u u u u u u u u   

  
      

 

(8) 

 

Similarly, if we do this process for Eq. (6.b) at the current time ( )t  and Eq. (6.c) at the 

next time ( )t t  , we will get to an equation. Then, if we arrange the outcome in terms of 

1iu  , we will have 

 
2

1 1 1 1

2
( ) ( ) ( )

6 6
i i i i i i i i

t t
u u u u u u u u

t
   

 
       

  

(9) 

 

Finally, if we follow the above process for both Eq. (6.c) and (6.d), and then write the 

resulted equation in terms of 1iu  , we get to 

 

1 1 1 12 3

1 2 4
( 11 ) ( 3 ) ( )

3 3

i
i i i i i i i

u
u u u u u u u

t t t
   


      

    
(10) 

 

The aim is to remove the term 1iu   from Eq. (8) and (9). Therefore, substituting Eq. (10) 

in Eq. (8) and (9), it is possible to rewrite these equations in the following forms, 

respectively. 

 
2 3

1 1 1(5 3 ) (17 7 )
2 12 3

i i i i i i i

t t t
u u u u u u u  

  
     

 

(11) 

2

1 1 1

4
( ) ( 2 )

3 3 9 18

i
i i i i i i

u t t
u u u u u u

t
  

  
     

  

(12) 
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Replacing Eq. (12) with 1iu   in Eq. (13) will result to 

 
2 3

1 1(5 )
12 12

i i i i i i

t t
u u tu u u u 

 
    

 

(13) 

 

It can be seen that the only term with i+1 index is u  in the right hand of the above 

equation. Now, if we use the above equation instead of 1iu   in Eq. (12), this equation will 

appear in the following form after simplification. Here, also the only term with i+1 index is 

u  in the right hand. 

 
2

1 1(2 )
3 6

i i i i i

t t
u u u u u 

 
   

 

(14) 

 

Replacing Eq. (13) and (14) with 1iu   and 1iu  , in Eq. (10) respectively, this equation will 

appear in the following shape after simplification. In this equation also the only term with 

i+1 index is u . 

 

1 1

2
( )i i i iu u u u

t
   

  
(15) 

 

From Eqs. (13) to (15) it is understood that response values including displacement, 

velocity, acceleration and variation of acceleration at the end of each time-step are 

dependent on those values in the end of previous time-step. So this new formulation of the 

proposed method is an implicit scheme. 

Now, having equations (13), (14) and (15) we can rewrite this equation in terms of iu  

as follows: 

 
2 2 3

2 12 12
i i i i i

t t t
u tu u u u

  
      

 
(16) 

2

3 6
i i i i

t t
u tu u u

 
     

 

(17) 

2
2i i iu u u

t
   

  
(18) 

 

By sort of Eq. (16) in terms of iu  we have: 

 

2

12 12
6i i i i iu u u u tu

t t
      

   
(19) 
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In the above equation the only incremental term is iu . Replacing Eq. (19) in Eq. (17), 

after simplifying we will have a new equation as below 

 
24

4
6

i i i i i

t
u u tu u u

t


      

  
(20) 

 

Substituting Eq. (19) and (20) into the incremental equation of motion; 

 

i i i im u c u k u p      
 

(21) 

 

After simplifying gives 

 

  2

2 2

4 12 12
4 6

6
i i i i i

c m m c
k u p c u m c t u m t t u

t t t

      
                   
          

(22) 

 

It is possible to rewrite Eq. (22) as, 

 

ˆ ˆ
i ik u p  

 
(23) 

 

where 

 

2

4 12ˆ c m
k k

t t
  

   
(24) 

 

and 

 

  2

2

12
ˆ 4 6

6
i i i i i

m c
p p c u m c t u m t t u

t

   
              

     

(25) 

 

In order to write a computer code, the complete algorithm used in this proposed method 

is summarized in Table 2. 

If we compare this algorithm with the same algorithm presented for quartic B-spline 

method in Ref. [17] it will be recognized that the new procedure is summarized and much 

simpler. 

 
Table 2: Generalized Quartic B-spline step-by-step time integration algorithm; linear systems 

1. Initial calculation 

1.1. Determine stiffness k, mass m, and damping ratio ξ of the system. And select 

appropriate time-step .t  

1.2. Determine the force value applied to the system in each time instant and initial value of 

displacement 0u  and velocity 
0u . 

