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ABSTRACT 
 

Different arbitrary shapes of plates are used in civil, marine and aerospace engineering. 

They may undergo large deflections due to large transverse loads and hence, the nonlinear 

analysis must be carried out on the structures. In view of the above an elegant finite element 

formulation is developed for analyzing the geometrically nonlinear static behavior of 

arbitrary shaped thin plates using superparametric element. This element is capable of 

accommodating different geometries just like isoparametric element. The efficacy of the 

element is shown by presenting different numerical examples. 

 

Keywords: Finite element analysis; large deflection; nonlinear plate theory; arbitrary thin 

plates; superparametric element. 

 

 

1. INTRODUCTION 
 

The arbitrary shaped plates especially in civil, marine and aerospace engineering may 

undergo large deflections under transverse loads. The value of lateral displacement obtained 

by the large deflection analysis will be significantly less than that obtained with linear 

analysis shown in Fig.1 as the structure becomes stiffer. Hence the additional effects due to 

large deflection must be considered in the analysis. 

The geometrically nonlinear analyses of the plates have been attempted by many 

researchers in the past. Levy [1] analytically solved clamped square plate using differential 

equation of Timoshenko, Von-Karman's equation and Fourier series. The finite element 

analysis of the same plate is done by Bogner et al. [2] using a conforming rectangular 

element with sixteen degrees of freedom. Schmidt [3] used perturbation method and 

Rushton [4] used finite difference dynamic relaxation solution to solve clamped circular 

plate and simply supported square plate respectively. The performance of linear, serendipity, 

Lagrangian and Heterosis elements is presented by Pica et al. [5] for various shapes of plates 
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using a Mindlin formulation. As usual, they faced the latent problem of isoparametric 

formulation like shear locking and the spurious energy modes. Though they have tried to 

alleviate the above problems by reduced and selective integration, the behavior of the 

elements were inconsistent depending on whether a boundary is straight or curved. Cheung 

and Dashan [6] considered finite strip method to study arbitrary shaped thin plates. Annular 

sector plate is analyzed by Turvey and Salehi [7] using a dynamic relaxation finite 

difference procedure. Singh and Elaghabash [8] proposed a numerical method (Ritz type) for 

the linear and geometrically non-linear static analysis of rhombic plates. The plate geometry 

is defined by a quadrangular boundary with four straight edges and the natural coordinates in 

conjunction with the Cartesian coordinates are used to map the geometry. Spline finite strip 

method is used by Sheikh and Mukhopadhyay [9] to analyze plates of different geometries. 

They have discretized mapped domain into a number of strips using cubic serendipity 

function and used two different displacement interpolation function in longitudinal and the 

other direction. A mathematical model is formulated by Shahidi et al. [10] based on elastic 

Cosserat theory for analysis of arbitrary quadrilateral plates. Das et al. [11] studied the 

isotropic skew plates under uniformly distributed load using variational principle. The effect 

of transverse shear was included in a shell element for geometric nonlinear analysis by 

Wankhade [12]. His work provided brief study of skew plates with variable parameters. 

In the present analysis, the geometrically nonlinear static behavior of arbitrary shaped 

thin plates is studied using superparametric element. The cubic serendipity function is used 

to represents the arbitrary geometry of the plate. An ACM plate ([13], [14]) bending element 

along with the in-plane deformations is considered for the displacement function. This 

element is capable of accommodating different geometries just like isoparametric element. 

As this element considers only thin plates and hence, does not consider the shear 

deformation, thus eliminating the shear locking problem and generation of spurious 

mechanisms. In the formulation the arbitrary planform of the whole plate is mapped into a 

square domain and the nonlinear formulation uses Von-Karman's nonlinear equation in the 

total Lagrangian coordinate system using [N]-notation. The nonlinear governing equations 

are solved by Newton Raphson iterative method. The deflections and stresses at critical 

points of the plates of different shapes are compared with the published results. The new 

results are compared with the SAP 2000 results wherever possible.  

