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ABSTRACT 
 

In this paper shape and size optimization of truss structures subjected to frequency 

constraints is addressed utilizing a newly developed multi-agent meta-heuristic algorithm 

called Tug of War Optimization (TWO). The algorithm considers each candidate solution as 

a team participating in a series of rope pulling competitions. Frequency constraint structural 

optimization corresponds to highly non-linear, discontinuous, and non-convex search spaces 

including several local optima. Such problems call for properly balanced competent 

optimization algorithms. Here, viability of TWO is demonstrated using four numerical 

examples. 

 

Keywords: Tug of war optimization, metaheuristic, optimal design, frequency 

constraints, truss structures 
 

 

1. INTRODUCTION 
 

Natural frequencies of a structural system provide useful information for its dynamic 

behavior. In fact, in most of the low frequency vibration problems, the response of the 

structure is primarily a function of its fundamental frequencies and mode shapes [1]. The 

problem has been introduced in 1980s by Bellagamba and Yang [2] and has received 

considerable attention since then. Several researchers have explored the problem using a 

wide variety of optimization techniques. Lin et al. [3] proposed a bi-factor algorithm based 

on the Kuhn–Tucker criteria for minimum weight design of structures under static and 

dynamic constraints. Grandhi and Venkayya [1] utilized an optimality criterion based on 

uniform Lagrangian density to address the problem. Sedaghati et al. [4] used a mathematical 

programming technique to optimize truss and frame structures subject to frequency 

constraints, where an integrated finite element force method was utilized to frequency 

analysis. Wang et al. [5] formed an optimality criterion using the differentiation of the 
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Lagrangian function. Starting from an infeasible point, minimum weight increment was 

utilized for simultaneous shape and size optimization of three-dimensional truss structures. 

Lingyun et al. [6] addressed the problem using a hybridization of the simplex method and 

genetic algorithms. Gomes [7] investigated simultaneous shape and size optimization of 

truss structures utilizing the standard Particle Swarm Optimization algorithm. Kaveh and 

Zolghadr employed charged system search (CSS) and its enhanced varient [8], hybridized 

CSS-BBBC with trap recognition capability [9], democratic particle swarm optimization 

(DPSO) [10], and a hybridized PSRO [11] algorithm to investigate the problem. 

Weight minimization of a structure with frequency constraints, especially when the 

frequencies are lower bounded, is believed to be a demanding problem [7]. Frequency 

constraints are highly nonlinear, non-convex and implicit with respect to the design 

variables [12] and thus, the problem includes several local optima. 

Meta-heuristic algorithms are powerful tools for solving optimization problems. These 

methods do not require gradient information of the objective function and are independent on 

the starting point. Thanks to their global search capabilities, these algorithms are suitable for 

complex, nonlinear and non-convex search spaces, especially when near-global optimum 

solutions are sought after using limited computational effort. Some of the examples of meta-

heuristic algorithms include Genetic Algorithms (GA) [13], Particle Swarm Optimization 

(PSO) [14], Ant Colony Optimization (ACO) [15], Big Bang-Big Crunch (BB-BC) [16], 

Charged System Search (CSS) [17], Ray Optimization (RO) [18], Democratic PSO (DPSO) 

[10], Dolphin Echolocation (DE) [19], Colliding Bodies Optimization (CBO) [20], Water 

Cycle, Mine Blast and Improved Mine Blast algorithms (WC-MB-IMB) [21], Search Group 

Algorithm (SGA) [22]. More detailed explanation of meta-heuristic algorithms can be found 

in [23].  

In this paper the newly developed Tug of War Optimization (TWO) algorithm introduced 

by Kaveh and Zolghadr [24] is utilized for truss shape and size optimization with frequency 

constraints. The remainder of this paper is organized as follows: Weight minimization of 

truss structures subject to frequency constraints is stated in Section 2. Tug of war 

optimization algorithm is briefly presented in Section 3. Four numerical examples are 

studied in Section 4 in order to show the viability of the algorithm. In section 5, effect of 

different parameters of TWO on the performance of the algorithm is studied. Finally, some 

concluding remarks are provided in Section 6.  

 

 

2. PROBLEM STATEMENT 
 

In a frequency constraint shape and size optimization of truss structures, the aim is to 

minimize the weight of the structure while satisfying some constraints on natural 

frequencies. Cross-sectional areas of the members and/or the coordinates of some nodes are 

considered as design variables. However, topology of the structure is assumed to be 

unaltered during the optimization process. Each design variable should be chosen from a 

permissible range. The optimization problem can be mathematically stated as: 
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Find X = [x1,x2,x3,...,xn] 

to minimizes P (X) = f(X) × fpenalty(X) 

subject to 

ωj≤ωj
*    for some natural frequencies j 

ωk≥ωk
*   for some natural frequencies k 

ximin ≤ xi ≤ ximax 

(1) 

 

in which X is the vector of the design variables; n is the number of design variables 

dictated by the element grouping scheme which in turn is chosen with respect to the 

symmetry and practice requirements; P(X) is the penalized cost function or the objective 

function to be minimized; f(X) is the cost function, which is taken as the weight of the 

structure in a weight minimization problem; fpenalty(X) is the penalty function which is used 

to make the problem unconstrained; the value for the penalty function is taken as zero for 

feasible solutions while non-zero values are associated to infeasible solutions; ωj is the jth 

natural frequency of the structure and ωj
* is its upper bound; ωk is the kth natural frequency 

of the structure and ωk
* is its lower bound; ximin and ximax are the lower and upper bounds of 

the design variable xi, respectively. 