Arc
hive

 of
 S

ID

www.SID.ir



INELASTIC DYNAMIC ANALYSIS OF STRUCTURES UNDER BLAST LOADS USING... 

 

 

193 

1.3. 0 0 0 0

1
( )u F cu ku

m
     

1.4.  0 2 1 0

1
4 3

2
F F F F

t
    


  

1.5.  0 0 0 0

1
u F cu ku

m
    

1.6. 2

4 12ˆ c m
k k

t t
  

 
 

1.7. 
212

4 ,      6 ,      
6

m c
c m c t m t t

t
          


 

 

2. For each time step ( 0 1 , , ...,i n ) 

2.1. ˆ
i i i i ip p u u u          

2.2. ˆˆ /i iu p k    

2.3. 
24

4
6

i i i i i

t
u u tu u u

t


     


 

2.4. 2

12 12
6i i i i iu u u u tu

t t
     

 
 

2.5. 
2

i i iu u u
t

   


 

2.6. 1 1 1 1,      ,       ,       i i i i i i i i i i i iu u u u u u u u u u u u            

 

 

5. DEVELOPING THE ALGORITHM FOR NONLINEAR SYSTEMS 
 

In this section, the standard form of quartic B-spline method described in previous section 

for linear systems is developed for nonlinear systems. 

Incremental equilibrium equation for a nonlinear system given as 

 

i i i im u c u fs p     
 

(26) 

 

The incremental resisting force is 

 

sec( ) ( )i i ifs k u  
 

(27) 

 

where the secant stiffness sec( )ik , shown in Fig. 3, cannot be determined because 1iu  is 

not known. If we make the assumption that over a small time step t , the secant stiffness 

sec( )ik , could be approximated by 

 

sec( ) ( )i i ifs k u  
 

(28) 
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Figure 3. Secant and tangent stiffness 

 

The similarity between the Eq. (26) and the corresponding equation for linear systems, 

Eq. (21), suggests that the no iterative formulation of quartic B-spline method presented 

earlier for linear systems may also be used in the analysis of nonlinear response. All that 

needs to be done is to replace k  in Eq. (24) by the tangent stiffness ik  to be evaluated at 

the beginning of each time step. This change implies that step 6.1 of Table 2 should follow 

step 2.1 For nonlinear system the 1iu   term from 1i i iu u u     would give different 

values of 1iu  and the latter value is preferable because it satisfies equilibrium at time 1i  . 

This procedure with a constant time step t  can lead to unacceptably inaccurate results. 

Significant errors arise for two reasons: (1) the tangent stiffness was used instead of the 

secant stiffness, and (2) use of a constant time step delays detection of the transitions in the 

force-deformation relationship [9]. 

First, we consider the second source of error, illustrated by the force-deformation relation 

of Fig. (4a). Suppose that the displacement at time i, the beginning of a time step, is iu  and 

the velocity iu  is positive (i.e., the displacement is increasing); this is shown by point a. 

Application of the previously described numerical procedure for the time step results in 

displacement 1iu   and velocity 1iu   at time 1i  ; this is shown by point b. if 1iu  is 

negative, then at some point b   during the time step, the velocity become zero, changed 

sign, and the displacement started decreasing. In the numerical procedure, if we do not 

bother to locate b  , continue with the computations by starting the next time step at point b , 

can use the tangent stiffness associated with the unloading branch of the force-deformation 

diagram, this procedure locates the point c at the end of the next time step with displacement 

1iu   and negative velocity. On the other hand, if the time instant associated with b   (when 

the velocity actually became zero) could be determine, computations for the next time step 

would start with the state of the system at b   and determine the displacement and velocity at 

the end of the time step, identified as c  . Not locating b   has the effect of overshooting to b 

and not following the exact path on the force-deformation diagram. This departure from the 
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exact path would occur at each reversal of velocity, leading to errors in the numerical 

results. A similar problem arises at sharp corners in the force-deformation relationship, as in 

elasto-plastic systems [9]. 