 

 
Figure 1. Small and large deflection theory 
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2. MAPPING OF THE PLATE 
 

The arbitrary shape of the plate is mapped [15] approximately into a 1]1,[   region in the 

ts   plane as shown in Fig.2 with the help of the cubic serendipity shape function [16].  
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(2) 

 

where ),( ii yx  are the co-ordinates of the i-th boundary node of the plate and 
iN  is the 

corresponding cubic serendipity shape function. The mapped square plate is now discretized 

into a number of elements and each element is being mapped with the same cubic 

serendipity shape function to a natural coordinate element of domain 1]1,[   in    

plane as shown in Fig. 3. 

 

 
Figure 2. Mapping of arbitrary geometry into a square domain in ts   plane 

 

 
Figure 3. Mapping of element into a square domain in    plane 
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From the mapping we have,  
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3. DISPLACEMENT INTERPOLATION FUNCTION 
 

For the proposed element, the four noded rectangular ACM plate bending element with five 

degrees of freedom ),,,,(
y

w

x

w
wvu








 at each node is considered. The interpolation functions 

for the in-plane and bending are the usual ones presented in detail in [17].  

 

 

4. STRESS-STRAIN RELATIONSHIP 
 

The generalized stress-strain relation is given by  

 

}]{[=}{  D  (5) 

 

where, }{  is the stress resultant given by  
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and ][D  is the rigidity matrix given by  
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The superscripts p  and b  used in the equations are for the inplane and bending part 

respectively. Taking the mid-plane of the plate as the reference plane for the analysis, strain 

matrix is given by 
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5. STRAIN DISPLACEMENT RELATIONSHIP 
 

The strain displacement relation is given by 
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The inplane linear strain is given by  
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The linear strain due to bending [15] action is given by 
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6. FORMULATION OF THE GEOMETRIC NON-LINEARITY 
 

The geometrically nonlinear formulation [18] is done using [N]-notation formulated in [19] 

and the displacements referred to the original configuration following the Lagrangian 

method. 

 

6.1 Equilibrium equation 

The equilibrium equation is obtained by application of virtual principle as  

 

{0}=}{}{][=}{ PdVB T

V
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Arc
hive

 of
 S

ID

www.SID.ir



S. Panda and M. Barik 

 

214 

where }{  denotes the sum of external and internal generalized forces and ][B  is obtained 

from the following relationship.  

 

}{][=}{  dBd  (18) 

 

Again matrix ][B  may be expressed as  
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where LB][  is the linear part and 
NLB][  is the nonlinear part and is dependent on 

displacements. If the strains are reasonably small, we can still write the elastic relationship  
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Referring Eqs.(21) and (24), Eq.(18) becomes  
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With the help of Eqs.(19)-(24), Eq.(17) becomes  
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where ][ SK  is the secant stiffness matrix and is given by  
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6.2 Incremental equilibrium equation 

The tangent stiffness matrix is obtained by taking appropriate variation of Eq.(17) with 

respect to }{ ,  
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Substituting Eq.(19), (24) and (26) into Eq.(31), it yields to 
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=][ NLTK  Nonlinear part of the tangent stiffness matrix 

 dVBDBBDBBDB NL

T

NLLNLNL

T

L
V

]][[][]][[][]][[][=   

=][ K  Initial stress matrix or Geometric stiffness matrix  

 

6.3 Large deflection analysis in N-notation 

Referring Eq.(23), 

 

  ]][[= GAB NL

p  (36) 

 
 

  































0][

]][[

==

GA

B

B

B

NL

b

NL

p

NL  (37) 

 

The volume integral is replaced by area integral, as the contribution across the thickness 

direction is considered in the rigidity matrix. 