The cost function is expressed as: 

 

f(X) = ii

nm

1i

i AL


  (2) 

 

where ρi , Li, and Ai are the material density, length, and the cross-sectional area of member 

i. 

The penalty function is defined as: 

 

fpenalty(X) =   2v.1 1


 , v=


q

1i

iv  (3) 

 

where q is the number of frequency constraints. 

 

vi = 








 else1

satisfiedisintconstraiththeif0

i
*
i



  (4) 

 

The parameters ε1 and ε2 are selected considering the exploration and the exploitation rate 

of the search space. In this study ε1 is taken as unity, and ε2 starts from 1.5 linearly 

increasing to 6 in all test examples. Such choices of parameters allow the agents to explore 

the search space more freely at the early stages of the optimization process. On the other 

hand, as the optimization proceeds, penalty values grow bigger and the agents tend to prefer 

feasible solutions.  
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3. TUG OF WAR OPTIMIZATION 
 

3.1 Idealized tug of war framework 

Tug of war or rope pulling is a strength contest in which two competing teams pull on the 

opposite ends of a rope in an attempt to bring the rope in their direction against the pulling 

force of the opposing team. The activity dates back to ancient times and has continued to 

exist in different forms ever since. There has been a wide variety of rules and regulations for 

the game but the essential part has remained almost unaltered. Naturally, as far as both 

teams sustain their grips of the rope, movement of the rope corresponds to the displacement 

of the losing team. Fig. 1 shows two teams competing in a tug of war contest. 

 

 
Figure 1. A competing team in a tug of war 

 

Triumph in a real game of tug of war generally depends on many factors and could be 

difficult to analyze. However, an idealized framework is utilized in this paper where the two 

teams having weights Wi and Wj are considered as two objects lying on a smooth surface as 

shown in Fig. 2. 

 

 
Figure 2. An idealized tug of war framework 

 

As a result of pulling the rope, the teams experience two equal and opposite forces (Fp) 

according to Newton's third law. For object i, as far as the pulling force is smaller than the 

maximum static friction force  siW 
 

the object rests in its place. Otherwise the non-zero 

resultant force can be calculated as: 
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kipr WFF   (5) 

 

As a result, the object i accelerates towards the object j according to the Newton's second 

law: 

 











g
W

F
a

i

r  
(6) 

 

Since the object i starts from zero velocity, its new position can be determined as: 

 

old

i

2new

i Xat
2

1
X   (7) 

 

3.2 Tug of war optimization algorithm 

TWO is a population-based meta-heuristic algorithm, which considers each candidate 

solution 
j,ii xX   as a team engaged in a series of tug of war competitions. The weight of 

the teams is determined based on the quality of the corresponding solutions, and the amount 

of pulling force that a team can exert on the rope is assumed to be proportional to its weight. 

Naturally, the opposing team will have to maintain at least the same amount of force in order 

to sustain its grip of the rope. The lighter team accelerates toward the heavier team and this 

forms the convergence operator of the TWO. The algorithm improves the quality of the 

solutions iteratively by maintaining a proper exploration/exploitation balance using the 

described convergence operator. The steps of TWO can be stated as follows: 

 

Step 1: Initialization 

A population of N initial solutions is generated randomly: 

 

Nj)xx(randxx jjjij ,...,2,1min,max,min,
0   (8) 

 

where 
0

ijx  is the initial value of the jth variable of the ith candidate solution; max,jx  and min,jx  

are the maximum and minimum permissible values for the jth variable, respectively; rand is 

a random number from a uniform distribution in the interval [0, 1]; n is the number of 

optimization variables. 

 

Step 2: Evaluation of candidate designs and weight assignment 

The objective function values for the candidate solutions are evaluated. All of the initial 

solutions are sorted and recorded in a memory denoted as the league. Each solution is 

considered as a team with the following weight: 
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Ni
fitfit

fitifit
W

worstbest

worst
i ,...,2,11)

)(
( 




  (9) 

 

where fit(i) is the fitness value for the ith particle; The fitness value of the ith team, 

evaluated as as the penalized objective function value for constrained problems; fitbest and 

fitworst are the fitness values for the best and worst candidate solutions of the current 

iteration. According to Eq. (5) the weights of the teams range between 1 and 2.  