 

 
Figure 4. Probable errors in numerical method 

 

These errors could be avoided by locating b   accurately. This could be achieved by 

retracing the integration over the time interval it  to 1it   with a smaller time step. 

Alternatively, an iterative process may be used in which integration is resumed from time i 

with a step smaller than the full time step, whose size is progressively adjusted so that at the 

end of such an adjusted time step, the velocity is close to zero. 

Now, we return to the first source of error that is associated with the use of tangent 

stiffness instead of the unknown secant stiffness, and is illustrated by the force-deformation 

relation of Fig. (4b). The displacement at time i, the beginning of a time step it  to 1it   leads 

to the displacement 1iu  , identified as point b. if we were able to follow the curve exactly, 

the result may have been the displacement at b  . This discrepancy accumulating over a 

series of time steps may introduce significant errors.  

These errors can be minimized by using an iterative procedure. The key equation that is 

solved at each time step is Eq. (23) so for nonlinear systems, the terms k  replace by Tk  to 

emphasize that this is the tangent stiffness; so the Eq. (23) and (24) become 

 

ˆ ˆ
Tk u p  

 
(29) 

 

and 

 

2

4 12ˆ
T T

c m
k k

t t
  

   

(30) 

 

Fig. (5) shows a schematic plot of Eq. (29). The relationship is nonlinear because the tangent 
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stiffness Tk  depends on the displacement u  and hence the slop ˆ
Tk  is not constant [9]. 

 

 
Figure 5. Modified Newton-Raphson iteration in one increment 

 

The iterative procedure is described next with reference to Fig (5). The first iterative step 

is the application of Eq. (29) in the procedure described previously: 

 
(1)ˆ ˆ

Tk u p  
 

(31) 

 

To determine 
(1)u  (corresponding to point b in Fig. (4b)), the first approximation to the 

final u  (corresponding to point b   in Fig. (4b)). Associated with (1)u  is the true force 
(1)f , which is less than p̂ , and a residual force is defined: 

(2) (1)ˆR p f    . 

The additional displacement (2)u  due to this residual force is determined from 

 
(2) (2) (1)ˆ ˆ

Tk u R P f     
 

(32) 

 

This additional displacement is used to find a new value of the residual force, and the 

process is continued until convergence is achieved. This iterative process for the time step 

it  to 1it  , summarized in Table 3, is known as the modified Newton-Raphson method. 

 
Table 3: Modified Newton-Raphson iteration 

1. Initialize data 
0 (0) (1)

1
ˆ ˆˆ         ( )          ( )          i i s i i T iu u f fs R p k k        

2. Calculation for each iteration, 1,2,3,...j   
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2.1. Solve: ( ) ( ) ( )ˆ    j j j

Tk u R u      
2.2. 

( ) ( 1) ( )

1 1

j j j

i iu u u

    
2.3. ( ) ( ) ( 1) ( )ˆ( )j j j j

T Tf fs fs k k u       
2.4. 

( 1) ( ) ( )j j jR R f     

3. Reparation for the next iteration. Replace j by j+1 and repeat calculation step 2.1 to 2.4. 

 

The iteration process is terminated after n iterations when the incremental displacement 

( )nu  becomes small enough compared to the current estimate of 
( )

1

n j

j
u u


   ; that is 

( )( / )nu u    . Then the displacement increment over the time step it  to 1it   is given by: 

 

( )

1

n

j

i

j

u u


  
 

(33) 

 

This is an accurate value of iu  that replaces the one obtained without iteration from Eq. 

(23); the latter is the same as 
(1)u  obtained after one iteration. With iu  known, the rest of 

the computation proceeds as before.  

Table 4 summarizes the time-stepping solution as it might be implemented on the 

computer code. 

 
Table 4: Generalized Quartic B-spline step-by-step time integration algorithm; nonlinear systems 

1. Initial calculation 

1.1. Determine stiffness k, mass m, and damping ratio ξ of the system. And select 

appropriate time-step .t  

1.2. Determine the force value applied to the system in each time instant and initial value of 

displacement 0u  and velocity 0u . 