Using Eq.(6) and (36), Eq.(35) becomes  

 

dVBddK T

NL
V

}{][=}{][    (38) 
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(40) 
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(41) 

dAdSG T

A
}{][][= 

 

(42) 

dAdGSG T

A
}{][][][=   

(43) 

dAGSGK T

A
][][][=][ 

 
(44) 

 

where, 








yxy

xyx

NN

NN
S =][   
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The secant stiffness matrix ][ SK  derived in Section-6.1 is unsymmetric in B-notation. In 

this context, N-notation [20] is used which gives symmetric secant stiffness matrix and is 

expressed as  

][
3

1
][

2

1
][=][ 210 NNNKS   

dABDBN L

T

L
A

]][[][=][ 0   

 dAGSGBDBBDBN L

T

L

T

NLNL

T

L
A

][][][]][[][]][[][=][ 1   

 dAGSGBDBN NL

T

NL

T

NL
A

][][][]][[][=][ 2   

where, 
LS][  and 

NLS][  are the linear and nonlinear parts of the initial stress matrix.  

 

 

7. NEWTON-RAPHSON METHOD 
 

The nonlinear equations can be expressed as 

 

  {0}=}{}{}{=}{ PKS    (45) 

 

Ignoring higher order terms, the function }{  is expressed in terms of Taylor series as,  

 

    0=}{
}{

}{
}{=}{ 1 n

n

nn

d

d



 







 
 

 (46) 

nnn }{}{=}{where, 1  

 

(47) 

   nn

S

n

T

n KPK }{][}{][=}{
11  


 
(48) 

 

where, 

=}{P  Load Level; =}{ n  Incremental Displacement; 
}{

}{
=][

d

d
KT


  

 

 

8. BOUNDARY CONDITIONS 
 

As a general case, the stiffness matrix for a curved boundary supported on elastic springs 

continuously spread along the boundary line is used. Considering a local axis system 11 yx   

at a point P  on a curved boundary along the direction of the normal to the boundary at that 

point as shown in the Fig.4, the displacement components along it can be obtained. Let   

be the angle made by the local axis 11 yx   with the global axis yx  in the anticlockwise 

direction. Hence the relationship between the two axes is given by  
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Figure 4. Co-ordinate axes at any point of an elastically restrained curved boundary 
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The displacements at P  which may be restrained can be expressed as  
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(50) 

 

Expressing the above equation in terms of the shape function,  

 

}]{[=}{ bb Nf  (51) 

 

where  
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(52) 
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Let kkkk wvu ,,,  and 
k be the spring constants or restraint coefficients corresponding to 

the direction of 
nwvu ,,,  and 

t  respectively. The reaction components per unit length 

along the boundary line due to the spring constants corresponding to the possible boundary 

displacements are given by  
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}]{[=}{ kk Nf

 

(54) 

 

where  
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 (55) 

 

Using Eqs.(51) and (54), the stiffness matrix can be obtained by the virtual work 

principle and is expressed as 

 

1||][][=][ dJNNK bk

T

bb   (56) 

 

where 1  is the direction of the boundary line in the    plane and =bJ Jacobian 

11/= dds . The jacobian is the ratio of actual length to the length of mapped domain at any 

segment of boundary length. 
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9. LOAD VECTOR 
 

The consistent load vector [9] can be calculated from the principle of virtual work. 
 

ddJqNP T

w ||][=}{   (57) 

 

where q  is the intensity of load acting on the plate.  

 

Table 1: Different parameters used 

Central deflection w  

Thickness h  

Uniformly distributed load q  

Concentrated load p  

Extreme fiber stress ),( yx  

 

 

10. RESULTS AND DISCUSSION 
 

The proposed formulation is validated through a number of numerical examples. In each of 

the examples, the iteration process is continued until the total residual norm is within the 

prescribed tolerance limit as expressed by  
 

   100))/((
0.5

PPPP TT

 
(58) 

 

where   is the tolerance for the convergence and it is taken as 0.1% . The analyses for 

plate of different planforms such as square, skewed, circular, elliptical, annular, trapezoidal, 

semicircular, right angled triangular, equilateral triangular, semi-circular semi-elliptical, 

diamond and axe-head shaped are carried out with mesh divisions for the whole plate. The 

deflections and stresses obtained at critical points are compared with the published and SAP 

2000 results wherever possible. Also, some examples of clamped square, rectangular, skew 

and circular plate under uniformly distributed load by the same authors using the present 

method can be found in [21]. The different parameters used are tabulated in Table 1 and the 

non-dimensional form for loads, deflections and stresses are given in Table 2. The boundary 

conditions applied are  

0===== yxwvu  , for clamped edge and  

0=== wvu , for simply supported edge.  