 

Step 3: Competition and displacement 

In TWO each of the teams of the league competes against all the others one at a time to 

move to its new position in each iteration. The pulling force exerted by a team is assumed to 

be equal to its static friction force  sW . Hence the pulling force between teams i and j 

(Fp,ij) can be determined as max{ sjsi W,W  }. Such a definition keeps the position of the 

heavier team unaltered.  

The resultant force affecting team i due to its interaction with heavier team j in the kth 

iteration can then be calculated as follows: 

 

k

k

i

k

ij,p

k

ij,r WFF   (10) 

 

where 
k

ij,pF is the pulling force between teams i and j in the kth iteration and k is coefficient 

of kinematic friction. Consequently, team i accelerates towards team j: 

 

k

ij

k

k

i

k

ij,rk

ij g)
W

F
(a


  (11) 

 

where 
k

ija  is the acceleration of team i towards team j in the kth iteration; 
k

ijg  is the 

gravitational acceleration constant defined as: 

 
k

i

k

j

k

ij XXg   (12) 

 

where 
k

jX  and k

iX  are the position vectors for candidate solutions j and i in the kth 

iteration. Finally, the displacement of the team i after competing with team j can be derived 

as: 

 

),1()(
2

1
minmax

2 nrandnXXtaX kk
ij

k
ij    (13) 

 

The second term of Eq. (9) introduces randomness into the algorithm. This term can be 

interpreted as the random portion of the search space traveled by team i before it stops after 
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the applied force is removed. The role of 
k is to gradually decrease the random portion of 

the team's movement. For most of the applications   could be considered as a constant 

chosen from the interval [0.9, 0.99]; bigger values of   decrease the convergence speed of 

the algorithm and help the candidate solutions explore the search space more thoroughly.   

is a scaling factor which can be chosen from the interval (0,1]. This parameter controls the 

steps of the candidate solutions when moving in the search space. When the search space is 

supposed to be searched more accurately with smaller steps, smaller values should be chosen 

for this parameter. For our numerical examples values between 0.01 and 0.05 seem to be 

appropriate for this parameter; maxX and minX  are the vectors containing the upper and 

lower bounds of the permissible ranges of the design variables, respectively;   denotes 

element by element multiplication; ),1( nrandn  is a vector of random numbers drawn from 

a standard normal distribution.  

It should be noted that when team j is lighter than team i, the corresponding displacement 

of team i will be equal to zero (i.e. 
k

ijX ). Finally, the total displacement of team i in 

iteration k is equal to (i not equal j): 

 





N

1j

k

ij

k

i XX   (14) 

 

The new position of the team i at the end of the kth iteration is then calculated as: 

 
k

i

k

i

1k

i XXX   (15) 

 

Step 4: Updating the league 

Once the teams of the league compete against each other for a complete round, the league 

should be updated. This is done by comparing the new candidate solutions (the new 

positions of the teams) to the current teams of the league. That is to say, if the new candidate 

solution i is better than the Nth team of the league in terms of objective function value, the 

Nth team is removed from the league and the new solution takes its place. 

 

Step 5: Handling the side constraints  

It is possible for the candidate solutions to leave the search space and it is important to 

deal with such solutions properly. This is especially the case for the solutions corresponding 

to lighter teams for which the values of X is usually bigger. Different strategies might be 

used in order to solve this problem. For example, such candidate solutions can be simply 

brought back to their previous feasible position (flyback strategy) or they can be regenerated 

randomly. In this paper a new strategy is introduced and incorporated using the global best 

solution. The new value of the jth optimization variable of the ith team that violated side 

constraints in the kth iteration is defined as: 
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)xGB)(
k

randn
(GBx 1k

ijjj

k

ij

  (16) 

 

where jGB is the jth variable of the global best solution (i.e. the best solution so far); randn 

is a random number drawn form a standard normal distribution. There is a very slight 

possibility for the newly generated variable to be still outside the search space. In such cases 

a flyback strategy is used. 

The abovementioned strategy is utilized with a certain probability (0.5 in this paper). For 

the rest of cases the violated limit is taken as the new value of the jth optimization variable. 

 

Step 6: Termination 

Steps 2 through 5 are repeated until a termination criterion is satisfied. The pseudo code 

of TWO is presented in Table 1. 

 
Table 1: Pseudo-code of the TWO algorithm developed in this study 

procedure Tug of War Optimization 

begin 

     Initialize parameters; 

 Initialize a population of N random candidate solutions; 

     Initialize the league by recording all random candidate solution; 

  while (termination condition not met) do 

           Evaluate the objective function values for the candidate solutions 

           Sort the new solutions and update the league  

           Define the weights of the teams of the league Wi based on fit(Xi) 

               for each team i 

          for each team j 

         if (Wi < Wj)   

                             Move team i towards team j using Eq. (13);  

                       end if 

          end for 

                Determine the total displacement of team i using Eq. (14) 

                Determine the final position of team i using Eq.(15) 

                Use the side constraint handling technique to regenerate violating variables  

         end for 

  end while 

end 
 

 

4. NUMERICAL EXAMPLES 
 

Four numerical examples are provided in this section in order to examine the performance of 

TWO on frequency constraint weight minimization of truss structures. The results are 

compared to those of some other optimization techniques reported in the literature. A total 
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population of 20 particles is considered for all of the examples except for the second one, 

where 30 agents are used. The termination criterion is taken as the number of iterations in all 

the examples. All numerical examples are run 50 times independently in order to provide 

statistical results. 