1.3. 0 0 0 0

1
( )u F cu ku

m
    

1.4.  0 2 1 0

1
4 3

2
F F F F

t
    


 

1.5.  0 0 0 0

1
u F cu ku

m
    

1.6. 
212

4 ,      6 ,      
6

m c
c m c t m t t

t
          


 

2. For each time step ( 0 1, , ...,i n ) 

2.1. ˆ
i i i i ip p u u u         

2.2. Determine the tangent stiffness ik  

2.3. 2

4 12ˆ
i i

c m
k k

t t
  

 
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2.4. Solve for iu  from ˆ
ik  and ˆ

ip  using the iterative procedure of Table 3. 

2.5. 
24

4
6

i i i i i

t
u u tu u u

t


     


 

2.6. 2

12 12
6i i i i iu u u u tu

t t
     

 
 

2.7. 
2

i i iu u u
t

   


 

2.8.  1 1 1 1 1 1 1

1
,   ,    ,   i i i i i i i i i i i i iu u u u u u u F cu ku u u u

m
                   

 
Although the modified Newton-Raphson converges by more number of iterations 

compared to conventional Newton-Raphson method, it reduces the number of operations to 

invert stiffness matrix (for multi degrees of freedom). In the previous table, modified 

Newton-Raphson method was used for iterative process. Any other method such as Arc-

Length method [23] also can be used. 

Using the proposed algorithm a computer code is written by Matlab. Using this computer 

code many examples have been analyzed. A couple of those examples are given in the next 

section. 

 

 

6. NUMERICAL EVALUATION 
 

In this section, the validity of the proposed method is confirmed with examination of several 

results. Two examples with nonlinear behavior are considered. 

 

6.1 A SDOF system with nonlinear behavior under blast load 

Fig. 6.a shows a SDOF portal frame with nonlinear behavior under an exploding blast load 

that shows in Fig. 6.b. The properties such as frame elevation, mass and modulus of 

elasticity are shown in the figure. In this example damping ratio 0.078   and the force-

deformation relation (stiffness) is 12.35 / 1 /u kips in .In this example, 0.1T  sec has 

been selected as time increment. 
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Figure 6. A portal frame under exploding blast load 

Figures 7 to 9 show the analysis results including relative displacement, velocity and 

acceleration of the aforesaid system resulted by Newmark, Wilson, Central difference and 

Quartic B-spline (proposed) methods during 8-seconds after the exploding. As the graphs 

show the proposed generalized method provides acceptable estimate of the results. 

 

 
Figure 7. Displacement time-histories 

 

 
Figure 8. Velocity time-histories 

 
Figure 9. Acceleration time-histories 

‬‬‬‬‬‬‬‬ 
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6.2 A portal frame with elasto-plastic behavior under blast load 

For the portal frame in previous example a bilinear behavior (elasto-plastic), as depicted in 

the Fig. 10, is defined. Here also the excitation function is the blast load has been shown in 

Fig. 6.b. 

 

 
Figure 10. Elasto-plastic behavior 

 

Fig. 11 shows the analysis result i.e. displacement time-history of the above system for 

three Wilson, Newmark and quartic B-spline (proposed) methods during an 8-seconds 

duration after explosion. Fig. 12 also shows the hysteresis diagram of bilinear behavior of 

the system. As the graph shows, the result of proposed method is nearly coincident with the 

results of two other methods. 

 

 
Figure 11. Displacement time-histories 
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Figure 12. Hysteresis diagram 

 

 

7. CONCLUSIONS 
 

So many efforts have been made during the past three decades to develop methods of 

structural analysis and design to resist blast loads. This paper developed quartic B-spline 

time integration method for inelastic dynamic analysis of SDOF systems under blast loads. 

A series of standard formula were derived from previous formulation and a new simple and 

efficient algorithm presented for linear analysis. Newton-Raphson iterative method used to 

develop new algorithm for solving nonlinear dynamic problems. A simple and effective 

step-by-step algorithm is implemented and presented to calculate nonlinear dynamic 

response of SDOF systems. Quartic B-spline time integration method gains second order of 

acceleration at each time-step so it benefits from high order accuracy. The numerical 

evaluation shows that the proposed method is a fast and simple procedure with trivial 

computational effort; therefore, it may be an appropriate choice for inelastic time-history 

analysis under blast and explosive loads as a time integration method. 
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