 

10.1 Rectangular plate 

Square plate in Fig.5 with two edges simply supported and other two free is analyzed and 

compared in Table 3. Different aspect ratios (1.0, 1.5 and 2.0) are considered for all the 

edges simply supported boundary conditions and the results for 3232  mesh division are 

shown in Table 4-5. 
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Table 2: Non-dimensional form 

Central deflection W  hw/  

Uniformly distributed load Q  44)/( Ehqa  

Concentrated load P  
42)/( Ehpa  

Extreme fiber stress ),( yx'  ))/(),(( 22 Ehayx  

 

 
cma 300=  ; cmh 3.0= ; 0.316= ; 28 /100.3= cmNE   

Figure 5. A typical 88  mesh discretization with boundary nodes of square plate 

 

Table 3: Square plate with the two edges simply supported and the other two free 

Load )/( cmN  Central Deflection W  Moment N( - )cm  Inplane Force )(N  

q
 Milasinovic [22] Present SAP Present SAP Present SAP 

1.0 0.3318 0.3449 0.3449 881.2693 882.2648 943.8344 943.7994 

2.5 0.5537 0.5780 0.5779 1460.9 1461.818 2664.8 2664.5150 

5.0 0.7686 0.7954 0.7951 1983.6 1983.69 5079.4 5077.273 

7.5 0.9179 0.9422 0.9420 2326.3 2325.883 7162.2 7160.504 

10.0 1.0352 1.0569 1.0567 2588.2 2585.902 9045.3 9043.573 

 

Table 4: Deflection hwW /=  at the center of the simply supported rectangular plate 

Load Factor b/a = 1.0 b/a = 1.5 b/a = 2.0 

17.79 0.5450 0.7533 0.8104 

38.3 0.8281 1.0592 1.1081 

63.4 1.0416 1.2902 1.3365 

95 1.2309 1.4976 1.5442 

134 1.4102 1.6966 1.7454 

184 1.5826 1.8902 1.9424 

245 1.7547 2.0853 2.1419 

318 1.9239 2.2786 2.3400 

402 2.0871 2.4663 2.5327 
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Table 5: Stress 
22/= Eha'   at the center of the simply supported rectangular plate 

Load Factor b/a = 1.0 b/a = 1.5 b/a = 2.0 

17.79 4.3881 5.8130 6.1066 

38.3 7.1796 8.9021 9.1177 

63.4 9.5160 11.5466 11.7503 

95 11.7789 14.1736 14.4051 

134 14.1106 16.9354 17.2225 

184 16.5418 19.8560 20.2192 

245 19.1660 23.0388 23.4963 

318 21.9443 26.4296 26.9949 

402 24.8184 29.9505 30.6322 

 

10.2 Skew plate 

The deflection and central stress of simply supported skewed plate shown in Fig.6 are 

compared with published results in Fig.7-8 respectively. 

 

 
cma 300= ; cmh 3.0= ; 0.316= ; 28 /100.3= cmNE   

Figure 6. A typical 88  mesh discretization with boundary nodes of skew plate 

 

  
Figure 7. Central deflection of simply 

supported skew plate 

Figure 8. Central stress of simply supported 

skew plate 
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10.3 Circular plate 

A circular plate shown in Fig. 9 is analyzed and results for clamped case are compared with 

published ones for concentrated load in Fig. 10-11. The present results for simply supported 

circular plate under uniformly distributed load (udl) and point load are given in Table 6 for 

2424  mesh division.  