 

4.1 A 10-bar truss 

Size optimization of a 10-bar truss structure shown in Fig. 3 is considered as the first 

example. This is a well-known benchmark problem in the field of structural optimization 

subjected to frequency constraints. Cross-sectional areas of all ten members are assumed to 

be independent variables. A non-structural mass of 454.0 kg is attached to all free nodes. 

Table 2 summarizes the material properties, variable bounds, and frequency constraints for 

this example. 

 

 
Figure 3. Schematic of a 10-bar planar truss structure 

 
Table 2: Material properties, variable bounds and frequency constraints for the 10-bar truss 

structure 

Property/unit Value 

E (Modulus of elasticity)/ N/m
2
 6.89 × 10

10
 

ρ (Material density)/ kg/m
3
 2770.0 

Added mass/kg 454.0 

Design variable lower bound/m
2
 0.645 ×10

-4
 

Design variable upper bound/m
2
 50 ×10

-4
 

L (Main bar’s dimension)/m 9.144 

Constraints on first three frequencies/Hz ω1≥7, ω2≥15, ω 3≥20 

 

This problem is addressed by different researchers using a wide variety of methods: Grandhi 

and Venkayya [1] using an optimality algorithm, Sedaghati et al. [4] utilizing a sequential 

quadratic programming and finite element force method, Wang et al. [5] using an evolutionary 

node shift method, Lingyun et al. [6] utilizing a niche hybrid genetic algorithm, Gomes 

employing particle swarm optimization algorithm [7] and Kaveh and Zolghadr employing 

standard and enhanced CSS [8], hybridized CSS-BBBC with trap recognition capability [9], 

democratic particle swarm optimization (DPSO) [10], and a hybridized PSRO [11].  
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Optimal structures found by different methods and the corresponding masses are 

summarized in Table 3. The optimal structure found by TWO is better than other methods. It 

should be noted that the structures found by standard PSO [7] and CSS [8] are obtained 

using a modulus of elasticity of E = 6.98 × 1010 N/m2, which generally results in lighter 

structures. Table 4 presents the natural frequencies of the optimized structures obtained by 

different methods. It can be seen that all constraints are satisfied. The mean value and the 

standard deviation of 50 independent runs of TWO are 535.55 kg and 3.27, respectively. 

 
Table 3: Optimal structures (cm

2
) found by different methods for the planar 10-bar planar truss 

problem (the optimized weight does not include the added masses) 

Element 

number 

Grandhi and 

Venkayya 

[1] 

Sedaghati et 

al. [4] 

Wang et 

al. [5] 

Lingyun 

et al. [6] 

Gomes 

[7] 

Kaveh and 

Zolghadr 
   

Standard CSS 

[8] 

DPSO 

[10] 

PSRO 

[11] 

Present 

work 

1 36.584 38.245 32.456 42.23 37.712 38.811 35.944 37.075 34.544 

2 24.658 9.916 16.577 18.555 9.959 9.0307 15.530 15.334 15.148 

3 36.584 38.619 32.456 38.851 40.265 37.099 35.285 33.665 37.088 

4 24.658 18.232 16.577 11.222 16.788 18.479 15.385 14.849 14.813 

5 4.167 4.419 2.115 4.783 11.576 4.479 0.648 0.645 0.646 

6 2.070 4.419 4.467 4.451 3.955 4.205 4.583 4.643 4.613 

7 27.032 20.097 22.810 21.049 25.308 20.842 23.610 24.528 24.373 

8 27.032 24.097 22.810 20.949 21.613 23.023 23.599 23.188 23.720 

9 10.346 13.890 17.490 10.257 11.576 13.763 13.135 12.436 12.318 

10 10.346 11.452 17.490 14.342 11.186 11.414 12.357 13.500 12.618 

Weight 

(kg) 
594.0 537.01 553.8 542.75 537.98 531.95 532.39 532.85 532.23 

 

Table 4: Natural frequencies (Hz) of the optimized designs for the 10-bar planar truss. 

Frequenc

y number 

Grandhi and 

Venkayya 

[1] 

Sedaghati 

et al. [4] 

Wang et 

al. [5] 

Lingyun 

et al. [6] 

Gomes 

[7] 

Kaveh and 

Zolghadr 
   

Standard 

CSS [8] 

DPSO 

[10] 

PSRO 

[11] 

Present 

work 

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000 7.000 7.000 

2 15.895 17.599 17.302 18.148 17.786 17.442 16.187 16.143 16.194 

3 20.425 19.973 20.001 20.000 20.000 20.031 20.000 20.000 20.000 

4 21.528 19.977 20.100 20.508 20.063 20.208 20.021 20.032 20.002 

5 28.978 28. 173 30.869 27.797 27.776 28.261 28.470 28.469 28.478 

6 30.189 31.029 32.666 31.281 30.939 31.139 29.243 29.485 28.894 

7 54.286 47.628 48.282 48.304 47.297 47.704 48.769 48.440 48.603 

8 56.546 52.292 52.306 53.306 52.286 52.420 51.389 51.157 51.148 

 

Fig. 4 presents the convergence curve of the best run of TWO for the 10-bar planar truss.  

 

4.2 A 72-bar spatial truss 

A 72-bar spatial truss as depicted in Fig. 5 is presented as the second example. Four non-

structural masses of 2270 kg are attached to the uppermost four nodes. The shape of the 

structure is kept unchanged during the optimization process and the design variables only 

include cross-sectional areas of the members, which are grouped into 16 groups. Material 

properties, variable bounds, frequency constrains and added masses are listed in Table 5. 
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Figure 4. Convergence curve of the best run of TWO for the 10-bar planar truss 

 

 
Figure 5. The 72-bar spatial truss 
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Table 5: Material properties and frequency constraints for the 72-bar spatial truss 

Property/unite Value 

E (Modulus of elasticity)/ N/m2 6.89 × 1010 

ρ (Material density)/ kg/m3 2770.0 

Added mass/kg 2270 

Design variable lower bound/m2 0.645 ×10-4 

Constraints on first three frequencies/Hz ω1=4.0 , ω3≥6 

 

Optimized designs obtained by different optimization methods are summarized in Table 

6. It should be mentioned that a modulus of elasticity of E=6.98×1010 N/m2 is used by 

Gomes [7] and Kaveh and Zolghadr [8, 9]. This generally results in lighter structures. The 

mean value and the standard deviation of 50 independent runs of TWO are 336.1 kg and 5.8, 

respectively. Table 7 presents the first five natural frequencies for the optimized structures 

found by different methods. It could be seen that all of the frequency constraints are 

satisfied. Fig. 6 presents the convergence curve for the best run of TWO.  

 
Table 6: Optimal cross-sectional areas for the 72-bar space truss (cm

2
) 

Group 

number 
Elements 

Sedaghati 

et al. [4] 

Gomes 

[7] 

Kaveh and Zolghadr    

Standard 

CSS [8] 

Enhanced 

CSS [8] 

CSS-

BBBC 

[9] 

PSRO 

[11] 

Present 

method 

1 1–4 3.499 2.987 2.528 2.252 2.854 3.840 3.380 

2 5–12 7.932 7.849 8.704 9.109 8.301 8.360 8.086 

3 13–16 0.645 0.645 0.645 0.648 0.645 0.645 0.647 

4 17–18 0.645 0.645 0.645 0.645 0.645 0.699 0.646 

5 19–22 8.056 8.765 8.283 7.946 8.202 8.817 8.890 

6 23–30 8.011 8.153 7.888 7.703 7.043 7.697 8.136 

7 31–34 0.645 0.645 0.645 0.647 0.645 0.645 0.654 

8 35–36 0.645 0.645 0.645 0.646 0.645 0.651 0.647 

9 37–40 12.812 13.450 14.666 13.465 16.328 12.136 13.097 

10 41–48 8.061 8.073 6.793 8.250 8.299 8.839 8.101 

11 49–52 0.645 0.645 0.645 0.645 0.645 0.645 0.663 

12 53-54 0.645 0.645 0.645 0.646 0.645 0.645 0.646 

13 55–58 17.279 16.684 16.464 18.368 15.048 17.059 16.483 

14 59–66 8.088 8.159 8.809 7.053 8.268 7.427 7.873 

15 67-70 0.645 0.645 0.645 0.645 0.645 0.646 0.651 

16 71-72 0.645 0.645 0.645 0.646 0.645 0.645 0.657 

 Weight (kg) 327.605 328.823 328.814 328.393 327.507 329.80 328.83 
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Table 7: Natural frequencies (Hz) obtained by different methods for the 72-bar space truss 

Frequency 

number 

Sedaghati 

et al. [4] 

Gomes 

[7] 

Kaveh and Zolghadr    

Standard 

CSS [8] 

Enhanced 

CSS [8] 

CSS-

BBBC [9] 

PSRO 

[11] 

Present 

method 

1 4.000 4.000 4.000 4.000 4.000 4.000 4.000 

2 4.000 4.000 4.000 4.000 4.000 4.000 4.000 

3 6.000 6.000 6.006 6.004 6.004 6.000 6.000 

4 6.247 6.219 6.210 6.155 6.2491 6.418 6.259 

5 9.074 8.976 8.684 8.390 8.9726 9.143 9.082 

 

 
Figure 6 convergence curve of the best run of TWO for the 72-bar planar truss 

 