 

 
cmr 100= ; cmh 2.0= ; 0.3= ; 28 /100.1= cmNE   

Figure 9. A typical 88  mesh discretization with boundary nodes of circular plate  

  
Figure 10. Central deflection of clamped 

circular plate under concentrated load 

Figure 11. Edge stress of clamped circular 

plate under concentrated load 

 
Table 6: Central deflection and stress in simply supported circular plate 

 under udl under point load 

Load Central Central Load Central Central 

Factor Deflection Stress Factor Deflection Stress 

1 0.4795 1.0348 1 0.4365 2.3556 

2 0.7035 1.6261 2 0.6863 4.3564 

3 0.8517 2.053 3 0.8631 6.1561 

6 1.1385 2.9678 4 1.004 7.8342 

10 1.3826 3.8515 5 1.1232 9.426 

15 1.6008 4.7342 6 1.2275 10.951 
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10.4 Elliptical plate 

Table 7 presents the results with 2424  mesh size for both clamped and simple supports of 

elliptic plate shown in Fig.12 under uniformly distributed load where a  and b  are taken as 

semi-minor and semi-major axes of the plate respectively. 

 

 
cma 100= ; cmb 200= ; cmh 2.0= ; 0.3= ; 28 /100.1= cmNE   

Figure 12. A typical 88  mesh discretization with boundary nodes of elliptical plate 

 

Table 7: Deflection and stress in elliptical plate under uniformly distributed load  

Boundaries Clamped Simply Supported 

Load 

Factor 
Central Deflection Central Stress Mid-edge Stress 

Central 

Deflection 

Central 

Stress 

 Weil [23] Present Weil [23] Present Weil [23] Present Present Present 

1 0.344 0.3505 0.862 0.9 1.705 1.6023 0.7303 1.3994 

2 0.600 0.614 1.550 1.6486 3.322 3.0375 0.9858 2.0384 

3 0.789 0.8086 2.077 2.2268 4.76 4.2827 1.1546 2.5069 

6 1.163 1.1945 3.217 3.429 8.289 7.3441 1.4869 3.5477 

10 1.490 1.5205 4.333 4.519 11.970 10.6358 1.777 4.593 

15 1.790 1.8088 5.490 5.5656 15.656 14.1227 2.0441 5.6611 

 

10.5 Annular plate 

An annular plate (Fig.13) of sector angle ( 60= ) is analyzed under uniformly distributed 

load and the deflection, membrane forces and bending moments at center are compared for 

clamped boundary conditions in Fig.14 -16.
or  and 

ir  are outer and inner radius of the plate 

respectively. The results for the case of simply supported boundary condition are given in 

Table 8 for 2424  mesh division. 
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0.5=
o

i

r

r
 ; io rra =  ; cmh 2.0= ; 0.3= ; 28 /100.1= cmNE   

Figure 13. A typical 88  mesh discretization with boundary nodes of annular plate 

 

  
Figure 14. Central deflection of clamped 

annular plate 

Figure 15. Membrane forces at center of 

clamped annular plate 

 

 
Figure 16. Bending moments at center of clamped annular plate 
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Table 8: Central deflection and forces in simply supported annular plate 

Load Central Deflection Membrane Force Bending Moment 

Factor hw/  )/( 32 EhrN or
 )/( 32 EhrN o

 )/( 42 EhrM or
 )/( 42 EhrM o  

666.7 1.1496 13.7285 8.121 4.0567 1.8795 

1333.3 1.4986 23.2935 14.143 5.0545 2.1249 

2666.7 1.9163 38.2685 23.753 6.1317 2.3816 

4000 2.2013 50.82 31.832 6.8112 2.5557 

 

10.6 Trapezoidal plate 

In Table 9, results are presented for central deflection and stress for a clamped and simply 

supported trapezoidal plate (Fig. 17) for 2424  mesh division.   and   are the angles 

made by left and right edge of trapezoid to X -axis. =xL  base length of trapezoid and =yL  

slant length of left edge of trapezoid. 