4.3 A Simply supported 37-bar planar truss 

Shape and size optimization of a simply supported 37-bar planar truss as shown in Fig. 7 is 

studied as the third example. The elements of the lower chord are modeled as bar elements 

with constant rectangular cross-sectional areas of 4×10-3 m2. The rest of the members, which 

for the sizing variables of the problem are modeled as bar elements and are grouped with 

respect to symmetry. The y-coordinate of all the nodes on the upper chord can vary in a 

symmetrical manner to form the shape variables. A non-structural mass of 10 kg is attached 

to all free nodes of the lower chord. Constraints are imposed on the first three natural 

frequencies of the structure. 
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Figure 7. A simply-supported planar 37-bar truss 

 

This example has been investigated by different researchers including Wang et al. [5] 

using an evolutionary node shift method, Lingyun et al. [6] using a niche hybrid genetic 

algorithm, Gomes [7] utilizing particle swarm algorithm, and Kaveh and Zolghadr using 

CSS [8], democratic PSO [10], and a hybridized PSRO algorithm [11]. Material properties, 

frequency constrains, added masses and variable bounds for this example are listed in Table 

8. Final cross-sectional areas and node coordinates obtained by different methods together 

with the corresponding weight are shown in Table 9. 

 
Table 8: Material properties, frequency constraints, and variable bounds for the simply supported 

37-bar planar truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2.1× 1011 

ρ (Material density)/ kg/m3 7800 

Design variable lower bound/m2 1 ×10-4 

Design variable upper bound/m2 10 ×10-4 

Added mass/kg 10 

Constraints on first three frequencies/Hz ω1≥20, ω2≥40, ω3≥60 

 

Table 9: Optimized designs obtained for the planar 37-bar truss problem 

Variable  

Wang 

et al. 

[5] 

Lingyun 

et al. [6] 

Gomes 

[7] 

Kaveh and 

Zolghadr 
   

Standard 

CSS [8] 
DPSO [10] 

PSRO 

[11] 

Present 

method 

Y3 , Y19 (m)  1.2086 1.1998 0.9637 0.8726 0.9482 1.0087 1.0039 

Y5 , Y17 (m)  1.5788 1.6553 1.3978 1.2129 1.3439 1.3985 1.3531 

Y7 , Y15 (m)  1.6719 1.9652 1.5929 1.3826 1.5043 1.5344 1.5339 

Y9 , Y13 (m)  1.7703 2.0737 1.8812 1.4706 1.6350 1.6684 1.6768 

Y11 (m)  1.8502 2.3050 2.0856 1.5683 1.7182 1.7137 1.7728 

A1, A27 (cm
2
)  3.2508 2.8932 2.6797 2.9082 2.6208 2.6368 2.8892 

A2, A26 (cm
2
)  1.2364 1.1201 1.1568 1.0212 1.0397 1.3034 1.0949 

A3, A24 (cm
2
)  1.0000 1.0000 2.3476 1.0363 1.0464 1.0029 1.0213 

A4, A25 (cm
2
)  2.5386 1.8655 1.7182 3.9147 2.7163 2.3325 2.6776 

A5, A23 (cm
2
)  1.3714 1.5962 1.2751 1.0025 1.0252 1.2868 1.1981 
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A6, A21 (cm
2
)  1.3681 1.2642 1.4819 1.2167 1.5081 1.0704 1.1387 

A7, A22 (cm
2
)  2.4290 1.8254 4.6850 2.7146 2.3750 2.4442 2.6537 

A8, A20 (cm
2
)  1.6522 2.0009 1.1246 1.2663 1.4498 1.3416 1.4171 

A9, A18 (cm
2
)  1.8257 1.9526 2.1214 1.8006 1.4499 1.5724 1.3934 

A10, A19 (cm
2
)  2.3022 1.9705 3.8600 4.0274 2.5327 3.1202 2.7741 

A11, A17 (cm
2
)  1.3103 1.8294 2.9817 1.3364 1.2358 1.2143 1.2759 

A12, A15 (cm
2
)  1.4067 1.2358 1.2021 1.0548 1.3528 1.2954 1.2776 

A13, A16 (cm
2
)  2.1896 1.4049 1.2563 2.8116 2.9144 2.7997 2.1666 

A14 (cm
2
)  1.0000 1.0000 3.3276 1.1702 1.0085 1.0063 1.0099 

Weight (kg)  366.50 368.84 377.20 362.84 360.40 360.97 360.27 

 

Table 9 shows that TWO has obtained the best result among the algorithms. The mean 

weight and the standard deviation of 50 independent runs of TWO are 363.75 kg and 2.48 

kg, respectively. Table 10 presents the first five natural frequencies of the optimized 

structures. Fig. 8 presents the convergence curve of the best run of TWO for the simply 

supported 37-bar planar truss.  