 

 

60= ; 120= ; 1.5=
y

x

L

L
; 0.3= ; 28 /100.1= cmNE   

Figure 17. A typical 88  mesh discretization with boundary nodes of trapezoidal plate 

 

 

Table 9. Deflection and stress in trapezoidal plate 

Boundaries Clamped Simply Supported 

Load Factor Central Deflection Central Stress 
Mid-edge 

Stress 

Central 

Deflection 

Central 

Stress 

 Shufrin [24] Present Shufrin [24] Present Present Present Present 

5 0.0422 0.0429 0.578 0.5872 1.2493 0.142 1.3134 

10 0.0842 0.0855 1.168 1.1875 2.5023 0.2652 2.5713 

50 0.3908 0.3961 5.834 5.9146 12.2128 0.7686 8.7014 

100 0.678 0.686 10.589 10.7238 22.7819 1.0555 12.8863 

200 1.0521 1.064 17.124 17.337 39.8275 1.3894 18.4819 
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10.7 Semicircular Plate 

A semicircular plate (Fig. 18) is analyzed for a clamped and simply supported boundary 

conditions and the results for 2424  mesh division are shown in Table 10 and 11 

respectively. The deflection and stress at coordinate ( 0 ,56.66 ) and mid stress at bottom 

edge are calculated. =r  radius of the semicircle.  

 
cmr 100= ; cmh 2.0= ; 0.3= ; 28 /100.1= cmNE   

Figure 18. A typical 88  mesh discretization with boundary nodes of semicircular plate 

 
Table 10: Deflection and stress in clamped semicircular Plate 

Load 

Factor 

 Deflection              Stress Mid-edge Stress 

 Present SAP Present SAP Present SAP 

25 0.467 0.470 4.977 5.024 10.136 8.667 

50 0.773 0.781 8.719 8.782 18.367 16.010 

75 0.988 0.999 11.496 11.554 25.189 21.328 

100 1.154 1.169 13.733 13.770 31.155 25.735 

125 1.292 1.309 15.638 15.645 36.549 29.560 

 
Table 11: Deflection and stress in simply supported semicircular plate 

Load Factor Deflection Stress 

 Present SAP Present SAP 

25 0.855 0.829 7.046 6.839 

50 1.134 1.109 10.173 9.920 

75 1.322 1.297 12.518 12.214 

100 1.468 1.443 14.490 14.132 

125 1.590 1.565 16.241 15.824 

Arc
hive

 of
 S

ID

www.SID.ir



S. Panda and M. Barik 

 

228 

 

10.8 Right-angled Triangular Plate 

The deflection and stress at coordinate ( 37.5 ,37.5 ) and (56.25 ,37.5 ) for b/a =1.0 and 1.5 

respectively and mid stress at bottom edge of right angled plate (Fig. 19) are presented for 

clamped and simply supported boundary conditions in Table 12-15 for 2424  mesh 

division.  

 
cma 100=  ; cmh 2.0= ; 0.3=  ; 28 /100.1= cmNE   

Figure19. A typical 88  mesh discretization with boundary nodes of right-angled triangular 

plate 

Table 12: Deflection and stress in clamped right-angled triangular plate for 1=/ab  

Load 

Factor 
Central Deflection Central Stress Mid-edge Stress 

 Present SAP Present SAP Present SAP 

300 0.411 0.418 11.583 11.229 27.132 25.607 

350 0.464 0.471 13.339 12.878 31.268 29.588 

400 0.514 0.521 15.015 14.440 35.282 33.471 

450 0.560 0.568 16.615 15.922 39.180 37.261 

500 0.630 0.611 18.143 17.331 42.969 40.965 

 

Table 13: Deflection and stress in simply supported right-angled triangular plate for 1=/ab  

Load 

Factor 
Deflection Stress 

 Present SAP Present SAP 

300 0.794 0.783 18.884 17.541 

350 0.849 0.838 20.595 19.125 

400 0.898 0.888 22.180 20.586 

450 0.943 0.932 23.665 21.949 

500 0.985 0.973 25.068 23.233 
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Table 14: Deflection and stress in clamped right-angled triangular plate for 1.5=/ab  

Load 

Factor 
Deflection Stress Mid-edge Stress 

 Present SAP Present SAP Present SAP 

300 0.640 0.648 17.464 17.031 36.962 38.016 

350 0.707 0.716 19.607 19.075 41.866 43.386 

400 0.768 0.777 21.605 20.969 46.528 48.347 

450 0.824 0.833 23.480 22.739 50.981 53.221 

500 0.876 0.885 25.253 24.402 55.251 57.932 

 

Table 15: Deflection and stress in simply supported right-angled triangular plate for 1.5=/ab  

Load Factor Deflection Stress 

 Present SAP Present SAP 

300 1.008 1.010 22.712 21.645 

350 1.071 1.073 24.652 23.481 

400 1.127 1.129 26.460 25.176 

450 1.179 1.181 28.163 26.771 

500 1.227 1.228 29.780 28.290 

10.9 Equilateral Triangular Plate 

The results of equilateral triangular Plate (Fig. 20) are shown for a clamped and simply 

supported boundary conditions in Table 16 and 17 respectively for 2424  mesh size. The 

deflection and stress at coordinate ( 56.25 ,32.475 ) and mid stress at bottom edge are 

presented.  

 
cma 100= ; cmh 2.0= ; 0.3=  ; 28 /100.1= cmNE   

Figure 20. A typical 88  mesh discretization with boundary nodes of equilateral triangular 

plate 
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Table 16: Deflection and stress in clamped equilateral triangular plate 

Load 

Factor 
Deflection Stress Mid-edge Stress 

 Present SAP Present SAP Present SAP 

300 0.436 0.453 14.041 14.173 32.847 37.055 

350 0.495 0.513 16.123 16.247 37.754 42.665 

400 0.549 0.569 18.097 18.209 42.487 48.063 

450 0.600 0.621 19.970 20.066 47.056 53.291 

500 0.648 0.669 21.747 21.825 51.474 58.352 

 
Table 17: Deflection and stress in simply supported equilateral triangular plate 

Load Factor Deflection Stress 

 Present SAP Present SAP 

300 0.840 0.819 20.525 20.021 

350 0.900 0.879 22.340 21.873 

400 0.953 0.933 24.009 23.574 

450 1.002 0.982 25.564 25.156 

500 1.046 1.027 27.025 26.641 

10.10 Semi-circular Semi-elliptical Plate 

A plate (Fig. 21) consisting of a semicircle and semi-ellipse is analyzed. In Table 18, results 

for central deflection and stresses in a clamped and simply supported boundary conditions 

are shown for 1616  mesh division. Here, =r  radius of the semicircle, a  and b  are semi-

minor and semi-major axis of the plate. 

 
cmra 200== ; cmb 250= ; cmh 2.0= ; 0.3=  ; 28 /100.1= cmNE   

Figure 21. A typical 88  mesh discretization with boundary nodes of semi-circular semi-

elliptical plate 
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Table 18: Central deflection and stress in semi-circular semi-elliptical plate 

Boundaries Clamped Simply Supported 

Load Central Deflection Central Stress Mid-edge Stress 
 Central 

Deflection 
Central Stress 

1 0.2056 0.5919 0.8767 0.5435 1.1386 

2 0.3888 1.1653 1.7287 0.7784 1.7512 

3 0.5437 1.6737 2.5245 0.9333 2.1941 

6 0.8832 2.8378 4.5955 1.2339 3.1504 

10 1.1818 3.9084 6.8788 1.4909 4.082 

15 1.4451 4.8997 9.3054 1.7215 5.0172 

 

10.11 Diamond Shaped Plate 

A diamond shaped plate (Fig. 22 and Fig. 23) are analyzed for 1.0=12/rr  and 1.5  

respectively. In Table 19 and 20, results for central deflection and stresses in a clamped and 

simply supported boundary conditions are shown for 3232  mesh division. Here, =21,rr  

radii of the arcs. 