 
Table 10: Natural frequencies (Hz) evaluated at the optimized designs for the planar 37-bar truss 

Frequency 

number 
 

Wang et 

al. [5] 

Lingyun 

et al. [6] 

Gomes 

[7] 

Kaveh and 

Zolghadr 
   

Standard 

CSS [8] 

DPSO 

[10] 

PSRO 

[11] 

Present 

method 

1  20.0850 20.0013 20.0001 20.0000 20.0194 20.1023 20.0279 

2  42.0743 40.0305 40.0003 40.0693 40.0113 40.0804 40.0146 

3  62.9383 60.0000 60.0001 60.6982 60.0082 60.0516 60.0946 

4  74.4539 73.0444 73.0440 75.7339 76.9896 75.8918 76.5062 

5  90.0576 89.8244 89.8240 97.6137 97.2222 97.2470 96.5840 

 

 
Figure 8. Convergence curve of the best run of TWO for the simply supported 37-bar planar 

truss 
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4.4 A 52-bar dome-like truss 

As the last example, simultaneous shape and size optimization of a 52-bar dome-like truss is 

considered. Initial layout of the structure is depicted in Fig. 9. Non-structural masses of 50 

kg are attached to all free nodes. Material properties, frequency constraints and variable 

bounds for this example are summarized in Table 11. The elements of the structure are 

categorized in 8 groups according to Table 12. All free nodes are permitted to move ±2m 

from their initial position in a symmetrical manner. 

 
Table 11: Material properties and frequency constraints and variable bounds for the 52-bar space 

truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m
2
 2.1× 10

11
 

ρ (Material density)/ kg/m
3
 7800 

Added mass/kg 50 

Allowable range for cross-sections/ m
2
 0.0001≤ A≤ 0.001 

Constraints on first three frequencies/Hz ω1≤ 15.916 ω2≥28.648 

 

 
(a) Top view 
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(b) Side view 

Figure 9. Initial layout of the spatial 52-bar truss  

 

Table 12: Element grouping for the spatial 52-bar truss 

Group number Elements 

1 

2 

3 

4 

5 

6 

7 

8 

1-4 

5-8 

9-16 

17-20 

21-28 

29-36 

37-44 

45-52 

 

This example has been solved by Lin et al. [3] using a mathematical programming 

technique and Lingyun et al. [6] using a niche hybrid genetic algorithm. Gomes [7] has 

studied the problem using particle swarm optimization algorithm. The authors have studied 

the problem using CSS [8], hybridized CSS-BBBC with a trap recognition capability [9], 

democratic PSO [10], and a hybridized PSRO algorithm [11]. 

Table 13 summarizes the best results obtained by different methods for this example. It 

can be seen the structure found by TWO is lighter than those of other methods. The mean 

weight and the standard deviation of 50 independent runs of TWO are 214.25 kg and 12.64 

kg, respectively. Table 14 shows the first five natural frequencies of the final structures 

found by various methods for the 52-bar dome-like space truss. The convergence curve of 

the best run of TWO for this problem is shown in Fig. 10. 

 

 

 

 

 

 

Arc
hive

 of
 S

ID

www.SID.ir



A. Kaveh and A. Zolghadr 

 

328 

Table 13: Optimized designs obtained for the spatial 52-bar truss problem 

Variable  
Lin et al. 

[3] 

Lingyun 

[6] 

Gomes 

[7] 

Kaveh and 

Zolghadr 
   

Standard 

CSS [8] 

DPSO 

[10] 

PSRO 

[11] 

Present 

method 

ZA (m)  4.3201 5.8851 5.5344 5.2716 6.1123 6.252 6.012 

XB (m)  1.3153 1.7623 2.0885 1.5909 2.2343 2.456 1.598 

ZB (m)  4.1740 4.4091 3.9283 3.7093 3.8321 3.826 4.287 

XF (m)  2.9169 3.4406 4.0255 3.5595 4.0316 4.179 3.641 

ZF (m)  3.2676 3.1874 2.4575 2.5757 2.5036 2.501 2.888 

A1 (cm
2
)  1.00 1.0000 0.3696 1.0464 1.0001 1.0007 2.1245 

A2 (cm
2
)  1.33 2.1417 4.1912 1.7295 1.1397 1.0312 1.1341 

A3 (cm
2
)  1.58 1.4858 1.5123 1.6507 1.2263 1.2403 1.1870 

A4 (cm
2
)  1.00 1.4018 1.5620 1.5059 1.3335 1.3355 1.3180 

A5 (cm
2
)  1.71 1.911 1.9154 1.7210 1.4161 1.5713 1.3637 

A6 (cm
2
)  1.54 1.0109 1.1315 1.0020 1.0001 1.0021 1.0299 

A7 (cm
2
)  2.65 1.4693 1.8233 1.7415 1.5750 1.3267 1.3479 

A8 (cm
2
)  2.87 2.1411 1.0904 1.2555 1.4357 1.5653 1.4446 

Weight (kg)  298.0 236.046 228.381 205.237 195.351 197.186 194.25 

 
Table 14: Optimized designs obtained for the spatial 52-bar truss problem 

Frequency 

number 
 

Lin et 

al. [3] 

Lingyun 

[6] 

Gomes 

[7] 

Kaveh and 

Zolghadr 
   

Standard 

CSS [8] 

DPSO 

[10] 

PSRO 

[11] 