 
1.0=12/rr ; cmr 100=1 ; cmh 2.0= ; 0.3=  ; 28 /100.1= cmNE   

Figure 22. A typical 88  mesh discretization with boundary nodes of diamond shaped plate 

for 1.0=12/rr  

Table 19: Central deflection and stress in diamond shaped plate for 1.0=12/rr  

Boundaries Clamped Simply Supported 

Load Central Deflection Central Stress Mid-edge Stress Central Deflection Central Stress 

300 0.8676 18.6576 45.1430 1.1941 20.3071 

350 0.9546 20.6878 51.1530 1.2709 22.0355 

400 1.0329 22.5304 56.8642 1.3397 23.6182 

450 1.1042 24.2230 62.3197 1.4021 25.0997 

500 1.1696 25.7914 67.5537 1.4595 26.4988 
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1.5=12/rr ; cmr 100=1 ; cmh 2.0= ; 0.3=  ; 28 /100.1= cmNE   

Figure 23. A typical 88  mesh discretization with boundary nodes of diamond shaped plate for 

1.5=12/rr  

Table 20: Central deflection and stress in diamond shaped plate for 1.5=12/rr  

Boundaries Clamped Simply Supported 

Load Central Deflection Central Stress Mid-edge Stress Central Deflection Central Stress 

300 0.7733 22.3848 51.1662 1.1114 25.2125 

350 0.8493 24.8401 57.7238 1.1780 27.2463 

400 0.9177 27.0040 63.9263 1.2380 29.1343 

450 0.9799 29.0333 69.8305 1.2927 30.9060 

500 1.0371 30.9201 75.4810 1.3432 32.5822 

 

10.12 Axe-head Shaped Plate 

An axe-head shaped plate (Fig.24) is analyzed and results for central deflection and stresses 

in a clamped and simply supported boundary condition for 3232  mesh size are shown in 

Table 21. Here, =r  radius of the arc. 

 

 
1.0=12/rr ; cmr 100=1  ; cmh 2.0= ; 0.3=  ; 28 /100.1= cmNE   

Figure 24. A typical 88  mesh discretization with boundary nodes of axe-head shaped plate 
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Table 21: Central deflection and stress in axe-head shaped plate 

Boundaries Clamped Simply Supported 

Load Central Deflection Central Stress Mid-edge Stress Central Deflection Central Stress 

50 0.3805 6.7852 7.6882 0.7326 9.7435 

100 0.6580 12.1953 14.6086 0.9996 14.2688 

150 0.8593 16.2654 20.7650 1.1749 17.5599 

200 1.0161 19.5075 26.3491 1.3100 20.2857 

250 1.1450 22.2296 31.4986 1.4220 22.6767 

 

 

11. CONCLUSIONS 
 

The formulation for large deflection of thin plates of arbitrary shape is generalized by means 

of a mapping technique so that the analysis is performed in a square domain. Many 

researchers have used different elements to analyze plates but these elements are limited to 

solve a particular type of geometry only. The isoparametric element though elegant in its 

formulation to accommodate different geometries but is deficient with regard to its behavior 

because of the presence of shear locking and spurious mechanisms and cannot be fully 

alleviated even if with reduced and selective integration. In the present investigation,the 

element has all the advantages of the isoparametric element to model an arbitrary plate shape 

and without the disadvantages of the shear locking problem etc. The versatility of the 

element is proved by undertaking different plate geometries such as square, rectangle, skew, 

circle, ellipse, annular, and trapezoidal. Also, semicircular, right angled triangle, equilateral 

triangle shaped geometries along with some complex geometries are analyzed and compared 

with SAP 2000. In this context, the formulation is done in the total Lagrangian co-ordinate 

system and Newton-Raphson technique is used to solve nonlinear governing equations.The 

results obtained for various geometries of the plate are validated with the available ones 

which are found to be in excellent agreement. 
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