Present 

method 

1  15.22 12.81 12.751 9.246 11.315 12.311 9.265 

2  29.28 28.65 28.649 28.648 28.648 28.648 28.667 

3  29.28 28.65 28.649 28.699 28.648 28.649 28.667 

4  31.68 29.54 28.803 28.735 28.650 28.715 28.686 

5  33.15 30.24 29.230 29.223 28.688 28.744 29.734 
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Figure 10. convergence curve of the best run of TWO for the 52-bar truss problem 

 

 

5. EFFECT OF PARAMETERS 
 

In this section effect of different parameters of TWO on the performance of the algorithm is 

studied. For this purpose the 10-bar truss structure is optimized using different values for 

population size, 𝜶, 𝜷, and k . The problem is solved 20 times using each set of parameters to 

eliminate the effect of randomly generated initial solutions. Fig. 11 shows the best and mean 

weight values for this example using different population sizes. It can be seen that a population 

size of 20 could be sufficient and bigger values do not improved the results significantly. 

 

 
(a) 
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(b) 

Figure 11 Effect of population size on the performance of TWO on 10-bar truss problem a) Best 

weight b) Mean weight 

 

Table 15 presents the effect of parameter k  on the performance of the algorithm. It can 

be seen that the best results in terms of best and mean weight are obtained when k

decreases linearly from 1 to zero. The standard deviation and number of infeasible designs 

are also comparatively acceptable. It can also be seen that the performance of the algorithm 

is not affected drastically for other values of k . This means that even if the user does not 

set the optimal values of parameters, adequate results are still attainable.  

 

Table 15: Effect of k  on the performance of TWO on the 10-bar truss problem 

k  
 

0 0.5 1 linear 

Best weight (kg) 
 

532.63 533.13 532.25 532.23 

Mean weight (kg) 
 

538.85 539.02 537.02 535.55 

std 
 

3.81 2.97 3.55 3.27 

Number of 

infeasible designs  
6 2 0 1 

 

Table 16 summarizes the performance of TWO for different values of parameter 𝜶. It can 

be seen that the best performance in terms of best and mean weight values is associated with 

𝜶=0.97. However, selecting this parameter in the range (0.9, 0.99) will also result in 

acceptable results according to the table. 
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Table 16: Effect of 𝜶 on the performance of TWO on the 10-bar truss problem 

𝜶 
 

0.8 0.85 0.9 0.95 0.97 0.99 

        
Best weight (kg) 

 
533.69 536.46 533.81 532.24 532.23 532.84 

Mean weight (kg) 
 

567.55 549.84 542.27 537.98 535.55 537.89 

std 
 

23.22 13.96 6.649 3.39 3.27 3.11 

Number of 

infeasible designs  
3 5 4 0 1 2 

 

Finally, Table 17 shows the effect of parameter 𝜷 on the performance of the presented 

algorithm. It can be seen that the algorithm performs acceptable for a relatively large range 

of this parameter namely (0.005, 0.1). For bigger values however, the quality of the results 

slightly decreases. 

 

Table 17: Effect of parameter 𝜷 on the performance of TWO 

𝜷  0.005 0.01 0.02 0.05 0.1 0.5 1 

         Best weight (kg) 

 

532.21 532.23 532.25 532.48 532.76 533.75 534.97 

Mean weight (kg) 

 

537.16 535.55 535.63 535.85 5.3538 538.04 542.82 

std 

 

2.75 3.27 3.42 3.16 3.03 3.9 6.84 

Number of 

infeasible designs 

 

3 1 0 1 0 3 5 

 

 

6. CONCLUDING REMARKS 
 

Shape and size optimization of truss structures subject to frequency constraints is addressed 

in this paper using a newly developed multi-agent meta-heuristic algorithm, called tug of 

war optimization (TWO). The algorithm considers each of the candidate solutions as a team 

competing in a series of rope pulling competitions. 

An idealized framework is presented in order to simplify the physical nature of a game of 

tug of war, in which the teams are considered as two bodies lying on a smooth surface. It is 

then assumed that the pulling force that a team can exert is proportional to its weight and the 

two teams sustain their grip of the rope during the contest. The weights of the teams are 

determined base on the quality of the solutions they represent.  

Four numerical examples are provided in order to examine the efficiency of the 

algorithm. The results are compared to those of some other optimization algorithms on the 

same problems. The results indicate that the performance of TWO is comparable to the other 

documented methods. In fact for two of the examples the optimized structures obtained by 

TWO are lighter than those of other methods.  

In view of the significant effect of the internal parameters of a meta-heuristic algorithm 

on its performance, the effects of the parameters of TWO on the results obtained for the 
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problems under consideration are studied using the 10-bar truss example. The optimal 

parameter values for frequency constraint structural optimization problems are presented. It 

should be noted that the parameter values are believed to be problem dependent and these 

values might not be globally optimal for other cases. The results indicate that for non-

optimal parameter values, the obtained results are still reasonable for the 10-bar truss 

problem. 
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